Nothing Special   »   [go: up one dir, main page]

JP2974902B2 - Conductive resin paste - Google Patents

Conductive resin paste

Info

Publication number
JP2974902B2
JP2974902B2 JP5328563A JP32856393A JP2974902B2 JP 2974902 B2 JP2974902 B2 JP 2974902B2 JP 5328563 A JP5328563 A JP 5328563A JP 32856393 A JP32856393 A JP 32856393A JP 2974902 B2 JP2974902 B2 JP 2974902B2
Authority
JP
Japan
Prior art keywords
resin paste
conductive resin
compound
paste
hydroxyl groups
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP5328563A
Other languages
Japanese (ja)
Other versions
JPH07179833A (en
Inventor
光 大久保
道雄 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP5328563A priority Critical patent/JP2974902B2/en
Publication of JPH07179833A publication Critical patent/JPH07179833A/en
Application granted granted Critical
Publication of JP2974902B2 publication Critical patent/JP2974902B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Adhesives Or Adhesive Processes (AREA)
  • Conductive Materials (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はIC、LSI等の半導体
素子を金属フレーム等に接着する導電性樹脂ペーストに
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a conductive resin paste for bonding a semiconductor element such as an IC or an LSI to a metal frame or the like.

【0002】[0002]

【従来の技術】近年のエレクトロニクス産業の著しい発
展に伴い、トランジスタ、IC、LSI、超LSIと半
導体素子における回路の集積度は急激に増大している。
このため、半導体素子の大きさも、従来長辺が数mm程
度だったものが10数mmと飛躍的に増大している。ま
た、リードフレームも従来の42合金から熱伝導性も良
く安価である銅材が主流となりつつあり、一方、半導体
製品の実装方法は表面実装法に、しかも高密度実装化の
為半導体製品自体の大きさは小さくしかも薄くなってき
ている。このような半導体製品の動向に従い半導体製品
の構成材料に対する要求性能も変化してきており、半導
体素子と金属フレームを接合するダイボンディング用樹
脂ペーストに対しても、従来求められていた接合の信頼
性のみならず、大型チップと銅フレームの熱膨張率の差
に基づく熱応力を吸収緩和する応力緩和特性、更には薄
型パッケージでの表面実装に基づく耐半田クラック特性
が要求され始めている。
2. Description of the Related Art With the remarkable development of the electronics industry in recent years, the degree of integration of circuits in transistors, ICs, LSIs, VLSIs and semiconductor devices has been rapidly increasing.
For this reason, the size of the semiconductor element has been dramatically increased to about several tens mm, whereas the long side in the related art was about several mm. In addition, the lead frame is also mainly made of inexpensive copper material with good thermal conductivity from the conventional 42 alloy. On the other hand, the mounting method of semiconductor products is the surface mounting method. The size is getting smaller and thinner. In accordance with the trend of such semiconductor products, the required performance of constituent materials of the semiconductor products is also changing, and even for the resin bonding paste for bonding the semiconductor element and the metal frame, only the conventionally required bonding reliability is required. Instead, a stress relaxation property for absorbing and relaxing thermal stress based on a difference in thermal expansion coefficient between a large chip and a copper frame, and further, a solder crack resistance property based on surface mounting in a thin package are beginning to be required.

