Nothing Special   »   [go: up one dir, main page]

JP2955647B2 - Organic dye-sensitized oxide semiconductor electrode and solar cell including the same - Google Patents

Organic dye-sensitized oxide semiconductor electrode and solar cell including the same

Info

Publication number
JP2955647B2
JP2955647B2 JP8241523A JP24152396A JP2955647B2 JP 2955647 B2 JP2955647 B2 JP 2955647B2 JP 8241523 A JP8241523 A JP 8241523A JP 24152396 A JP24152396 A JP 24152396A JP 2955647 B2 JP2955647 B2 JP 2955647B2
Authority
JP
Japan
Prior art keywords
oxide semiconductor
organic dye
oxide
substrate
semiconductor film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP8241523A
Other languages
Japanese (ja)
Other versions
JPH1093118A (en
Inventor
和弘 佐山
裕則 荒川
秀樹 杉原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP8241523A priority Critical patent/JP2955647B2/en
Publication of JPH1093118A publication Critical patent/JPH1093118A/en
Application granted granted Critical
Publication of JP2955647B2 publication Critical patent/JP2955647B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/2031Light-sensitive devices comprising an oxide semiconductor electrode comprising titanium oxide, e.g. TiO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Photovoltaic Devices (AREA)
  • Hybrid Cells (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、有機色素増感型酸
化物半導体電極及びこれを含む太陽電池に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an organic dye-sensitized oxide semiconductor electrode and a solar cell including the same.

【0002】[0002]

【従来の技術】有機色素で増感された酸化物半導体電極
を含む太陽電池は知られている。Nature,261
(1976)P402によれば、酸化亜鉛粉末を圧縮成
形し、1300℃で1時間焼結して形成した焼結体ディ
スク表面に有機色素としてローズベンガルを吸着させた
酸化物半導体電極を用いた太陽電池が提案されている。
しかしながら、この太陽電池の電流/電圧曲線によれ
ば、0.2Vの起電圧時の電流値は約25μA程度と非
常に低いものであり、従って、この太陽電池は、その電
流/電圧曲線から見れば、その実用化は殆ど不可能と判
断されるものであった。一方、前記太陽電池をその材料
の点から評価すると、それに用いられる酸化物半導体及
び有機色素はいずれも大量生産されている比較的安価な
ものであることから、非常に有利であることは明らかで
ある。
2. Description of the Related Art A solar cell including an oxide semiconductor electrode sensitized with an organic dye is known. Nature, 261
(1976) According to P402, a zinc oxide powder is compression-molded and sintered at 1300 ° C. for one hour to form a solar disk using an oxide semiconductor electrode having rose bengal as an organic dye adsorbed on the surface of a sintered disk. Batteries have been proposed.
However, according to the current / voltage curve of this solar cell, the current value at the time of an electromotive voltage of 0.2 V is as low as about 25 μA, and therefore, this solar cell cannot be seen from the current / voltage curve. If so, it was judged that practical application was almost impossible. On the other hand, when the solar cell is evaluated in terms of its material, it is clear that the oxide semiconductor and the organic dye used for the solar cell are very advantageous because both are mass-produced and relatively inexpensive. is there.

【0003】[0003]

【発明が解決しようとする課題】本発明は、有機色素増
感型酸化物半導体電極において、太陽電池における酸化
物半導体電極として用いたときに、実用性ある電流/電
圧曲線を与える電極及びそれを含む太陽電池を提供する
ことをその課題とする。
SUMMARY OF THE INVENTION The present invention relates to an organic dye-sensitized oxide semiconductor electrode which, when used as an oxide semiconductor electrode in a solar cell, gives a practical current / voltage curve, and an electrode having the same. It is an object to provide a solar cell including the same.

【0004】 本発明者らは、前記課題を解決すべく鋭
意研究を重ね幾多の有機色素と酸化物半導体を試した結
果、特定の有機色素と特定の酸化物半導体電極を組み合
わせることにより、有機色素系としては最大級の解放電
圧と短絡電流を示す酸化物半導体電極とそれから構成さ
れる太陽電池を見いだしたのである。すなわち、モダン
トブルー29(MB)と酸化インジューム、エリオクロ
ムシアニンR(EC)と酸化インジューム、アウリント
リカルボン酸(Aa)と酸化チタン、ナフトクロムグリ
ーン(NG)と酸化亜鉛又は酸化インジューム、クマリ
ン343(C3)と酸化亜鉛又は酸化インジューム、プ
ロフラビン(Pf)と酸化チタン又は酸化インジューム
の組み合わせに重要な意味があることを見いだしたもの
である。このような酸化物半導体電極と対極、これらの
電極に接触するレドックス電解質、から構成される太陽
電池を提供することができる。
[0004] The present inventors have conducted intensive studies to solve the above-mentioned problems, and have tried many organic dyes and oxide semiconductors. As a result, by combining a specific organic dye and a specific oxide semiconductor electrode, an organic dye As a system, they found an oxide semiconductor electrode exhibiting the highest open-circuit voltage and short-circuit current, and a solar cell composed of the electrode. That is, modern blue 29 (MB) and indium oxide, eriochrome cyanine R (EC) and indium oxide, aurin tricarboxylic acid (Aa) and titanium oxide, naphthochrome green (NG) and zinc oxide or indium oxide, It has been found that a combination of coumarin 343 (C3) and zinc oxide or indium oxide, and a combination of proflavine (Pf) and titanium oxide or indium oxide have important meanings. A solar cell including such an oxide semiconductor electrode and a counter electrode, and a redox electrolyte in contact with these electrodes can be provided.

