JP2970261B2 - Solar synchronous satellite - Google Patents
Solar synchronous satelliteInfo
- Publication number
- JP2970261B2 JP2970261B2 JP4282645A JP28264592A JP2970261B2 JP 2970261 B2 JP2970261 B2 JP 2970261B2 JP 4282645 A JP4282645 A JP 4282645A JP 28264592 A JP28264592 A JP 28264592A JP 2970261 B2 JP2970261 B2 JP 2970261B2
- Authority
- JP
- Japan
- Prior art keywords
- satellite
- sun
- earth
- synchronous
- plane
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Building Environments (AREA)
- Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は太陽同期衛星に関し、特
に地球観測に多く利用される太陽同期地球指向三軸安定
姿勢制御衛星において、太陽光吸収面積の分布を最適化
し、太陽光とアルベド(地表面からの熱反射等)による
熱量の合計である軌道熱入力の変動を無くした太陽同期
衛星に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sun-synchronous satellite, and more particularly, to a sun-synchronous earth-oriented three-axis stably used for earth observation.
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sun-synchronous satellite in which an attitude control satellite optimizes a distribution of a solar absorption area and eliminates a change in an orbital heat input which is a sum of heat amounts due to sunlight and albedo (heat reflection from the ground surface).
【0002】[0002]
【従来の技術】一般に太陽同期軌道を周回する人工衛星
の航行軌道は図2に示すように、地球15の観測の便宜
上、太陽同期軌道12と太陽方向10とのなす角(β角
という)13を通常20度付近に保ち、日食域14を通
るように設定される。この人工衛星14の姿勢は、図3
に示すように太陽同期軌道12に対し1軸(図3の+X
軸)を進行方向,他の1軸(図3の+Y軸)を軌道面法
線方向、3軸(図3の+Z軸)を地心方向に指向させる
三軸制御が、通常用いられる。このときの人工衛星に対
する太陽軌跡11は図3に示すように、−Y軸を中心と
する円すい状となる。衛星表面は衛星の内部発熱を放射
するための放射面2を設け、他の部分は断熱する。衛星
の+Z軸面は常温の地球に対向するため放熱効率が悪い
ので、放熱面2は通常他の5面に設けられる。この放熱
面2には外部からの熱入力として地球赤外輻射,太陽光
および太陽光の地球地表からの反射であるアルベドを受
ける。2. Description of the Related Art In general, the navigation orbit of an artificial satellite orbiting a sun-synchronous orbit, as shown in FIG. Is normally maintained at around 20 degrees, and is set to pass through the solar eclipse area 14. The attitude of this artificial satellite 14 is shown in FIG.
As shown in FIG. 3, one axis (+ X in FIG.
In general, three-axis control is used in which the first axis (the + Y axis in FIG. 3) is directed in the direction of the track surface, and the third axis (the + Z axis in FIG. 3) is directed in the ground-center direction. At this time, the sun trajectory 11 with respect to the artificial satellite has a conical shape centered on the −Y axis as shown in FIG. The surface of the satellite is provided with a radiation surface 2 for radiating the internal heat of the satellite, and the other parts are insulated. Since the + Z-axis surface of the satellite faces the earth at room temperature, the heat radiation efficiency is poor, so the heat radiation surface 2 is usually provided on the other five surfaces. The heat radiation surface 2 receives terrestrial infrared radiation, sunlight, and albedo, which are reflections of sunlight from the earth's surface, as external heat input.
【0003】前述のような条件において、従来の衛星は
図4(a)に示すように、太陽方向10と太陽同期軌道
12上の人工衛星1との時間経過にともなう位置角をα
とすると、衛星1の5面への入射量の時間変化は図4
(b)のようになる。各面の入射量はβ角と日照率μ
(軌道一周中の日照時間率)の関数となっている。この
日照率μは図5に示すように、β角の関数である。また
アルベドの入射量はcosβにほぼ比例する。なお地球
赤外輻射の入射量は、太陽に無関係なので、β角に依存
せず一定である。Under the above-mentioned conditions, the conventional satellite sets the position angle of the satellite 10 in the sun-synchronous orbit 12 with the passage of time as α, as shown in FIG.
Then, the time change of the amount of incidence on the five surfaces of the satellite 1 is shown in FIG.
(B). The amount of light incident on each surface is β angle and solar irradiance μ
(Ratio of sunshine duration during one round of orbit). The sunshine factor μ is a function of the β angle as shown in FIG. The incident amount of albedo is almost proportional to cosβ. The incident amount of the terrestrial infrared radiation is independent of the sun, and thus is constant without depending on the β angle.