【0003】ここで、応力緩和特性は半導体素子の材料
であるシリコン等の線熱膨張係数が3×10-6/℃であ
るのに対し銅フレームの線熱膨張係数は20×10-6
℃と1桁大きいため、ダイボンディング用樹脂ペースト
の加熱硬化後の冷却過程において、銅フレームの方がシ
リコンチップより大きな割合で収縮することにより、チ
ップの反りひいてはチップクラックあるいはダイボンデ
ィング用樹脂ペーストの剥離等を引き起こし、IC、L
SI等の半導体製品の特性不良の一因となりうる可能性
がある。このような熱応力を吸収緩和するためにダイボ
ンディング用樹脂ペーストを低弾性率にする必要がある
が、従来のエポキシ系ダイボンディング用樹脂ペースト
では、熱硬化性樹脂であるため三次元架橋し弾性率が高
くなり、大型チップと銅フレームとの熱膨張率の差に基
づく歪を吸収するに至らなかった。一方線状高分子タイ
プのポリイミド樹脂系ダイボンディング用樹脂ペースト
ではエポキシ系ダイボンディング用樹脂ペーストに比べ
硬化物の弾性率は小さく、チップの反りは改良される。
しかしポリイミド樹脂をダイボンディング用樹脂ペース
トとして用いる場合には、塗布作業性の点からN−メチ
ル−2−ピロリドン、N、N−ジメチルホルムアミド等
の多量の極性溶剤に溶解して粘度を調整しなければなら
ない。このときの溶剤量はダイボンディング用樹脂ペー
ストの30重量%にもなり、半導体素子と金属フレーム
の接着に用いた場合、硬化加熱時の溶剤の抜け跡として
硬化物中にボイドが発生し、接着強度、熱伝導性及び導
電性の低下の原因となり信頼性の面から好ましくない。
Here, the stress relaxation characteristic is such that the linear thermal expansion coefficient of silicon, which is a material of a semiconductor element, is 3 × 10 −6 / ° C., while the linear thermal expansion coefficient of a copper frame is 20 × 10 −6 / ° C.
° C, which is one order of magnitude higher, so that in the cooling process after heating and curing the die bonding resin paste, the copper frame shrinks at a greater rate than the silicon chip, resulting in chip warpage and chip cracking or die bonding resin paste. Causes peeling, etc., IC, L
There is a possibility that it may be a cause of poor characteristics of semiconductor products such as SI. In order to absorb and alleviate such thermal stress, it is necessary to make the die bonding resin paste have a low elastic modulus. However, conventional epoxy die bonding resin pastes are three-dimensionally cross-linked due to the thermosetting resin and are not elastic. The rate became high, and the strain based on the difference in the coefficient of thermal expansion between the large chip and the copper frame could not be absorbed. On the other hand, in the linear polymer type polyimide resin-based die bonding resin paste, the elasticity of the cured product is smaller than that of the epoxy-based die bonding resin paste, and the warpage of the chip is improved.
However, when a polyimide resin is used as the resin paste for die bonding, the viscosity must be adjusted by dissolving in a large amount of a polar solvent such as N-methyl-2-pyrrolidone, N, N-dimethylformamide from the viewpoint of coating workability. Must. At this time, the amount of the solvent is as much as 30% by weight of the resin paste for die bonding, and when used for bonding a semiconductor element to a metal frame, voids are generated in the cured product as traces of the solvent at the time of curing and heating. This is unfavorable in terms of reliability because it causes a decrease in strength, thermal conductivity and conductivity.

【0004】また、表面実装あるいは高密度実装を目的
としたパッケージサイズの小型化、薄型化に基づく実装
時の熱ストレスの急激な増加により、半導体封止材だけ
でなくダイボンディング用樹脂ペーストにも耐リフロー
クラック性が要求されてきている。ダイボンディング用
樹脂ペーストの耐リフロークラック性は、半田リフロー
時のストレスを緩和吸収するためにリフロー温度付近で
低弾性率であるとともに、半田リフローの前処理段階で
の吸水率が小さく、かつ吸水後でも十分な接合強度、特
に加熱状態で十分な引き剥し方向での強度を示すことが
必要であるがエポキシ及びポリイミド樹脂ペーストを含
めてこれらの特性を満足するものはなかった。
[0004] In addition, due to the rapid increase in thermal stress during mounting based on the miniaturization and thinning of the package size for surface mounting or high-density mounting, not only semiconductor encapsulants but also resin pastes for die bonding have been used. There is a demand for reflow crack resistance. The reflow crack resistance of the die bonding resin paste has a low elastic modulus near the reflow temperature to relax and absorb the stress during solder reflow, and the water absorption at the pretreatment stage of solder reflow is small, and However, it is necessary to show a sufficient bonding strength, especially a strength in a peeling direction in a heated state, but none of these properties including epoxy and polyimide resin pastes satisfy these properties.

【0005】[0005]

【発明が解決しようとする課題】本発明はIC等の大型
チップと銅フレームとの組み合わせでもチップクラック
やチップの反りによるIC等の特性不良が生じず、かつ
薄型パッケージでの半田リフロークラックが発生しない
高信頼性の導電性樹脂ペーストを提供するものである。
According to the present invention, even when a large chip such as an IC is combined with a copper frame, characteristic cracks such as an IC due to chip crack or chip warpage do not occur, and solder reflow crack occurs in a thin package. It is intended to provide a highly reliable conductive resin paste that does not have a high reliability.