【0005】[0005]

【発明の実施の形態】本発明で用いる酸化物半導体に
は、従来公知の観種のものが包含される。このようなも
のとしては、Ti、Nb、Zn、Sn、Zr、Y、L
a、Ta等の遷移金属の酸化物の他、SrTiO3、C
aTiO3等のペロブスカイト系酸化物等が挙げられ
る。この酸化物半導体粉末は、できるだけ微粒子である
ことが好ましく、その平均粒径は5000nm以下、好
ましくは50nm以下である。また、その比表面積は、
5m2/g以上、好ましくは10m2/g以上である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The oxide semiconductor used in the present invention includes conventionally known oxide semiconductors. Such materials include Ti, Nb, Zn, Sn, Zr, Y, L
a, Ta and other transition metal oxides, SrTiO 3 , C
a perovskite-based oxide such as aTiO 3 ; This oxide semiconductor powder is preferably as fine as possible, and has an average particle size of 5000 nm or less, preferably 50 nm or less. The specific surface area is
It is at least 5 m 2 / g, preferably at least 10 m 2 / g.

【0006】本発明で用いる有機色素は、下記式(1)
で表されるトリフェニルメタン骨格を有する色素、下記
式(2)で表されるクマリン骨格を有する色素及び下記
式(3)で表されるアクリジン骨格を有する色素の中か
ら選ばれる少なくとも1種の有機色素である。
The organic dye used in the present invention has the following formula (1)
At least one selected from a dye having a triphenylmethane skeleton represented by the following formula, a dye having a coumarin skeleton represented by the following formula (2), and a dye having an acridine skeleton represented by the following formula (3) Organic dye.

【化1】 Embedded image

【化2】 Embedded image

【化3】 前記色素は、その骨格炭素に、カルボキシル基や、スル
ホン酸基、水酸基、アミノ基、ハロゲン原子、NO2
の極性基が1つ又は複数結合したものである。カルボキ
シル基やスルホン酸基、水酸基等の酸性基又はその水溶
性塩を有するものは、酸化物半導体に対する吸着性にす
ぐれている。このような有機色素は従来良く知られたも
のであり、その具体例としては、例えば、以下のものを
挙げることができる。
Embedded image The dye is one in which one or more polar groups such as a carboxyl group, a sulfonic acid group, a hydroxyl group, an amino group, a halogen atom, and NO 2 are bonded to the skeleton carbon. Those having an acidic group such as a carboxyl group, a sulfonic acid group or a hydroxyl group or a water-soluble salt thereof have excellent adsorptivity to an oxide semiconductor. Such organic dyes are well known in the art, and specific examples thereof include the following.

【0007】(1)トリフェニルメタン骨格を有する色
素 その具体例としては、以下のものが挙げられる。 (i)モダントブルー29(MB)
(1) Dye having triphenylmethane skeleton Specific examples thereof include the following. (I) Modern To Blue 29 (MB)

【化4】 (ii)エリオクロムシアニンR(EC)Embedded image (Ii) Eriochrome cyanine R (EC)

【化5】 (iii)ナフトクロムグリーン(NG)Embedded image (iii) Naphthochrome green (NG)

【化6】 (iv)アウリントリカルボン酸(Aa)Embedded image (Iv) Aurin tricarboxylic acid (Aa)

【化7】 Embedded image

【0008】(2)クマリン骨格を有する色素 その具体例としては、以下のものが挙げられる。 (i)クマリン343(C3)(2) Dye having coumarin skeleton Specific examples thereof include the following. (I) Coumarin 343 (C3)

【化8】 Embedded image

【0009】(3)アクリジン骨格を有する色素 その具体例としては、下記のものが挙げられる。 (i)プロフラビン(Pf)(3) Dye having acridine skeleton Specific examples thereof include the following. (I) Proflavin (Pf)

【化9】 Embedded image

【0010】本発明の酸化物半導体電極の形状は特に制
約されず、膜状、板状、柱状、円筒状等の各種の形状で
あることができるが、一般的には、導電性表面を有する
基板上に形成された膜形状で用いられる。このような半
導体電極を製造するには、先ず、酸化物半導体の微粉末
を含む塗布液を作る。この酸化物半導体微粉末は、その
1次粒子径が微細な程好ましく、その1次粒子径は、通
常、1〜5000nm,好ましくは2〜50nmであ
る。酸化物半導体微粉末を含む塗布液(スラリー液)
は、酸化物半導体微粉末を溶媒中に分散させることによ
って調製することができる。溶媒中に分散された酸化物
半導体微粉末は、その1次粒子状で分散する。溶媒とし
ては、酸化物半導体微粉末を分散し得るものであればど
のようなものでもよく、特に制約されない。このような
溶媒には、水、有機溶媒、水と有機溶媒との混合液が包
含される。有機溶媒としては、メタノールやエタノール
等のアルコール、メチルエチルケトン、アセトン、アセ
チルアセトン等のケトン、ヘキサン、シクロヘキサン等
の炭化水素等が用いられる。塗布液中には、必要に応
じ、界面活性剤や粘度調節剤(ポリエチレングリコール
等の多価アルコール等)を加えることができる。溶媒中
の酸化物半導体微粉末濃度は、0.1〜70重量%、好
ましくは0.1〜30重量%である。
[0010] The shape of the oxide semiconductor electrode of the present invention is not particularly limited, and may be various shapes such as a film shape, a plate shape, a columnar shape, and a cylindrical shape. It is used in the form of a film formed on a substrate. In order to manufacture such a semiconductor electrode, first, a coating solution containing fine powder of an oxide semiconductor is prepared. The finer the primary particle diameter of this oxide semiconductor fine powder, the more preferable it is. The primary particle diameter is usually 1 to 5000 nm, preferably 2 to 50 nm. Coating solution (slurry solution) containing oxide semiconductor fine powder
Can be prepared by dispersing an oxide semiconductor fine powder in a solvent. The oxide semiconductor fine powder dispersed in the solvent is dispersed in the form of primary particles. The solvent is not particularly limited as long as it can disperse the oxide semiconductor fine powder. Such solvents include water, organic solvents, and mixtures of water and organic solvents. Examples of the organic solvent include alcohols such as methanol and ethanol, ketones such as methyl ethyl ketone, acetone and acetylacetone, and hydrocarbons such as hexane and cyclohexane. If necessary, a surfactant or a viscosity modifier (polyhydric alcohol such as polyethylene glycol) can be added to the coating solution. The concentration of the oxide semiconductor fine powder in the solvent is 0.1 to 70% by weight, preferably 0.1 to 30% by weight.