【0004】[0004]
【発明が解決しようとする課題】しかしながら、上述し
た従来の太陽同期軌道のβ角は、衛星打上時刻の許容幅
が通常約1時間あるので約15度の許容幅を持つ。また
地球形状の球面からのずれと地球公転軌道の真円からの
ずれ等により年間約10度の季節変動幅を持つ。合計す
るとβ角の年間変動幅は約25度となる。前述のように
人工衛星の5面への太陽光とアルベドによる軌道熱入力
はこのβ角に依存しているので、β角の変動により衛星
への軌道熱入力が変動し、衛星の熱設計に対する大きな
外乱要素となっている。すなわち、この衛星への軌道熱
の変動を小さくするためには衛星のヒータやサーマルル
ーバ等の熱制御素子による制御を必要とするので、衛星
の熱設計が複雑となる欠点がある。However, the β angle of the above-mentioned conventional sun-synchronous orbit has an allowable range of about 15 degrees because the allowable range of the satellite launch time is usually about one hour. In addition, there is a seasonal fluctuation range of about 10 degrees per year due to deviation from the spherical shape of the earth shape and deviation from the true circle of the earth orbit. In total, the annual fluctuation range of the β angle is about 25 degrees. As described above, the orbital heat input to the five surfaces of the artificial satellite due to sunlight and albedo depends on this β angle. It is a major disturbance factor. That is, in order to reduce the fluctuation of the orbital heat to the satellite, control by a heat control element such as a heater or a thermal louver of the satellite is required, so that there is a disadvantage that the thermal design of the satellite is complicated.
【0005】[0005]
【課題を解決するための手段】本発明の太陽同期衛星
は、太陽同期でかつ地球を周回する円軌道上を航行し、
地球指向でかつ三軸安定姿勢制御を行う太陽同期衛星に
おいて、軌道面と太陽光方向とのなす角度βの最小およ
び最大の変動範囲の端における太陽光とアルベドの熱吸
収量の合計値Qが等しくなるように、前記太陽同期衛星
の反地球面,衛星進行方向面,衛星反進行方向面,反太
陽側の軌道平行面,太陽側の軌道平行面の各面の一部に
設けられた前記太陽光および前記アルベドを熱吸収する
熱吸収面積の大きさを選択する。SUMMARY OF THE INVENTION A sun-synchronous satellite according to the present invention travels in a circular orbit around the earth synchronously with the sun.
In a solar-synchronous satellite that is earth-oriented and performs three-axis stable attitude control, the total value Q of the heat absorption of sunlight and the albedo at the end of the minimum and maximum fluctuation range of the angle β between the orbital surface and the sunlight direction is to be equal, anti-earth face of the sun-synchronous satellite, the satellite traveling direction plane, satellite anti traveling direction plane, track parallel surface of the anti-sun side, a portion of each side of the track parallel surface of the sun side
Absorb the sunlight and the albedo provided
Select the size of the heat absorption area .
【0006】[0006]
【実施例】次に本発明について図面を参照して説明す
る。図1は本発明の一実施例の太陽光とアルベドの吸収
量合計値Qのβ角依存性を表す説明図である。図1にお
いて、β角の変動範囲の両端においてQを等しくするよ
うに、衛星各面の吸収面積の相対比を設定している。衛
星各面のβ角依存性は図5,図6に示すように、約20
〜30度のβ角変動幅においては、ほぼ線形をなすの
で、β角変化幅の両端のQを一致させると、図1に示す
ように、その中間もほぼ一定値となり、β角への依存性
がほとんど無くなる。前述した衛星各面の吸収面積の設
定について第3図(a),(b)を参照して説明する。
第3図(a),(b)は太陽同期衛星軌道12上を人工
衛星1が地球15の周回衛星として周回する説明図であ
る。人工衛星1は三軸安定姿勢制御衛星であるので地球
15と対向する地心指向面(第3図(b)参照)に対し
て法線となる地心指向軸+Zを有し、これに対して図3
(b)に示す−Z軸が法線となる反地球面25(−Z
面)を有する。ほかに図3(b)に示す如く衛星進行方
面と同一方向の+X軸を法線とする衛星進行方向面21
(+X面)と、反対面に衛星反進行方向面22(−X
面)と、軌道面法線方向である−Y軸を法線とする太陽
側の軌道平行面23(−Y面)と、反対面に反太陽側の
軌道平行面24(+Y面)とを有する。太陽方向10は
図2でも説明した如く太陽同期軌道12の面に対し角度
βをなして太陽軌跡11に沿って変動する。ここで人工
衛星1は地心指向面を除く5面である−Z面,+X面,
−X面,−Y面,+Y面それぞれの面の一部に熱吸収面
積A -Z ,A +X ,A -X ,A -Y ,A +Y を備えて太陽光とアル
ベドの熱吸収および放熱を行っている。 DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, the present invention will be described with reference to the drawings. FIG. 1 is an explanatory diagram showing the β angle dependence of the total absorption Q of sunlight and albedo according to one embodiment of the present invention. In FIG. 1, the relative ratio of the absorption area of each surface of the satellite is set so that Q is equal at both ends of the variation range of the β angle. As shown in FIGS. 5 and 6, the β angle dependence of each surface of the satellite is about 20%.