【0006】[0006]

【課題を解決するための手段】本発明は、(A)銀粉、
(B)常温で液状のエポキシ樹脂、(C)1分子内に3
個のフェノール性水酸基を有する化合物を必須成分とす
る導電性樹脂ペーストにおいて、全導電性樹脂ペースト
中に(A)銀粉を60〜85重量 %、(C)1分子内
に3個のフェノール性水酸基を有する化合物を0.1〜
20重量%含むことを特徴とする導電性樹脂ペースト
で、塗布作業性が良好で、かつ硬化剤として1分子内に
3個のフェノール性水酸基を有する化合物を使用するこ
とにより、従来より用いられてきたフェノールノボラッ
ク樹脂による硬化の場合に比較して硬化物の架橋密度が
低下し、低弾性率となるためIC、LSI等の大型チッ
プと銅フレームの組み合わせでも熱膨張率の差に基づく
歪を吸収する応力緩和特性に優れるものである。また硬
化物の自由体積が小さくなるため吸水率が小さく、更に
加熱状態での引き剥し方向での接着強度が大きいため、
半田リフロー時の熱ストレスによる導電性樹脂ペースト
層の剥離が生じにくく、耐リフロークラック性に優れる
ものである。
The present invention provides (A) a silver powder,
(B) Epoxy resin liquid at room temperature, (C) 3 per molecule
In a conductive resin paste containing a compound having two phenolic hydroxyl groups as essential components, (A) 60 to 85% by weight of silver powder is contained in all conductive resin pastes, and (C) three phenolic hydroxyl groups are contained in one molecule. 0.1 to
A conductive resin paste characterized by containing 20% by weight, which has been used conventionally by using a compound having good coating workability and having three phenolic hydroxyl groups in one molecule as a curing agent. Compared with the case of curing with phenol novolak resin, the crosslinked density of the cured product is lowered and the elastic modulus is low, so even the combination of large chip such as IC and LSI and copper frame absorbs the strain based on the difference in thermal expansion coefficient. It has excellent stress relaxation characteristics. Also, since the free volume of the cured product is small, the water absorption is small, and since the adhesive strength in the peeling direction in a heated state is large,
The conductive resin paste layer hardly peels off due to thermal stress during solder reflow, and is excellent in reflow crack resistance.

【0007】本発明に用いる銀粉は、用いる分野が電
子、電気分野のためハロゲンイオン、アルカリ金属イオ
ン等のイオン性不純物量が10ppm以下であることが
望ましい。また形状としてはフレーク状、樹枝状あるい
は球状のものを単独あるいは混合して用いることができ
る。更に粒径に関しては通常平均粒径が2〜10μm、
最大粒径は50μm程度のものが好ましく、比較的細か
い銀粉と粗い銀粉を混合して用いてもよい。銀粉量が6
0重量%より少ないと硬化物の電気導電性が低下し、8
5重量%を越えると樹脂ペーストの粘度が高くなりすぎ
塗布作業性の低下の原因となるので好ましくない。
Since the silver powder used in the present invention is used in the fields of electronics and electricity, the amount of ionic impurities such as halogen ions and alkali metal ions is desirably 10 ppm or less. Flakes, dendrites or spheres can be used alone or in combination. Furthermore, regarding the particle size, the average particle size is usually 2 to 10 μm,
The maximum particle size is preferably about 50 μm, and a mixture of relatively fine silver powder and coarse silver powder may be used. 6 silver powder
If the amount is less than 0% by weight, the electrical conductivity of the cured product decreases,
If the content exceeds 5% by weight, the viscosity of the resin paste becomes too high, which causes a reduction in coating workability, which is not preferable.

【0008】また本発明に用いるエポキシ樹脂は、常温
で液状のものに限定しているが、常温で液状のものでな
いと銀粉との混練において溶剤を必要とする。溶剤は気
泡の原因となり硬化物の接着強度、熱伝導率を低下させ
てしまうので好ましくない。本発明で用いる常温で液状
のエポキシ樹脂とは、例えば常温で固形のものでも常温
で液状のエポキシ樹脂と混合することで常温で安定して
液状を示すものも含む。
Although the epoxy resin used in the present invention is limited to a liquid at room temperature, a solvent is required for kneading with silver powder unless the resin is liquid at room temperature. The solvent is not preferable because it causes bubbles and lowers the adhesive strength and thermal conductivity of the cured product. The epoxy resin which is liquid at ordinary temperature used in the present invention includes, for example, a resin which is solid at ordinary temperature and shows a stable liquid at ordinary temperature by being mixed with the epoxy resin which is liquid at ordinary temperature.