【0011】次に、前記塗布液を基板上に塗布、乾燥
し、次いで空気中又は不活性ガス中で焼成して、基板上
に酸化物半導体膜を形成する。基板としては、少なくと
もその表面が導電性表面に形成された基板が用いられ
る。このような基板としては、ガラス等の耐熱性基板上
に、In23やSnO2の導電性金属酸化物薄膜を形成
したものや金属等の導電性材料からなる基板が用いられ
る。このような導電性基板は従来良く知られたものであ
る。基板の厚さは特に制約されないが、通常、0.3〜
5mmである。この導電性基板は、透明又は不透明であ
ることができる。基板上に塗布液を塗布、乾燥して得ら
れる被膜は、酸化物半導体微粒子の集合体からなるもの
で、その微粒子の粒径は使用した酸化物半導体微粉末の
1次粒子径に対応するものである。このようにして基板
上に形成された酸化物半導体微粒子集合体膜は、基板と
の結合力及びその微粒子相互の結合力が弱く、機械的強
度の弱いものであることから、これを焼成して機械的強
度が高められ、かつ基板に強く固着した焼成物膜とす
る。
Next, the coating solution is applied to a substrate, dried, and then fired in air or an inert gas to form an oxide semiconductor film on the substrate. As the substrate, a substrate having at least its surface formed on a conductive surface is used. As such a substrate, a substrate formed by forming a conductive metal oxide thin film of In 2 O 3 or SnO 2 on a heat-resistant substrate such as glass or a substrate made of a conductive material such as metal is used. Such a conductive substrate is conventionally well-known. The thickness of the substrate is not particularly limited, but is usually 0.3 to
5 mm. This conductive substrate can be transparent or opaque. The coating obtained by applying and drying the coating solution on the substrate is composed of an aggregate of oxide semiconductor fine particles, the particle diameter of which corresponds to the primary particle diameter of the used oxide semiconductor fine powder. It is. Since the oxide semiconductor fine particle aggregate film formed on the substrate in this manner has a low bonding strength with the substrate and a low bonding strength between the fine particles and a low mechanical strength, it is baked. A fired product film having increased mechanical strength and strongly adhered to the substrate.

【0012】本発明においては、この焼成物膜は、多孔
質構造膜とし、その厚さは少なくとも10nm、好まし
くは100〜10000nmとし、かつその見かけ表面
積に対する実表面積の比を10以上、好ましくは100
以上とする。この比の上限は特に制約されないが、通
常、1000〜2000である。前記見かけ表面積と
は、通常の表面積を意味し、例えば、その表面形状が長
方形の場合には、縦の長さ×横の長さで表される。前記
実表面積とは、クリプトンガスの吸着量により求めたB
ET表面積を意味する。その具体的測定方法は、見かけ
表面積1cm2の基板付酸化物半導体膜をBET表面積
測定装置(マイクロメリティクス社製、ASAP200
0)を用い、液体窒素温度で、クリプトンガスを吸着さ
せる方法である。この測定方法により得られたクリプト
ンガス吸着量に基づいてBET表面積が算出される。
In the present invention, the fired product film is a porous structure film having a thickness of at least 10 nm, preferably 100 to 10,000 nm, and a ratio of the actual surface area to the apparent surface area of 10 or more, preferably 100 or more.
Above. The upper limit of this ratio is not particularly limited, but is usually 1000 to 2000. The apparent surface area means a normal surface area. For example, when the surface shape is rectangular, it is represented by a vertical length × a horizontal length. The actual surface area is defined as B obtained from the amount of krypton gas absorbed.
ET means surface area. The specific measuring method is as follows. An oxide semiconductor film with a substrate having an apparent surface area of 1 cm 2 is measured using a BET surface area measuring device (ASAP200 manufactured by Micromeritics Co., Ltd.
0) is a method of adsorbing krypton gas at the temperature of liquid nitrogen. The BET surface area is calculated based on the krypton gas adsorption amount obtained by this measurement method.

【0013】このような多孔質構造膜は、その内部に微
細な細孔とその表面に微細凹凸を有するものである。焼
成物膜の厚さ及び見かけ表面積に対する実表面積の比が
前記範囲より小さくなると、その表面に有機色素を単分
子膜として吸着させたときに、その有機色素単分子膜の
表面積が小さくなり、光吸収効率の良い電極を得ること
ができなくなる。前記のような多孔質構造の焼成物膜
は、酸化物半導体微粒子を含む塗布液を基板上に塗布、
乾燥して形成された微粒子集合体膜の焼成に際し、その
焼成温度を低くし、微粒子集合体膜を軽く焼結させるこ
とによって得ることができる。この場合、焼成温度は1
000℃より低く、通常、300〜800℃、好ましく
は500〜800℃である。焼成温度が1000℃より
高くなると、焼成物膜の焼結が進みすぎ、その実表面積
が小さくなり、所望する焼成物膜を得ることができな
い。前記見かけ表面積に対する実表面積の比は、酸化物
半導体微粒子の粒径及び比表面積や、焼成温度等により
コントロールすることができる。
Such a porous structure film has fine pores inside and fine irregularities on its surface. When the thickness of the fired product film and the ratio of the actual surface area to the apparent surface area are smaller than the above ranges, when the organic dye is adsorbed on the surface as a monomolecular film, the surface area of the organic dye monomolecular film becomes small, An electrode with good absorption efficiency cannot be obtained. The fired product film having the porous structure as described above, a coating solution containing oxide semiconductor fine particles is applied on a substrate,
When the dried fine particle aggregate film is fired, it can be obtained by lowering the firing temperature and lightly sintering the fine particle aggregate film. In this case, the firing temperature is 1
It is lower than 000C, usually 300-800C, preferably 500-800C. If the firing temperature is higher than 1000 ° C., the sintering of the fired material film proceeds too much, the actual surface area becomes small, and a desired fired material film cannot be obtained. The ratio of the actual surface area to the apparent surface area can be controlled by the particle size and specific surface area of the oxide semiconductor fine particles, the firing temperature, and the like.