Since the β angle variation range of about 30 degrees is substantially linear, if the Qs at both ends of the β angle variation range are matched, as shown in FIG. Gender almost disappears. The absorption area for each satellite
The setting will be described with reference to FIGS. 3 (a) and 3 (b).
3 (a) and 3 (b) show artificial satellites in orbit 12 of the sun-synchronous satellite.
FIG. 3 is an explanatory diagram in which the satellite 1 orbits as an orbiting satellite of the earth 15.
You. Since the artificial satellite 1 is a three-axis stable attitude control satellite,
15 with respect to the ground-centered directional surface (see FIG. 3 (b))
In FIG.
The anti-earth surface 25 (-Z) in which the -Z axis shown in FIG.
Surface). In addition, as shown in Fig. 3 (b),
Surface 21 in the direction of satellite travel with the normal to the + X axis in the same direction as the surface
(+ X plane) and the opposite surface 22 (−X
Plane) and the sun whose normal is the -Y axis which is the normal direction of the orbital plane.
Orbit parallel surface 23 (-Y surface) on the side and the opposite surface
And a track parallel surface 24 (+ Y surface). Sun direction 10
As described in FIG. 2, the angle with respect to the plane of the sun-synchronous orbit 12
f varies along the sun trajectory 11. Here artificial
The satellite 1 has five planes excluding the geocentric plane, -Z plane, + X plane,
Heat absorbing surface on part of each of -X, -Y, and + Y surfaces
Sunlight and Al provided with product A -Z, A + X, A -X, A -Y, A + Y
It absorbs and dissipates heat from the bed.
【0007】次に、本実施例でβ角変動範囲の両端のQ
を等しくする具体的方法を述べる。地球指向面(+Z
面)を除く5面を放熱面とするとき、衛星全体の太陽光
とアルベドの吸収熱量の総和の軌道一周平均値Qは
(1)式で表わされる。Next, in this embodiment, Q at both ends of the β angle variation range
The following describes a specific method for equalizing. Earth-oriented plane (+ Z
Assuming that the five surfaces except the surface) are heat radiation surfaces, the orbital circle average value Q of the sum of the absorbed heat amounts of sunlight and albedo of the entire satellite is expressed by equation (1).
【0008】 [0008]
【0009】ここでP S は太陽常数、βはβ角(図2参
照)、μは日照率、aは地表面の太陽光反射率、FE は
±Y面から地表を見たViewfacter、A+X〜A
-Zはそれぞれ+X面〜Z面の吸収面積(面積×吸収率)
である。[0009] Here, P S Viewfacter solar constant, beta is beta angle (see FIG. 2), mu is sunshine rate, a is the solar reflectance of the ground surface, F E saw ground from ± Y plane, A + X to A
-Z is the absorption area of the + X plane to the Z plane (area x absorption rate)
It is.
【0010】各面の吸収面積を(A+X+A-X)により次
のように正規化し変形すると(2)式となる。When the absorption area of each surface is normalized by (A + X + A -X ) as follows and transformed, the following expression is obtained.
【0011】 [0011]
【0012】 [0012]
【0013】β角の変化幅の両端における(β,Q,
μ)をそれぞれ(β1 ,Q1 ,μ1 ),(β2 ,Q2 ,
μ2 )とすると、Q1 =Q2 とするには各面の吸収面積
比qとrは(3)式を満足すればよい。(Β, Q,
μ) to (β 1 , Q 1 , μ 1 ), (β 2 , Q 2 ,
μ 2 ), in order to make Q 1 = Q 2 , the absorption area ratios q and r of each surface should satisfy the expression (3).