【0009】本発明に用いるエポキシ樹脂としては、ビ
スフェノールA、ビスフェノールF、フェノールノボラ
ック、クレゾールノボラック類とエピクロルヒドリンと
の反応により得られるポリグリシジルエーテル、1,6
−ジヒドロキシナフタレンジグリシジルエーテル、ブタ
ンジオールジグリシジルエーテル、ネオペンチルグリコ
ールジグリシジルエーテル等の脂肪族エポキシ、ジグリ
シジルヒダントイン等の複素環式エポキシ、ビニルシク
ロヘキセンジオキサイド、ジシクロペンタジエンジオキ
サイド、アリサイクリックジエポキシ−アジペイトのよ
うな脂環式エポキシ、さらにはn−ブチルグリシジルエ
ーテル、バーサティック酸グリシジルエステル、スチレ
ンオキサイド、エチルヘキシルグリシジルエーテル、フ
ェニルグリシジルエーテル、クレジルグリシジルエーテ
ル、ブチルフェニルグリシジルエーテル等のような通常
のエポキシ樹脂の希釈剤として用いられるものがあり、
これらは単独でも混合して用いても差し支えない。
The epoxy resins used in the present invention include bisphenol A, bisphenol F, phenol novolak, polyglycidyl ether obtained by the reaction of cresol novolaks with epichlorohydrin, 1,6
-Aliphatic epoxies such as dihydroxynaphthalenediglycidyl ether, butanediol diglycidyl ether, neopentyl glycol diglycidyl ether, heterocyclic epoxies such as diglycidyl hydantoin, vinylcyclohexenedioxide, dicyclopentadienedioxide, alicyclic die Cycloaliphatic epoxies such as epoxy-adipate, and also normal such as n-butyl glycidyl ether, glycidyl versatate, styrene oxide, ethylhexyl glycidyl ether, phenyl glycidyl ether, cresyl glycidyl ether, butylphenyl glycidyl ether, etc. Some are used as diluents for epoxy resins,
These may be used alone or as a mixture.

【0010】更に本発明に用いる硬化剤は、1分子内に
3個のフェノール性水酸基を有する化合物で、全導電性
樹脂ペースト中に0.1〜20重量%含まれる。従来よ
り用いられてきたフェノールノボラック樹脂では、硬化
物の架橋密度が高くなるため、弾性率が高くなり応力緩
和特性が低下するとともに硬化物の自由体積が大きくな
るため吸水率が大きくなってしまうので好ましくない。
また1分子内に2個のフェノール性水酸基を有する化合
物では、硬化物の架橋密度が低く低弾性率であるととも
に硬化物の自由体積は小さく低吸水率であるが、硬化物
の凝集力が小さく特に加熱状態での引き剥し方向の接着
強度が低くなってしまう。1分子内に3個のフェノール
性水酸基を有する化合物の配合量が、全導電性樹脂ペー
スト中に0.1重量%未満だと要求する低応力性・低吸
水性が望めなく、20重量%を越えると硬化剤量が多く
なり過ぎ、硬化後過剰のフェノール性水酸基が未反応の
状態で残存するため硬化物の吸水率が大きくなり、又硬
化後も充分な架橋構造となりえず熱時の接着強度が極端
に低くなるため好ましくない。1分子内に3個のフェノ
ール性水酸基を有する化合物としては、式(1)の化合
物の他に、フェノールノボラック樹脂の3核体のもの、
クレゾールノボラック樹脂の3核体のもの、式(2)で
示される化合物等があり、これらは単独あるいは混合し
て用いても差し支えない。
The curing agent used in the present invention is a compound having three phenolic hydroxyl groups in one molecule, and is contained in the entire conductive resin paste in an amount of 0.1 to 20% by weight. With phenol novolak resins that have been used in the past, the cross-linking density of the cured product increases, so the elastic modulus increases, the stress relaxation characteristics decrease, and the free volume of the cured product increases, which increases the water absorption. Not preferred.
In addition, a compound having two phenolic hydroxyl groups in one molecule has a low cross-linking density of the cured product, a low elastic modulus, a small free volume of the cured product and a low water absorption, but a small cohesive force of the cured product. Particularly, the adhesive strength in the peeling direction in a heated state is reduced. When the compounding amount of the compound having three phenolic hydroxyl groups in one molecule is less than 0.1% by weight in the total conductive resin paste, low stress and low water absorption required, and 20% by weight cannot be expected. If it exceeds, the amount of the curing agent becomes too large, and after the curing, excess phenolic hydroxyl groups remain in an unreacted state, so that the water absorption of the cured product becomes large. It is not preferable because the strength becomes extremely low. Examples of the compound having three phenolic hydroxyl groups in one molecule include, in addition to the compound of the formula (1), a trinuclear phenol novolak resin,
There are trinuclear cresol novolak resins, compounds represented by the formula (2) and the like, and these may be used alone or as a mixture.