【0014】次に、前記のようにして得られた基板上の
酸化物半導体膜表面に、有機色素を単分子膜として吸着
させる。このためには、有機色素を有機溶媒に溶解させ
て形成した有機色素溶液中に、酸化物半導体膜を基板と
とも浸漬すればよい。この場合、有機色素溶液が、多孔
質構造膜である酸化物半導体膜の内部深く進入するよう
に、その膜を有機色素溶液への浸漬に先立ち、減圧処理
したり、加熱処理して、膜中に含まれる気泡をあらかじ
め除去しておくのが好ましい。浸漬時間は、30分〜2
4時間程度であるが、有機色素の種類に応じて適宜定め
る。また、浸漬処理は、必要に応じ、複数回繰返し行う
こともできる。前記浸漬処理後、有機色素を吸着した酸
化物半導体膜は、常温〜80℃で乾燥する。
Next, the organic dye is adsorbed as a monomolecular film on the surface of the oxide semiconductor film on the substrate obtained as described above. For this purpose, the oxide semiconductor film and the substrate may be immersed in an organic dye solution formed by dissolving an organic dye in an organic solvent. In this case, the film is subjected to a reduced pressure treatment or a heat treatment prior to immersion in the organic dye solution so that the organic dye solution penetrates deep inside the oxide semiconductor film which is a porous structure film. It is preferable to remove the air bubbles contained in the water in advance. Immersion time is 30 minutes to 2
It is about 4 hours, but it is appropriately determined according to the type of the organic dye. Further, the immersion treatment can be repeated a plurality of times as necessary. After the immersion treatment, the oxide semiconductor film on which the organic dye has been adsorbed is dried at normal temperature to 80 ° C.

【0015】本発明においては、酸化物半導体膜に吸着
させる有機色素は、1種である必要はなく、好ましくは
光吸収領域の異なる複数の有機色素を吸着させる。これ
によって、光を効率よく利用することができる。複数の
有機色素を膜に吸着させるには、複数の有機色素を含む
溶液中に膜を浸漬する方法や、有機色素溶液を複数用意
し、これらの溶液に膜を順次浸漬する方法等が挙げられ
る。有機色素を有機溶媒に溶解させた溶液において、そ
の有機溶媒としては、有機色素を溶解し得るものであれ
ば任意のものが使用可能である。このようなものとして
は、例えば、メタノール、エタノール、アセトニトリ
ル、ジメチルホルムアミド、ジオキサン等が挙げられ
る。溶液中の有機色素の濃度は、溶液100ml中、1
〜10000mg、好ましくは10〜500mg程度で
あり、有機色素及び有機溶媒の種類に応じて適宜定め
る。
In the present invention, the organic dye to be adsorbed on the oxide semiconductor film does not need to be one kind, and preferably, a plurality of organic dyes having different light absorption regions are adsorbed. Thus, light can be used efficiently. In order to adsorb a plurality of organic dyes to the film, a method of immersing the film in a solution containing a plurality of organic dyes, a method of preparing a plurality of organic dye solutions, and sequentially immersing the film in these solutions can be used. . In a solution in which an organic dye is dissolved in an organic solvent, any organic solvent can be used as long as it can dissolve the organic dye. Such materials include, for example, methanol, ethanol, acetonitrile, dimethylformamide, dioxane and the like. The concentration of the organic dye in the solution is 1% in 100 ml of the solution.
It is about 10000 mg, preferably about 10-500 mg, and is appropriately determined according to the type of the organic dye and the organic solvent.

【0016】本発明の太陽電池は、前記酸化物半導体電
極と対極とそれらの電極に接触するレドックス電解質と
から構成される。レドックス電解質としては、I-/I3
-系や、Br-/Br3 -系、キノン/ハイドロキノン系等
が挙げられる。このようなレドックス電解質は、従来公
知の方法によって得ることができ、例えば、I-/I3 -
系の電解質は、ヨウ素のアンモニウム塩とヨウ素を混合
することによって得ることができる。電解質は、液体電
解質又はこれを高分子物質中に含有させた固体高分子電
解質であることができる。液体電解質において、その溶
媒としては、電気化学的に不活性なものが用いられ、例
えば、アセトニトリル、炭酸プロピレン、エチレンカー
ボネート等が用いられる。対極としては、導電性を有す
るものであればよく、任意の導電性材料が用いられる
が、I3 -イオン等の酸化型のレドックスイオンの還元反
応を充分な速さで行わせる触媒能を持ったものの使用が
好ましい。このようなものとしては、白金電極、導電材
料表面に白金めっきや白金蒸着を施したもの、ロジウム
金属、ルテニウム金属、酸化ルテニウム、カーボン等が
挙げられる。
A solar cell according to the present invention comprises the above-mentioned oxide semiconductor electrode, a counter electrode, and a redox electrolyte in contact with those electrodes. As the redox electrolyte, I / I 3
- system or, Br - / Br 3 - system, quinone / hydroquinone system. Such a redox electrolyte can be obtained by a conventionally known method, for example, I / I 3 −.
The system electrolyte can be obtained by mixing iodine with an ammonium salt of iodine. The electrolyte can be a liquid electrolyte or a solid polymer electrolyte containing the same in a polymer substance. In the liquid electrolyte, an electrochemically inert solvent is used as the solvent, for example, acetonitrile, propylene carbonate, ethylene carbonate, or the like. The counter electrode, as long as it has conductivity, but any conductive material is used, I 3 - with catalytic ability to perform fast enough the reduction reaction of the redox ions oxidized such as ion It is preferred to use Examples of such a material include a platinum electrode, a material obtained by subjecting a conductive material surface to platinum plating or platinum evaporation, rhodium metal, ruthenium metal, ruthenium oxide, carbon, and the like.