【0014】 [0014]
【0015】(3)式を整理してC=(cosβ1 −c
osβ2 ),D=π(μ1 sinβ1 −μ2 sin
β2 )とおくと(4)式となる。By rearranging equation (3), C = (cos β 1 -c
osβ 2 ), D = π (μ 1 sinβ 1 −μ 2 sin
β 2 ) gives equation (4).
【0016】 [0016]
【0017】β1 ,μ1 ,β2 ,μ2 は軌道条件から一
義的に決まる値であり、それらを(4)式に入れると、
qとrの関係を表わす直線の式が求められる。qとrを
その直線上で選べば良い。Β 1 , μ 1 , β 2 , μ 2 are values that are uniquely determined from the orbital conditions.
An equation of a straight line representing the relationship between q and r is obtained. What is necessary is just to select q and r on the straight line.
【0018】[0018]
【発明の効果】以上説明したように本発明は、β角の最
小および最大の変動範囲の端において、太陽光とアルベ
ドの吸収量合計値Qが等しくなるように衛星の5面の面
積を選択することにより、衛星全体の軌道熱入力量のβ
角による変動をほとんど無くしたので、軌道熱入力量変
動が引起こす衛星温度の変動を抑えるために用いるヒー
タやサーマルルーバ等の熱制御素子が不要となる効果が
ある。As described above, according to the present invention, the five areas of the satellite are selected so that the total absorption amount Q of sunlight and albedo becomes equal at the ends of the minimum and maximum fluctuation ranges of the β angle. The orbital heat input of the entire satellite
Since the fluctuation due to the angle is almost eliminated, there is an effect that a heat control element such as a heater or a thermal louver used for suppressing a fluctuation in the satellite temperature caused by a fluctuation in the amount of orbital heat input becomes unnecessary.
【図面の簡単な説明】[Brief description of the drawings]
【図1】本発明の一実施例の特性説明図である。FIG. 1 is an explanatory diagram of characteristics of an embodiment of the present invention.
【図2】一般的な太陽同期軌道の説明図である。FIG. 2 is an explanatory diagram of a general sun-synchronous orbit.
【図3】本実施例の衛星各面の定義と各面に対する太陽
軌跡の説明図である。FIG. 3 is an explanatory diagram of a definition of each surface of a satellite and a sun trajectory for each surface according to the embodiment.
【図4】従来例の衛星各面への太陽光入射量の時間変化
の説明図である。FIG. 4 is an explanatory diagram of a temporal change in the amount of sunlight incident on each surface of a satellite in a conventional example.
【図5】一般的な日照率μのβ角による変化を示す説明
図である。FIG. 5 is an explanatory diagram showing a change in a general solar irradiance μ due to a β angle.
【図6】本実施例の衛星各面の太陽光アルベド吸収量の
β角による変化を示す説明図である。FIG. 6 is an explanatory diagram showing a change in the amount of solar albedo absorbed by each surface of the satellite according to the β angle in the embodiment.
1 人工衛星 2 放熱面 10 太陽方向 11 太陽軌跡 12 太陽同期軌道 13 β角 14 日食域 15 地球 DESCRIPTION OF SYMBOLS 1 Artificial satellite 2 Heat dissipation surface 10 Sun direction 11 Sun trajectory 12 Sun synchronous orbit 13 β angle 14 Solar eclipse area 15 Earth
Claims (2)
を航行し、地球指向でかつ三軸安定姿勢制御を行う太陽
同期衛星において、軌道面と太陽光方向とのなす角度β
の最小および最大の変動範囲の端における太陽光とアル
ベドの熱吸収量の合計値Qが等しくなるように、前記太
陽同期衛星の反地球面,衛星進行方向面,衛星反進行方
向面,反太陽側の軌道平行面,太陽側の軌道平行面の各
面の一部に設けられた前記太陽光および前記アルベドを
熱吸収する熱吸収面積の大きさを選択することを特徴と
する太陽同期衛星。1. A sun-synchronous satellite that sails in a circular orbit around the earth in a sun-synchronous manner and performs earth-oriented and three-axis stable attitude control.
Sum Q as equal to the minimum and sunlight at the end of the maximum variation range and albedo of the heat absorption amount, the thickness
Anti-earth face of the positive synchronization satellite, the satellite traveling direction plane, satellite anti traveling direction plane, track parallel surface of the anti-sun side, the sunlight and the albedo provided at a part of each side of the track parallel surface of the sun side
A solar-synchronous satellite characterized by selecting the size of a heat absorption area for absorbing heat .