【0011】[0011]

【化2】 (式(1)中のRは、水素又はアルキル基)Embedded image (R in the formula (1) is hydrogen or an alkyl group)

【0012】[0012]

【化3】 Embedded image

【0013】式(1)で示される化合物を用いる場合、
他の1分子内に3個のフェノール性水酸基を有する化合
物あるいはフェノールノボラック系化合物と併用しても
差し支えないが、その配合量は全導電性樹脂ペースト中
に2〜7重量%含むことが、特に好ましい。式(1)で
示される化合物が2重量%未満だと要求する性能を充分
に発揮し得ず、7重量%を越えると導電性樹脂ペースト
塗布時の糸引きが発生し易くなる。
When the compound represented by the formula (1) is used,
It may be used in combination with another compound having three phenolic hydroxyl groups in one molecule or a phenol novolak compound, but the compounding amount is preferably 2 to 7% by weight in the total conductive resin paste. preferable. When the amount of the compound represented by the formula (1) is less than 2% by weight, the required performance cannot be sufficiently exerted. When the amount exceeds 7% by weight, stringing at the time of applying the conductive resin paste tends to occur.

【0014】また必要に応じ、潜在性アミン硬化剤等の
他の硬化剤と併用してもよく、又3級アミン、イミダゾ
ール類、トリフェニルホスフィン、テトラフェニルホス
フィンテトラフェニルボレート等といった一般にエポキ
シ樹脂とフェノール系硬化剤との硬化促進剤として知ら
れている化合物を添加することもできる。本発明におい
ては、必要に応じて可撓性付与剤、消泡剤、カップリン
グ剤等を用いることもできる。本発明の製造方法は、例
えば各成分を予備混合した後、3本ロールを用いて混練
し、混練後真空下脱泡し樹脂ペーストを得る等がある。
If necessary, other curing agents such as a latent amine curing agent may be used in combination with a general epoxy resin such as a tertiary amine, imidazoles, triphenylphosphine, tetraphenylphosphine tetraphenylborate and the like. A compound known as a curing accelerator with a phenolic curing agent can also be added. In the present invention, a flexibility-imparting agent, an antifoaming agent, a coupling agent, and the like can be used as necessary. The production method of the present invention includes, for example, preliminarily mixing the components, kneading them using a three-roll mill, kneading and then defoaming under vacuum to obtain a resin paste.

【0015】以下実施例を用いて本発明を具体的に説明
する。配合割合は重量部で示す。
Hereinafter, the present invention will be described specifically with reference to examples. The mixing ratio is shown in parts by weight.

【実施例】【Example】

実施例1〜4 粒径1〜30μmで平均粒径3μmのフレーク状銀粉、
ビスフェノールAとエピクロルヒドリンとの反応により
得られるジグリシジルビスフェノールA(エポキシ当量
180、常温で液状、以下ビスAエポキシという)、ク
レジルグリシジルエーテル(エポキシ当量185)、ト
リス(p−ヒドロキシフェニル)エタン(水酸基当量1
02、以下3官能フェノールAという)、ビスフェノー
ルA(水酸基当量114)、ジシアンジアミド、ジアザ
ビシクロウンデセンを表1に示す割合で配合し、3本ロ
ールで混練して導電性樹脂ペーストを得た。この導電性
樹脂ペーストを真空チャンバーにて2mmHgで30分
間脱泡した後、以下の方法により各種性能を評価した。
評価結果を表1に示す。
Examples 1 to 4 Flaky silver powder having a particle size of 1 to 30 μm and an average particle size of 3 μm,
Diglycidyl bisphenol A (epoxy equivalent: 180, liquid at room temperature, hereinafter referred to as bis-A epoxy), cresyl glycidyl ether (epoxy equivalent: 185), tris (p-hydroxyphenyl) ethane (hydroxyl group) obtained by the reaction of bisphenol A with epichlorohydrin Equivalent 1
02, hereinafter referred to as trifunctional phenol A), bisphenol A (hydroxyl equivalent 114), dicyandiamide, and diazabicycloundecene were mixed in the ratio shown in Table 1, and kneaded with three rolls to obtain a conductive resin paste. After defoaming the conductive resin paste in a vacuum chamber at 2 mmHg for 30 minutes, various performances were evaluated by the following methods.
Table 1 shows the evaluation results.