【0017】本発明の太陽電池は、前記酸化物半導体電
極、電解質及び対極をケース内に収納して封止するか又
はそれら全体を樹脂封止する。この場合、その酸化物半
導体電極には光があたる構造とする。このような構造の
電池は、その酸化物半導体電極に太陽光又は太陽光と同
等な可視光をあてると、酸化物半導体電極とその対極と
の間に電位差が生じ、両極間に電流が流れるようにな
る。
In the solar cell of the present invention, the oxide semiconductor electrode, the electrolyte and the counter electrode are housed in a case and sealed, or the whole is sealed with a resin. In this case, light is applied to the oxide semiconductor electrode. In a battery having such a structure, when sunlight or visible light equivalent to sunlight is applied to the oxide semiconductor electrode, a potential difference occurs between the oxide semiconductor electrode and the counter electrode, and a current flows between the two electrodes. become.

【0018】[0018]

【実施例】次に本発明を実施例によりさらに詳述する。
なお、以下の実施例において作製した電池は、いずれも
その電極面積が1×1cmである。また、電池を作動さ
せる光源として、500wのキセノンランプを用い、そ
のランプからの420nm以下の波長の光はフィルター
でカットした。また、作製した電池について、その短絡
電流及び開放電圧の測定には無抵抗電流計を備えたポテ
ンシオスタットを用いた。また、使用した酸化物半導体
粉末において、TiO2としては市販品(日本エアエロ
ジル、P−25、表面積55m2/g)を用い、Nb2
5としては水酸化ニオブ(セントラル硝子社製)を熱分
解(500度、1時間、99m2/g)して調製したも
のを用いた。ZnO(20m2/g)、SnO2(60m
2/g)、In23(25m2/g)としては市販品(和
光純薬)を用いた。また、有機色素としては、モダント
ブルー29(MB)、エリオクロムシアニンR(E
C)、ナフトクロムグリーン(NG)、アウリントリカ
ルボン酸(Aa)、クマリン343(C3)、及びプロ
フラビン(Pf)を用いた。
Next, the present invention will be described in more detail by way of examples.
Each of the batteries manufactured in the following examples has an electrode area of 1 × 1 cm. A 500 watt xenon lamp was used as a light source for operating the battery, and light having a wavelength of 420 nm or less from the lamp was cut by a filter. In addition, a potentiostat equipped with a non-resistance ammeter was used for measuring the short-circuit current and the open-circuit voltage of the manufactured battery. In the oxide semiconductor powder used, a commercially available product (Nihon Air Aerosil, P-25, surface area 55 m 2 / g) was used as TiO 2 , and Nb 2 O was used.
5 was prepared by thermally decomposing niobium hydroxide (manufactured by Central Glass Co., Ltd.) (500 ° C., 1 hour, 99 m 2 / g). ZnO (20 m 2 / g), SnO 2 (60 m 2 / g)
2 / g) and In 2 O 3 (25 m 2 / g) used were commercial products (Wako Pure Chemical Industries, Ltd.). As organic dyes, Modern Blue 29 (MB), Eriochrome Cyanine R (E
C), naphthochrome green (NG), aurin tricarboxylic acid (Aa), coumarin 343 (C3), and proflavine (Pf).

【0019】実施例1 酸化物半導体電極は以下のようにして作製した。前記金
属酸化物粉末(その平均一次粒径はいずれも50nm以
下である)を非イオン性界面活性剤を含む水とアセチル
アセトンとの混合液(容量混合比=20/1)中に濃度
約1wt%で分散させてスラリー液を調製した。次に、
このスラリー液を厚さ1mmの導電性ガラス基板(F−
SnO2、10Ω/sq)上に塗布し、乾燥し、得られ
た乾燥物を500℃で1時間、空気中で焼成し、基板上
に厚さ7μmの焼成物膜を形成した。この焼成物膜の見
かけの表面積に対する実表面積比を酸化物半導体の種類
との関係で示すと、TiO2:500、Nb25:85
0、ZnO:200、SnO2:500、In23:2
00であった。次に、この焼成物膜を基板とともに、有
機色素溶液中に浸漬し、80℃で、還液を行いながら、
色素吸着処理を行った後、室温で乾燥した。この場合、
有機色素溶液は、有機色素を100mg/100mlの
濃度でエタノール中に溶解して調製した。
Example 1 An oxide semiconductor electrode was manufactured as follows. A concentration of about 1 wt% of the metal oxide powder (having an average primary particle diameter of 50 nm or less) in a mixed solution (volume mixing ratio = 20/1) of water and acetylacetone containing a nonionic surfactant. To prepare a slurry liquid. next,
This slurry liquid was applied to a conductive glass substrate (F-
It was applied on SnO 2 , 10Ω / sq) and dried, and the obtained dried product was fired at 500 ° C. for 1 hour in the air to form a fired product film having a thickness of 7 μm on the substrate. When the ratio of the actual surface area to the apparent surface area of the fired product film is shown in relation to the type of the oxide semiconductor, TiO 2 : 500 and Nb 2 O 5 : 85
0, ZnO: 200, SnO 2 : 500, In 2 O 3 : 2
00. Next, this baked product film together with the substrate is immersed in an organic dye solution, and the solution is returned at 80 ° C.
After performing the dye adsorption treatment, it was dried at room temperature. in this case,
The organic dye solution was prepared by dissolving the organic dye in ethanol at a concentration of 100 mg / 100 ml.

【0020】 前記のようにして得た酸化物半導体電極
とその対極とを電解質液に接触させて太陽電池を構成し
た。対極としては、白金を20nm厚さで蒸着した導電
性ガラスを用いた。両電極間の距離は、1mmとした。
電解質液としては、テトラプロピルアンモニウムヨーダ
イド(0.46M)とヨウ素(0.6M)を含むエチレ
ンカーボネートとアセトニトリルとの混合液(容量混合
比=80/20)を用いた。前記のようにして得られた
各電池についての短絡電流及び解放電圧を表1に示す。
表1に示した結果からわかるように、 1.モダントブルー29(MB)と酸化インジュームの
組み合わせは、大きな短絡電流が得られた。 2.エリオクロムシアニンR(EC)と酸化インジュー
ムの組み合わせは、大きな短絡電流が得られた。 3.アウリントリカルボン酸(Aa)と酸化チタンの組
み合わせは、高い解放電圧が得られた。 4.ナフトクロムグリーン(NG)と酸化亜鉛又は酸化
インジュームの組み合わせは、大きな短絡電流と高い解
放電圧(酸化亜鉛)が得られた。 5.クマリン343(C3)と酸化チタン、酸化亜鉛又
は酸化インジュームの組み合わせは、大きな短絡電流と
高い解放電圧(酸化チタン、酸化亜鉛)が得られた。 6.プロフラビン(Pf)と酸化チタン、酸化亜鉛又は
酸化インジュームの組み合わせは、高い解放電圧(酸化
チタン、酸化亜鉛)が得られた。
A solar cell was formed by bringing the oxide semiconductor electrode obtained as described above and its counter electrode into contact with an electrolyte solution. As a counter electrode, conductive glass in which platinum was deposited to a thickness of 20 nm was used. The distance between both electrodes was 1 mm.
As an electrolyte solution, a mixed solution of ethylene carbonate containing tetrapropylammonium iodide (0.46M) and iodine (0.6M) and acetonitrile (volume mixing ratio = 80/20) was used. Table 1 shows the short-circuit current and release voltage for each battery obtained as described above.
As can be seen from the results shown in Table 1, The combination of Modern Blue 29 (MB) and indium oxide resulted in a large short-circuit current. 2. The combination of Eriochrome Cyanine R (EC) and Indium Oxide resulted in a large short-circuit current. 3. The combination of aurin tricarboxylic acid (Aa) and titanium oxide provided a high release voltage. 4. The combination of naphthochrome green (NG) and zinc oxide or indium oxide resulted in a large short-circuit current and a high release voltage (zinc oxide). 5. With the combination of coumarin 343 (C3) and titanium oxide, zinc oxide or indium oxide, a large short-circuit current and a high release voltage (titanium oxide, zinc oxide) were obtained. 6. The combination of proflavin (Pf) and titanium oxide, zinc oxide or indium oxide resulted in a high release voltage (titanium oxide, zinc oxide).

【0021】[0021]

【表1】 [Table 1]

【0022】比較例1 既報の論文(Nature,261(1976)p4O
2の方法のようにZnOを1300度で焼結した半導体
粉末を調製し、その後、実施例1と同様の方法で導電性
ガラス上に製膜し、ZnO電極(見かけ表面積に対する
実表面積比<10)を調製した。その後、実施例1と同
じ方法でローズベンガル(Ro)を吸着させた。しかし
吸着量を吸光度で比較すると、実施例1の値の5分の1
程度であった。次に、その電池特性について調べたとこ
ろ、表2に示す結果となり、実施例1の場合により小さ
な短絡電流、開放電圧となった。
Comparative Example 1 A previously published paper (Nature, 261 (1976) p40)
A semiconductor powder obtained by sintering ZnO at 1300 ° C. as in the method of Example 2 was prepared, and then a film was formed on conductive glass in the same manner as in Example 1, and a ZnO electrode (the ratio of the actual surface area to the apparent surface area <10) was formed. ) Was prepared. Thereafter, Rose Bengal (Ro) was adsorbed in the same manner as in Example 1. However, comparing the amount of adsorption with the absorbance, it was found to be 1/5 of the value of Example 1.
It was about. Next, when the battery characteristics were examined, the results shown in Table 2 were obtained, and the short-circuit current and the open-circuit voltage were smaller in the case of Example 1.

【0023】比較例2〜4 有機色素として、以下に示す構造のアシッドオレンジ7
(A7)、モーダンオレンジ1(M1)及び又クレアー
ファーストレッド(NF)を用いた以外は実施例1の場
合と同様にして電池を構成した。これらの電池について
の短絡電流及び開放電圧を表2に示した。
Comparative Examples 2 to 4 As an organic dye, Acid Orange 7 having the following structure was used.
A battery was constructed in the same manner as in Example 1 except that (A7), Modan Orange 1 (M1) and Clear Fast Red (NF) were used. Table 2 shows the short circuit current and open circuit voltage for these batteries.

【0024】(A7)(A7)

【化10】 (MI)Embedded image (MI)

【化11】 (NF)Embedded image (NF)

【化12】 Embedded image

【0025】[0025]

【表2】 [Table 2]

【0026】(1)アシッドオレンジ7(A7)は、ア
ゾ系の色素であるが、このものはTiO2には吸着した
が他の電極にはほとんど吸着しなかった。電池特性も非
常に悪い結果となった。 (2)モーダントオレンジ1(M1)は、アゾ系の色素
であるが、すべての半銅体電極に良い吸着を示した。し
かしながらその電池特性は非常に悪いものとなった。
(3)ヌクレアーフアーストレッド(NF)は、キノン
系の色素であるが、このものはすべての半導体電極に良
い吸着を示した。しかしながら、その電池特性は非常に
悪いものであった。
(1) Acid Orange 7 (A7) is an azo dye, which adsorbed on TiO 2 but hardly adsorbed on other electrodes. Battery performance was also very poor. (2) Modant Orange 1 (M1), which is an azo-based dye, exhibited good adsorption to all copper electrodes. However, the battery characteristics were very poor.
(3) Nuclear fast red (NF) is a quinone dye, which showed good adsorption to all semiconductor electrodes. However, the battery characteristics were very poor.

【0027】[0027]

【発明の効果】本発明の有機色素増感型半導体電極は、
高められた性能を有し、これを含む本発明の太陽電池は
高められた電池性能を有する。本発明の太陽電池は、そ
の材料が大量生産されている比較的安価でかつ安全性の
高いものであることから、比較的安価に生産することが
でき、またその使用後においては、使い捨て可能なもの
である。
The organic dye-sensitized semiconductor electrode of the present invention is
The solar cell of the present invention having enhanced performance and including the same has enhanced battery performance. The solar cell of the present invention can be produced relatively inexpensively because its material is mass-produced and is relatively inexpensive and highly safe, and after its use, it is disposable. Things.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平7−249790(JP,A) 特開 昭59−197831(JP,A) (58)調査した分野(Int.Cl.6,DB名) H01M 14/00 H01L 31/04 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-7-249790 (JP, A) JP-A-59-197831 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) H01M 14/00 H01L 31/04

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 導電性表面を有する基板と、その導電性
表面に形成された酸化物半導体膜と、その酸化物半導体
膜の表面に吸着された有機色素からなり、前記有機色素
がモダントブルー29であり、酸化物半導体が酸化イン
ジュームである酸化物半導体電極。
1. A substrate having a conductive surface, an oxide semiconductor film formed on the conductive surface, and an organic dye adsorbed on the surface of the oxide semiconductor film, wherein the organic dye is modern blue 29. An oxide semiconductor electrode wherein the oxide semiconductor is indium oxide.
【請求項2】 導電性表面を有する基板と、その導電性
表面に形成された酸化物半導体膜と、その酸化物半導体
膜の表面に吸着された有機色素からなり、前記有機色素
がエリオクロムシアニンRであり、酸化物半導体が酸化
インジュームである酸化物半導体電極。
2. A substrate having a conductive surface, an oxide semiconductor film formed on the conductive surface, and an organic dye adsorbed on the surface of the oxide semiconductor film, wherein the organic dye is eriochrome cyanine. R is an oxide semiconductor electrode in which the oxide semiconductor is indium oxide.
【請求項3】 導電性表面を有する基板と、その導電性
表面に形成された酸化物半導体膜と、その酸化物半導体
膜の表面に吸着された有機色素からなり、前記有機色素
がアウリントリカルボン酸であり、酸化物半導体が酸化
チタンである酸化物半導体電極。
3. A substrate having a conductive surface, an oxide semiconductor film formed on the conductive surface, and an organic dye adsorbed on the surface of the oxide semiconductor film, wherein the organic dye is aurin tricarboxylic acid Wherein the oxide semiconductor is titanium oxide.
【請求項4】 導電性表面を有する基板と、その導電性
表面に形成された酸化物半導体膜と、その酸化物半導体
膜の表面に吸着された有機色素からなり、前記有機色素
がナフトクロムグリーンであり、酸化物半導体が酸化亜
鉛又は酸化インジュームである酸化物半導体電極。
4. A substrate having a conductive surface, an oxide semiconductor film formed on the conductive surface, and an organic dye adsorbed on the surface of the oxide semiconductor film, wherein the organic dye is naphthochrome green. An oxide semiconductor electrode, wherein the oxide semiconductor is zinc oxide or indium oxide.
【請求項5】 導電性表面を有する基板と、その導電性
表面に形成された酸化物半導体膜と、その酸化物半導体
膜の表面に吸着された有機色素からなり、前記有機色素
がクマリン343であり、酸化物半導体が酸化チタン、
酸化亜鉛又は酸化インジュームである酸化物半導体電
極。
5. A substrate having a conductive surface, an oxide semiconductor film formed on the conductive surface, and an organic dye adsorbed on the surface of the oxide semiconductor film, wherein the organic dye is a coumarin 343. Yes, the oxide semiconductor is titanium oxide,
An oxide semiconductor electrode which is zinc oxide or indium oxide.
【請求項6】 導電性表面を有する基板と、その導電性
表面に形成された酸化物半導体膜と、その酸化物半導体
膜の表面に吸着された有機色素からなり、前記有機色素
がプロフラビンであり、酸化物半導体が酸化チタン、酸
化亜鉛又は酸化インジュームである酸化物半導体電極。
6. A substrate having a conductive surface, an oxide semiconductor film formed on the conductive surface, and an organic dye adsorbed on the surface of the oxide semiconductor film, wherein the organic dye is proflavine. An oxide semiconductor electrode in which the oxide semiconductor is titanium oxide, zinc oxide, or indium oxide;
【請求項7】 請求項1ないし請求項6のいずれか一つ
に記載された酸化物半導体電極とその対極とそれらの電
極に接触するレドックス電解質とから構成される太陽電
池。
7. A solar cell comprising the oxide semiconductor electrode according to any one of claims 1 to 6, a counter electrode thereof, and a redox electrolyte in contact with the electrodes.
JP8241523A 1996-09-12 1996-09-12 Organic dye-sensitized oxide semiconductor electrode and solar cell including the same Expired - Lifetime JP2955647B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8241523A JP2955647B2 (en) 1996-09-12 1996-09-12 Organic dye-sensitized oxide semiconductor electrode and solar cell including the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8241523A JP2955647B2 (en) 1996-09-12 1996-09-12 Organic dye-sensitized oxide semiconductor electrode and solar cell including the same

Publications (2)

Publication Number Publication Date
JPH1093118A JPH1093118A (en) 1998-04-10
JP2955647B2 true JP2955647B2 (en) 1999-10-04

Family

ID=17075619

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8241523A Expired - Lifetime JP2955647B2 (en) 1996-09-12 1996-09-12 Organic dye-sensitized oxide semiconductor electrode and solar cell including the same

Country Status (1)

Country Link
JP (1) JP2955647B2 (en)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4521737B2 (en) * 1999-03-24 2010-08-11 富士フイルム株式会社 Solar power plant
CN1241287C (en) * 2000-06-29 2006-02-08 日本化药株式会社 Dye-sensitized photoelectric trnsducer
JP5142307B2 (en) * 2000-11-28 2013-02-13 独立行政法人産業技術総合研究所 Semiconductor thin film electrode and photoelectric conversion element using organic dye as photosensitizer
JP3702430B2 (en) * 2001-02-21 2005-10-05 昭和電工株式会社 Metal oxide dispersion for dye-sensitized solar cell, photoactive electrode, and dye-sensitized solar cell
WO2008004580A1 (en) 2006-07-05 2008-01-10 Nippon Kayaku Kabushiki Kaisha Dye-sensitized solar cell
JP6337561B2 (en) 2014-03-27 2018-06-06 株式会社リコー Perovskite solar cell
CN110571334A (en) 2014-04-16 2019-12-13 株式会社理光 Photoelectric conversion element
EP3410506B1 (en) 2016-01-25 2022-03-30 Ricoh Company, Ltd. Photoelectric conversion element
US10651390B2 (en) 2016-06-08 2020-05-12 Ricoh Company, Ltd. Tertiary amine compound, photoelectric conversion element, and solar cell
KR102163405B1 (en) 2016-12-07 2020-10-08 가부시키가이샤 리코 Photoelectric conversion element
CN112055882A (en) 2018-03-19 2020-12-08 株式会社理光 Photoelectric conversion device, process cartridge, and image forming apparatus
EP4000098A1 (en) 2019-07-16 2022-05-25 Ricoh Company, Ltd. Solar cell module, electronic device, and power supply module
EP4034945B1 (en) 2019-09-26 2023-07-19 Ricoh Company, Ltd. Electronic device and method for producing the same, image forming method, and image forming apparatus
US20210167287A1 (en) 2019-11-28 2021-06-03 Tamotsu Horiuchi Photoelectric conversion element, photoelectric conversion module, electronic device, and power supply module
JP7508782B2 (en) 2020-01-20 2024-07-02 株式会社リコー Electronic device and its manufacturing method, image forming method, and image forming apparatus
JP7413833B2 (en) 2020-02-27 2024-01-16 株式会社リコー Photoelectric conversion element and photoelectric conversion module
US11502264B2 (en) 2020-02-27 2022-11-15 Ricoh Company, Ltd. Photoelectric conversion element and photoelectric conversion module
JP2022144443A (en) 2021-03-19 2022-10-03 株式会社リコー Photoelectric conversion element, electronic device, and power supply module
EP4064355A1 (en) 2021-03-23 2022-09-28 Ricoh Company, Ltd. Solar cell module
EP4092704A1 (en) 2021-05-20 2022-11-23 Ricoh Company, Ltd. Photoelectric conversion element and method for producing photoelectric conversion element, photoelectric conversion module, and electronic device
WO2023008085A1 (en) 2021-07-29 2023-02-02 Ricoh Company, Ltd. Photoelectric conversion element and solar cell module
JP2023019661A (en) 2021-07-29 2023-02-09 株式会社リコー Photoelectric conversion element, photoelectric conversion module, and electronic apparatus
EP4161234A1 (en) 2021-09-30 2023-04-05 Ricoh Company, Ltd. Photoelectric conversion element, photoelectric conversion module, and electronic device
CN116096111A (en) 2021-10-29 2023-05-09 株式会社理光 Photoelectric conversion element and photoelectric conversion element module
EP4188053A1 (en) 2021-11-26 2023-05-31 Ricoh Company, Ltd. Photoelectric conversion element, photoelectric conversion module, electronic device, and partition
JP2023137773A (en) 2022-03-18 2023-09-29 株式会社リコー Photoelectric conversion elements, photoelectric conversion modules, electronic equipment, and solar cell modules

Also Published As

Publication number Publication date
JPH1093118A (en) 1998-04-10

Similar Documents

Publication Publication Date Title
JP2955647B2 (en) Organic dye-sensitized oxide semiconductor electrode and solar cell including the same
JP2955646B2 (en) Organic dye-sensitized oxide semiconductor electrode and solar cell including the same
JP3309131B2 (en) Organic dye-sensitized niobium oxide semiconductor electrode and solar cell including the same
JP3353054B2 (en) Organic dye-sensitized oxide semiconductor electrode and solar cell including the same
EP0975026B1 (en) Metal complex useful as sensitizer, dye-sensitized oxide semiconductor electrode and solar cell using same
Matsumoto et al. A dye sensitized TiO2 photoelectrochemical cell constructed with polymer solid electrolyte
JP5192154B2 (en) Method for producing dye-sensitized solar cell
Hore et al. Acid versus base peptization of mesoporous nanocrystalline TiO 2 films: functional studies in dye sensitized solar cells
US6639073B2 (en) Ruthenium complex useful as sensitizer, dye-sensitized oxide semiconductor electrode and solar cell using same
JP2005174934A (en) Dye-sensitive solar cell, and method for manufacturing the same
JP4887664B2 (en) Method for producing porous structure and method for producing photoelectric conversion element
JP2002075477A (en) Photoelectric conversion film, photoelectric conversion electrode, and photoelectric conversion element
JP3945038B2 (en) Dye-sensitized solar cell
JP2001210390A (en) Dye-sensitization type solar battery which uses solid electrolyte and its preparation method
JP3954085B2 (en) Photoelectric conversion element and solar cell using the same
JPH11339866A (en) Photoelectric conversion element and pigment sensitizing solar battery
JP2001283944A (en) Oxide semiconductor pigment jointed electrode and pigment-sensitized solar battery
JP2002075476A (en) Photoelectric conversion film, photoelectric conversion electrode, and photoelectric conversion element
JPH10290018A (en) Semiconductor for photoelectric conversion material and chemical cell using thereof
JP4406985B2 (en) Oxide semiconductor dye-coupled electrode and dye-sensitized solar cell
JP4129103B2 (en) Dye-coupled electrode for dye-sensitized solar cell and dye-sensitized solar cell using the same
JP2002100419A (en) Photoelectric transfer element
JP2003123862A (en) Dye sensitized solar battery
JP2002298646A (en) Semiconductor particulate paste, semiconductor membrane and its manufacturing method and photoelectric conversion element
JPH09237641A (en) Porous electrode and solar cell using same

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term