方向面,衛星反進行方向面,反太陽側の軌道平行面,太
陽側の軌道平行面の5面に設けられた熱吸収面積をそれ
ぞれA -Z ,A +X ,A -X ,A +Y ,A -Y とすると前記合計値
Qの演算式が前記A +X と前記A -X の加算値であるA +X +
A -X を基準として前記A -Z と前記A +Y とを設定する第1
の係数と前記A +X +A -X を基準として前記A -Y を設定す
る第2の係数とを含むことを特徴とする請求項1記載の
太陽同期衛星。2. The anti-earth surface of the sun-synchronous satellite, satellite travel
Direction plane, satellite anti-progress direction plane, orbit parallel plane on the anti-sun side,
The heat absorption areas provided on the five parallel orbital planes on the positive side
Each A -Z, A + X, A -X, A + Y, and the A -Y wherein the sum
Arithmetic expression Q is the sum of the A -X and the A + X A + X +
First for setting A- Z and A + Y based on A- X
A- Y is set based on the coefficient of A + X + A- X
2. The solar synchronous satellite according to claim 1 , further comprising a second coefficient .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4282645A JP2970261B2 (en) | 1992-10-21 | 1992-10-21 | Solar synchronous satellite |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4282645A JP2970261B2 (en) | 1992-10-21 | 1992-10-21 | Solar synchronous satellite |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH06127490A JPH06127490A (en) | 1994-05-10 |
JP2970261B2 true JP2970261B2 (en) | 1999-11-02 |
Family
ID=17655218
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4282645A Expired - Lifetime JP2970261B2 (en) | 1992-10-21 | 1992-10-21 | Solar synchronous satellite |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2970261B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2815323B1 (en) * | 2000-10-16 | 2003-01-31 | Cit Alcatel | IMPROVEMENTS TO GEOSTATIONARY SATELLITES |
CN113184224B (en) * | 2021-05-06 | 2022-06-07 | 北京微纳星空科技有限公司 | Satellite temperature control method and system and satellite |
-
1992
- 1992-10-21 JP JP4282645A patent/JP2970261B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH06127490A (en) | 1994-05-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0372434B1 (en) | Satellite control system | |
JP2959696B2 (en) | Satellite torque balancing method and apparatus | |
US7637259B2 (en) | Solar collector | |
EP0645901B1 (en) | Satellite telecommunications and remote sensing system based on the use of short-period sun-synchronous elliptical orbits | |
US5794891A (en) | Method of controlling the attitude control for satellites on an orbit inclined relative to the equator | |
JP2847302B2 (en) | Autonomous orbit control method and system for geosynchronous satellite | |
EP0438229B1 (en) | Method for controlling east/west motion of a geostationary satellite | |
FR2755663A1 (en) | ACTIVE THERMAL PANEL AND METHOD OF CONTROLLING THE SAME | |
US9775305B2 (en) | Method for controlling land surface temperature using stratospheric airships and reflector | |
Bonetti et al. | Space-enhanced terrestrial solar power for equatorial regions | |
JP2970261B2 (en) | Solar synchronous satellite | |
JPH0820269B2 (en) | Astronomical search and acquisition method for 3-axis stable spacecraft | |
EP0668212A1 (en) | Optical satellite attitude control system | |
US5996942A (en) | Autonomous solar torque management | |
Kelly et al. | Stationkeeping of geostationary satellites with simultaneous eccentricity and longitude control | |
EP0959001A1 (en) | Method and apparatus for performing two axis solar array tracking in a geostationary satellite | |
Fairbanks et al. | Passive solar array orientation devices for terrestrial application | |
Parvez | Solar pressure disturbance on GSTAR and SPACENET satellites | |
JPH092400A (en) | Temperature control structure for space structure and temperature adjusting method thereof | |
Ribah et al. | Maneuver Strategy for Increasing Multispectral Imager Temperature on LAPAN A3/IPB Microsatellite | |
Walimbe et al. | Evolutionary insights into the state-of-the-art passive thermal control systems for thermodynamic stability of smallsats | |
Bandeen | Orbital measurements of the Earth's radiation budget during the first decade of the space program | |
Whisnant et al. | Roll resonance for a gravity-gradient satellite. | |
JPH0820399A (en) | 3-axis geostationary satellite | |
Kerslake et al. | Analysis of solar receiver flux distributions for US/Russian solar dynamic system demonstration on the MIR Space Station |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 19990727 |