【0016】粘度:E型粘度計(3°コーン)を用い2
5℃、2.5rpmでの値を測定し粘度とした。 糸引き性:導電性樹脂ペーストの中へ直径1mmφのピ
ンを深さ5mmまで入れ、ピンを300mm/分の速度
で引き上げ、ペーストが切れたときの高さを測定した。 体積抵抗率:スライドガラス上にペーストを幅4mm、
厚さ30μmに塗布し、200℃のオーブン中で60分
間硬化した後硬化物の体積抵抗率を測定した。 弾性率:テフロンシート上にペーストを10×150×
0.1mmになるように塗布し200℃のオーブン中6
0分間硬化した後、引っ張り試験機にて試験長100m
m、試験速度1mm/分で加重−変位曲線を測定し、そ
の初期勾配より弾性率を算出した。 吸水率:テフロンシート上にペーストを50×50×
0.1mmになるように塗布し200℃オーブン中60
分間硬化した後、85℃、85%、72時間吸水処理を
行い、処理前後の重量変化より吸水率を算出した。 チップの反り:6×15×0.3mmシリコンチップを
銅フレーム(200μm厚さ)に導電性樹脂ペーストで
マウントし、200℃60分硬化した後、チップの反り
を表面粗さ計(測定長13mm)で測定した。 接着強度(1):5×5mmのシリコンチップをペース
トを用いて銅フレームにマウントし200℃オーブン中
60分間硬化した。硬化後プッシュプルゲージを用い2
40℃での熱時ダイシェア強度を測定した。また硬化後
のサンプルを85℃、85%、72時間吸水処理し24
0℃での熱時ダイシェア強度を測定した。 接着強度(2):9×9mmのシリコンチップをペース
トを用いて銅フレームにマウントし、200℃オーブン
中60分間硬化した。硬化後プッシュプルゲージを用い
240℃で引き剥し方向の強度を測定した。
Viscosity: 2 using an E-type viscometer (3 ° cone)
The value at 5 ° C. and 2.5 rpm was measured and defined as viscosity. Stringing property: A pin having a diameter of 1 mmφ was put into a conductive resin paste to a depth of 5 mm, the pin was pulled up at a speed of 300 mm / min, and the height when the paste was cut was measured. Volume resistivity: paste 4 mm wide on a glass slide,
The composition was applied to a thickness of 30 μm and cured in an oven at 200 ° C. for 60 minutes, and then the volume resistivity of the cured product was measured. Elastic modulus: 10 × 150 × paste on Teflon sheet
Apply in 0.1mm and oven in 200 ℃ 6
After curing for 0 minutes, test length 100m with tensile tester
m, a load-displacement curve was measured at a test speed of 1 mm / min, and the elastic modulus was calculated from the initial gradient. Water absorption: paste 50 × 50 × on Teflon sheet
Apply to 0.1mm and oven at 200 ℃ 60
After curing for minutes, a water absorption treatment was performed at 85 ° C. and 85% for 72 hours, and the water absorption was calculated from the weight change before and after the treatment. Chip warpage: A 6 × 15 × 0.3 mm silicon chip was mounted on a copper frame (200 μm thick) with a conductive resin paste, and cured at 200 ° C. for 60 minutes. ). Adhesive strength (1): A 5 × 5 mm silicon chip was mounted on a copper frame using a paste and cured in a 200 ° C. oven for 60 minutes. Use a push-pull gauge after curing 2
The hot die shear strength at 40 ° C. was measured. The cured sample was subjected to a water absorption treatment at 85 ° C.
The hot die shear strength at 0 ° C. was measured. Adhesive strength (2): A 9 × 9 mm silicon chip was mounted on a copper frame using a paste and cured in a 200 ° C. oven for 60 minutes. After curing, the strength in the peeling direction was measured at 240 ° C. using a push-pull gauge.

【0017】実施例5 用いる硬化促進剤として式(2)に示されるα,α−ビ
ス(4−ヒドロキシフェニル)−4−(4−ヒドロキシ
−α,α−ジメチルベンジル)−エチルベンゼン(水酸
基当量141、以下3官能フェノールBという)を用い
た他は実施例1〜4と同様にして導電性樹脂ペーストを
作製し評価した。評価結果を表1に示す。 実施例6 用いるエポキシ樹脂として、1,6−ジヒドロキシナフ
タレンジグリシジルエーテル(エポキシ当量141、常
温で液状、以下ナフタレンエポキシ)を用いた他は実施
例1〜4と同様にして導電性樹脂ペーストを作製し評価
した。評価結果を表1に示す。 実施例7 用いる硬化促進剤としてトリフェニルホスフィンを用い
た他は実施例1〜4と同様にして導電性樹脂ペーストを
作製し評価した。評価結果を表1に示す。 比較例1〜5 表2に示す配合割合で実施例と全く同様にして導電性樹
脂ペーストを作製した。比較例5では硬化剤として、フ
ェノールノボラック樹脂(水酸基当量104、軟化点8
5℃)を用いた。評価結果を表2に示す。
Example 5 α, α-bis (4-hydroxyphenyl) -4- (4-hydroxy-α, α-dimethylbenzyl) -ethylbenzene (having a hydroxyl equivalent of 141) represented by the formula (2) as a curing accelerator to be used: A conductive resin paste was prepared and evaluated in the same manner as in Examples 1 to 4, except that trifunctional phenol B was used. Table 1 shows the evaluation results. Example 6 A conductive resin paste was prepared in the same manner as in Examples 1 to 4, except that 1,6-dihydroxynaphthalenediglycidyl ether (epoxy equivalent: 141, liquid at room temperature, hereinafter referred to as naphthalene epoxy) was used as the epoxy resin to be used. And evaluated. Table 1 shows the evaluation results. Example 7 A conductive resin paste was prepared and evaluated in the same manner as in Examples 1 to 4, except that triphenylphosphine was used as a curing accelerator to be used. Table 1 shows the evaluation results. Comparative Examples 1 to 5 Conductive resin pastes were produced in exactly the same manner as in the examples with the mixing ratios shown in Table 2. In Comparative Example 5, a phenol novolak resin (having a hydroxyl equivalent of 104, a softening point of 8
5 ° C.). Table 2 shows the evaluation results.

【0018】[0018]

【表1】 [Table 1]

【0019】[0019]

【表2】 [Table 2]

【0020】[0020]

【発明の効果】本発明の導電性樹脂ペーストは、ディス
ペンス塗布時の作業性が良好で、また硬化物の弾性率が
低く銅、42合金等の金属フレーム、セラミック基板、
ガラスエポキシ等の有機基板へのIC、LSI等の半導
体素子の接着に用いることができる。特に銅フレームへ
の大型チップの接着に適しており、銅フレームとシリコ
ンチップの熱膨張率の差に基づくIC、LSI等の特性
不良を防ぐことができ、更には硬化物の吸水率が低く、
吸水による接着強度の低下が少ないため薄型パッケージ
で使用てしても半田処理時にクラックの発生しない従来
になかった高信頼性の半導体素子接着用の導電性樹脂ペ
ーストである。
The conductive resin paste of the present invention has good workability at the time of dispensing application, has a low elasticity of a cured product, a metal frame of copper or 42 alloy, a ceramic substrate,
It can be used for bonding semiconductor elements such as ICs and LSIs to organic substrates such as glass epoxy. In particular, it is suitable for bonding large chips to a copper frame, and can prevent poor characteristics of IC, LSI, etc. based on the difference in the coefficient of thermal expansion between the copper frame and the silicon chip.
This is a highly reliable conductive resin paste for bonding semiconductor elements, which has never existed before and does not cause cracks during soldering even when used in a thin package because of a small decrease in adhesive strength due to water absorption.

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 (A)銀粉、(B)常温で液状のエポキ
シ樹脂、(C)1分子内に3個のフェノール性水酸基を
有する化合物を必須成分とする導電性樹脂ペーストにお
いて、全導電性樹脂ペースト中に(A)銀粉を60〜8
5重量 %、(C)1分子内に3個のフェノール性水酸
基を有する化合物を0.1〜20重量%含むことを特徴
とする導電性樹脂ペースト。
1. A conductive resin paste comprising (A) a silver powder, (B) an epoxy resin liquid at room temperature, and (C) a compound having three phenolic hydroxyl groups in one molecule as essential components. (A) Silver powder in resin paste is 60-8
5% by weight, (C) a conductive resin paste containing 0.1 to 20% by weight of a compound having three phenolic hydroxyl groups in one molecule.
【請求項2】 (C)1分子内に3個のフェノール性水
酸基を有する化合物が下記式(1)で示される請求項1
記載の導電性樹脂ペースト。
2. The compound (C) having three phenolic hydroxyl groups in one molecule represented by the following formula (1).
The conductive resin paste as described in the above.
【請求項3】 (C)1分子内に3個のフェノール性水
酸基を有する化合物が下記式(1)で示される化合物
で、かつ全導電性樹脂ペースト中に2〜7重量%含む請
求項1又は請求項2記載の導電性樹脂ペースト。 【化1】 (式(1)中のRは、水素又はアルキル基)
3. The (C) compound having three phenolic hydroxyl groups in one molecule is a compound represented by the following formula (1) and is contained in an amount of 2 to 7% by weight in the total conductive resin paste. Or the conductive resin paste according to claim 2. Embedded image (R in the formula (1) is hydrogen or an alkyl group)
JP5328563A 1993-12-24 1993-12-24 Conductive resin paste Expired - Fee Related JP2974902B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5328563A JP2974902B2 (en) 1993-12-24 1993-12-24 Conductive resin paste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5328563A JP2974902B2 (en) 1993-12-24 1993-12-24 Conductive resin paste

Publications (2)

Publication Number Publication Date
JPH07179833A JPH07179833A (en) 1995-07-18
JP2974902B2 true JP2974902B2 (en) 1999-11-10

Family

ID=18211678

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5328563A Expired - Fee Related JP2974902B2 (en) 1993-12-24 1993-12-24 Conductive resin paste

Country Status (1)

Country Link
JP (1) JP2974902B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5908881A (en) * 1996-11-29 1999-06-01 Sumitomo Bakelite Company Limited Heat-conductive paste
JP3526183B2 (en) * 1997-09-18 2004-05-10 住友ベークライト株式会社 Conductive resin paste and semiconductor device manufactured using the same
JP2006022240A (en) * 2004-07-09 2006-01-26 Sumitomo Bakelite Co Ltd Resin composition and semiconductor device produced using the resin composition
JP2009203478A (en) * 2009-05-18 2009-09-10 Hitachi Chem Co Ltd Adhesive for connecting circuit member
JP6383183B2 (en) * 2014-06-03 2018-08-29 太陽インキ製造株式会社 Conductive adhesive and electronic component using the same
JP2016011406A (en) * 2014-06-03 2016-01-21 太陽インキ製造株式会社 Conductive adhesive and electronic component using the same
CN114292493B (en) * 2021-12-31 2024-09-24 常熟生益科技有限公司 Resin composition and use thereof

Also Published As

Publication number Publication date
JPH07179833A (en) 1995-07-18

Similar Documents

Publication Publication Date Title
JP2983816B2 (en) Conductive resin paste
JP2974902B2 (en) Conductive resin paste
JP3313267B2 (en) Conductive resin paste
JP3214685B2 (en) Conductive resin paste
JPH0790239A (en) Electrically conductive resin paste
JP2001106767A (en) Resin paste for semiconductor and semiconductor device using the same
JP3384472B2 (en) Conductive resin paste
JPH10237157A (en) Liquid resin composition, and semiconductor apparatus made by using the same
JPH10120873A (en) Insulating resin paste for semiconductor
JP4064025B2 (en) Resin composition and semiconductor device produced using the same.
JP3719855B2 (en) Resin paste for semiconductor
JP3555930B2 (en) Resin paste for semiconductor and semiconductor device using the same
JP3719856B2 (en) Resin paste for semiconductor
JPH0790238A (en) Electrically conductive resin paste
JP3608908B2 (en) Resin paste for semiconductor
JP3568742B2 (en) Resin paste for semiconductor
JPH04222887A (en) Insulating resin paste
JP2002187938A (en) Die attachment paste and semiconductor device
JP2010108615A (en) Conductive resin paste
JP2596663B2 (en) Conductive resin paste for semiconductors
JP3449846B2 (en) Conductive resin paste for semiconductor
JP2501258B2 (en) Insulating resin paste
JPH06184279A (en) Electrically conductive resin paste
JPH03145143A (en) Conductive resin paste for semiconductor
JP2000072846A (en) Resin paste for semiconductor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090903

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100903

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110903

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110903

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120903

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120903

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees