Nothing Special   »   [go: up one dir, main page]

JP2829005B2 - Micro-chamber plate, cell detection method, treatment method and apparatus using the same, and cell - Google Patents

Micro-chamber plate, cell detection method, treatment method and apparatus using the same, and cell

Info

Publication number
JP2829005B2
JP2829005B2 JP63283601A JP28360188A JP2829005B2 JP 2829005 B2 JP2829005 B2 JP 2829005B2 JP 63283601 A JP63283601 A JP 63283601A JP 28360188 A JP28360188 A JP 28360188A JP 2829005 B2 JP2829005 B2 JP 2829005B2
Authority
JP
Japan
Prior art keywords
cell
cells
compartment
electrodes
pair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63283601A
Other languages
Japanese (ja)
Other versions
JPH02131569A (en
Inventor
喜雄 河村
伸司 田中
佐藤  一雄
啓之 小比田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP63283601A priority Critical patent/JP2829005B2/en
Priority to US07/425,028 priority patent/US5183744A/en
Publication of JPH02131569A publication Critical patent/JPH02131569A/en
Application granted granted Critical
Publication of JP2829005B2 publication Critical patent/JP2829005B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M35/00Means for application of stress for stimulating the growth of microorganisms or the generation of fermentation or metabolic products; Means for electroporation or cell fusion
    • C12M35/02Electrical or electromagnetic means, e.g. for electroporation or for cell fusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00279Features relating to reactor vessels
    • B01J2219/00306Reactor vessels in a multiple arrangement
    • B01J2219/00313Reactor vessels in a multiple arrangement the reactor vessels being formed by arrays of wells in blocks
    • B01J2219/00315Microtiter plates
    • B01J2219/00317Microwell devices, i.e. having large numbers of wells
    • CCHEMISTRY; METALLURGY
    • C40COMBINATORIAL TECHNOLOGY
    • C40BCOMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
    • C40B60/00Apparatus specially adapted for use in combinatorial chemistry or with libraries
    • C40B60/14Apparatus specially adapted for use in combinatorial chemistry or with libraries for creating libraries

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Microbiology (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Cell Biology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Electromagnetism (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は細胞融合装置に係わり、得に異種の細胞を1
対1に融合させるのに好適な細胞融合のためのマイクロ
チャンバプレートおよび粒子判別方法ならびに粒子処理
装置および細胞処理装置に関する。
Description: TECHNICAL FIELD The present invention relates to a cell fusion device, and more particularly to the use of a heterogeneous cell for one cell.
The present invention relates to a micro-chamber plate for cell fusion suitable for one-to-one fusion, a particle discriminating method, a particle processing device, and a cell processing device.

〔従来の技術〕[Conventional technology]

従来の装置は文献(昭和62年度精密工学会春季大会学
術講演会論文集p.845〜846)に記載のように格子状に配
列した隔室に異種細胞を1対ずつ供給して、吸引ノズル
で隔室の小さな開口部に吸引固定して、同一融合条件下
で一括して融合を行っていた。
The conventional device supplies a pair of heterogeneous cells to the grid-arranged compartments as described in the literature (Paper Collection, Spring Meeting of the Japan Society of Precision Engineering, Spring Meeting, 1987). And was fixed to the small opening of the compartment by suction, and fusion was performed at once under the same fusion conditions.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

上記従来技術では、多量の細胞の融合を一括して行う
ため、大きさや細胞膜の厚さや活性度のばらつき等の個
体差のある細胞を全て確実に融合させることが困難であ
り、未融合細胞と融合細胞とを選別するための労力を必
要とする問題があった。本発明の目的は、個体差の大き
い細胞の状態をそれぞれ独立に把握し、最適な条件で融
合条件を与え、多量の細胞を確実に融合することにあ
り、さらに独立に状態を把握した細胞に遺伝子を導入す
ることにあり、また、さらに、血液を用いてその形状等
の情報から、血液の状態を把握するなど種々の細胞を個
々に処理することを可能とすることにある。
In the above prior art, since a large number of cells are fused at once, it is difficult to reliably fuse all cells having individual differences such as variations in size, thickness of cell membrane, and activity, and unfused cells. There was a problem that labor was required for selecting the fused cells. An object of the present invention is to independently grasp the state of a cell having a large individual difference, provide a fusion condition under optimal conditions, and reliably fuse a large number of cells. Another object of the present invention is to introduce a gene, and to enable individual processing of various cells, such as grasping the state of blood from information such as its shape using blood.

〔課題を解決するための手段〕[Means for solving the problem]

上記目的を達成するために、それぞれの隔室に独立な
電極を設けて、各電極に独立に電圧等を印加したり、電
極間の抵抗等を測定可能な構造の、粒子や細胞を位置決
め保持するための多数の隔室を有するマイクロチャンバ
プレートを用いた。また、隔室内の粒子や細胞の挙動を
それらを挟んでいる電極間の電位として測定することに
より、粒子や細胞を判定することを可能とした。また、
粒子や細胞を挟んだ電極間に電圧を印加することにより
個々に処理や融合を可能とする装置や細胞融合装置を得
た。
In order to achieve the above purpose, independent electrodes are provided in each compartment, and voltage and the like are independently applied to each electrode, and particles and cells are positioned and held so that the resistance between the electrodes can be measured. A micro-chamber plate with a number of compartments was used. Also, by measuring the behavior of particles and cells in the compartment as the potential between electrodes sandwiching them, it was possible to determine the particles and cells. Also,
By applying a voltage between electrodes sandwiching particles and cells, a device and a cell fusion device capable of individually processing and fusion were obtained.

〔作用〕 マイクロチャンバプレート上の隔室に設けた一対の電
極は電圧を印加することにより、電極間に存在する一対
の細胞を互いに接触させたり、互いに接触した細胞膜を
介して融合したり、さらには、電極間の電位の変化から
融合した細胞の形状の変化を知り、融合のパルス電圧を
強めたり、弱めたり調整することができる。隔室を多
数、格子上に配列したマイクロチャンバ上で、隔室から
の電極を独立な構造にすることにより、それぞれの隔室
に存在する、細胞の個体差に依存する電気融合条件を微
妙に制御することが可能となるので、多数の細胞を効率
良く融合させることができる。さらに、それぞれの隔室
に存在する細胞の状態を独立に把握できるため、労力を
要する目視観測等の手段なしに、所望の細胞の配置場所
を把握して抽出することが可能となるので、所望の細胞
のみを確実に、しかも効率良く生成することが可能とな
る。また、隔室に存在する細胞の挙動を把握しながら、
レーザ光線やX線を用いて細胞に加工を施せるので遺伝
子導入等の細胞処理を容易にかつ確実に行える。さら
に、液体中で、細胞等を位置決めするマイクロチャンバ
の隔室に、細胞を位置決め保持する際に障害となる気泡
の付着の有無を判定できるので、気泡の事前除去が可能
となり、細胞等の微小な粒子を信頼性高く取扱えるマイ
クロチャンバを提供することができる。
[Action] A pair of electrodes provided in the compartment on the micro-chamber plate is applied with a voltage to bring a pair of cells existing between the electrodes into contact with each other, or to fuse through a cell membrane in contact with each other, Can know the change in the shape of the fused cells from the change in the potential between the electrodes, and can increase or decrease the fusion pulse voltage. By making the electrodes from the compartments independent on a microchamber in which a large number of compartments are arranged on a lattice, the electrofusion conditions depending on the individual differences of cells in each compartment can be delicate. Since control becomes possible, a large number of cells can be efficiently fused. Furthermore, since the state of the cells present in each compartment can be grasped independently, it is possible to grasp and extract the location of the desired cells without the need for laborious visual observation or the like. Can be produced reliably and efficiently. Also, while grasping the behavior of cells existing in the compartment,
Since cells can be processed using laser beams or X-rays, cell processing such as gene transfer can be performed easily and reliably. Furthermore, since it is possible to determine the presence or absence of air bubbles in the liquid in the micro chamber for positioning the cells in the liquid, which may hinder the positioning and holding of the cells, it is possible to remove the air bubbles in advance, and to remove the fine particles such as the cells. It is possible to provide a micro-chamber that can handle highly reliable particles.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図〜第3図により説明
する。第1図は本発明のマイクロチャンバプレート、第
2図はマイクロチャンバプレートを用いた細胞融合装
置、第3図はマイクロチャンバプレートの電極の配線パ
ターン例である。第1図〜第3図において、共通部分の
番号は同一とした。
An embodiment of the present invention will be described below with reference to FIGS. FIG. 1 is a micro-chamber plate of the present invention, FIG. 2 is a cell fusion device using the micro-chamber plate, and FIG. 3 is an example of a wiring pattern of electrodes of the micro-chamber plate. 1 to 3, the numbers of the common parts are the same.

粒子として、大きさが20〜100μmの細胞を取扱う場
合のマイクロチャンバプレートの拡大した断面の鳥瞰図
を第1図に示す。マイクロチャンバプレート901は、厚
さ400μmのSiウエハに異方性エッチング処理によりピ
ッチ770μmの格子状の配列で形成された隔室101〜103,
201〜203を有している。隔室101〜103には一対の細胞を
電気的に融合するため、異種細胞が2個ずつ吸引保持さ
れている。なお、隔室201〜203には細胞が入っていない
状態を示してある。全ての隔室には、隔室103の吸引孔6
03と同一の構造の吸引孔が形成されている。吸引孔の下
側より図示していない吸引手段を用いて吸引することに
より、細胞を位置決め保持できる構造となっている。こ
れらの細胞は、図示していない容器(第2図906)に満
たされた等張液中で、図示していない搬送手段(第2図
902,903)によりそれぞれの隔室の所定の数だけ移し替
えられる。隔室103には一組の電極802,803が形成され、
配線10,13を経て図示していない制御系(第2図905)に
つながっている。他の隔室101,102,201〜203からも、そ
れぞれ互いに独立に電圧を加えたり、電位を測定できる
ように電極と配線11,12および20〜23が制御系に接続さ
れている。
FIG. 1 shows a bird's-eye view of an enlarged cross section of a microchamber plate in the case of handling cells having a size of 20 to 100 μm as particles. The micro-chamber plate 901 has compartments 101 to 103 formed in a 400 μm-thick Si wafer by anisotropic etching processing in a grid-like arrangement with a pitch of 770 μm.
201-203. In order to electrically fuse a pair of cells in the compartments 101 to 103, two heterogeneous cells are suctioned and held two by two. Note that the cells are not contained in the compartments 201 to 203. All compartments have suction holes 6 in compartment 103
A suction hole having the same structure as 03 is formed. The cells can be positioned and held by sucking from below the suction holes using suction means (not shown). These cells are placed in an isotonic solution filled in a container (not shown) (FIG. 2, 906) in a transport means (not shown) (FIG. 2).
902, 903) by a predetermined number of each compartment. A pair of electrodes 802 and 803 are formed in the compartment 103,
It is connected to a control system (not shown) (FIG. 2 905) via the wirings 10 and 13. From the other compartments 101, 102, 201 to 203, electrodes and wirings 11, 12, and 20 to 23 are connected to a control system so that a voltage can be applied and a potential can be measured independently of each other.

第2図は第1図に示したマイクロチャンバプレート90
1を用いた細胞融合装置904の外観図である。浸透圧を揃
えて細胞の活性を保つための、等張液として0.5molのソ
ルビトール液を容器906の中に入れる。異種細胞をA,Bと
すると、細胞Aを搬送する手段902、細胞Bを搬送する
手段903を有している。搬送手段は、マイクロチャンバ
プレート901の隔室に細胞AとBをそれぞれ1個ずつ移
し替えるため、それぞれ隔室に対応した位置に細胞をそ
れぞれ1個だけ吸引する吸引座を有した構造となってい
る。搬送手段902,903はそれぞれx,z軸方向に移動でき、
マイクロチャンバプレートの隔室に細胞を移し替えるこ
とにより、一対の細胞A,Bが位置決め保持される。各隔
室に独立に設けられた電極からの配線は制御系905に接
続されている。制御系905は、マイクロチャンバプレー
トの隔室内の細胞を電気的に融合させるための電源や、
細胞の状態を細胞を挟んだ電極間の電位変化として把握
して、細胞の状態に応じて印加電圧を調整したり開閉す
る等の処理を行う処理回路、搬送手段902,903を駆動し
てマイクロチャンバプレートに細胞を移し替える操作等
を制御する回路等から構成されている。
FIG. 2 shows the micro-chamber plate 90 shown in FIG.
1 is an external view of a cell fusion device 904 using 1. A 0.5 mol sorbitol solution is placed in the container 906 as an isotonic solution in order to maintain the activity of the cells by adjusting the osmotic pressure. Assuming that the heterologous cells are A and B, it has means 902 for transporting cell A and means 903 for transporting cell B. The transfer means has a structure having a suction seat for sucking only one cell at a position corresponding to each cell in order to transfer each cell A and B to the cell of the microchamber plate 901 one by one. I have. The transport means 902 and 903 can move in the x and z axis directions, respectively.
By transferring the cells to the compartment of the micro-chamber plate, the pair of cells A and B is positioned and held. Wiring from electrodes provided independently in each compartment is connected to a control system 905. The control system 905 is a power supply for electrically fusing cells in the compartment of the microchamber plate,
A processing circuit that grasps the state of the cell as a potential change between the electrodes sandwiching the cell, adjusts the applied voltage according to the state of the cell, performs processing such as opening and closing, and drives the transport means 902, 903 to drive the micro chamber plate. And a circuit for controlling the operation of transferring the cells to the other.

第3図はマイクロチャンバプレートの隔室にそれぞれ
独立に設けられた電極101〜104,201〜204,301〜304,401
〜404と、これらの電極からの配線10〜14,20〜24,30〜3
4,40〜44を平面状にパターン化した例である。
FIG. 3 shows electrodes 101 to 104, 201 to 204, 301 to 304, 401 provided independently in the compartments of the microchamber plate.
~ 404, and wiring from these electrodes 10 ~ 14,20 ~ 24,30 ~ 3
This is an example in which 4,40 to 44 are patterned into a planar shape.

次に第1図に隔室103内の細胞を例にして、電気的な
細胞融合の過程を述べる。搬送手段により移し替えら
れ、位置決めされた細胞800,801は吸引孔603からの吸引
圧によって、吸引孔直上で互いに接触する。一対の細胞
は電極間に長手方向に成した吸引孔603によって、互い
に接触し8の字状を成し、その長手方向が電界方向と一
致するように位置決めされる。接触を保った状態で、電
極間にパルス状の電圧を印加すると、電極に挟まれた一
対の細胞が接触した細胞膜の部分から融合し始める。融
合の進行に伴って接触していた細胞は、だるま状から楕
円体状を経て球状体となる。一組みの電極間の抵抗や静
電容量や電荷量は、細胞の形状変化に伴って変わる。
Next, the process of electrical cell fusion will be described with reference to FIG. 1 using cells in the compartment 103 as an example. The cells 800 and 801 that have been transferred and positioned by the transporting means come into contact with each other immediately above the suction holes by the suction pressure from the suction holes 603. The pair of cells are in contact with each other by suction holes 603 formed in the longitudinal direction between the electrodes to form an eight shape, and are positioned so that the longitudinal direction coincides with the electric field direction. When a pulsed voltage is applied between the electrodes while maintaining the contact, a pair of cells sandwiched between the electrodes starts to fuse from the contacted cell membrane portion. The cells that have been in contact with the progress of the fusion become spheres from daruma to ellipsoid. The resistance, the capacitance, and the amount of charge between a pair of electrodes change as the shape of the cell changes.

半径r1,r2の細胞が融合して半径r3の大きさに変化す
るものと仮定すると、細胞の総容積が一定であるので、
次式が成立する。
Assuming that cells of radii r 1 and r 2 fuse and change to the size of radius r 3 , since the total volume of cells is constant,
The following equation holds.

r1 3+r2 3=r3 3 接触した細胞の最大長は 2・(r1+r2) で、融合後の細胞の最大径は 2・r3=2・(r1 3+r2 31/3 である。例えば、等しい半径Rの2個の細胞が接触して
いる時の最長距離は4Rである。融合後の球体の半径は
(2)1/3・R=1.26・Rとなり、最長距離は2.52・R
と2個の細胞が接触していた時に比べて63%と小さくな
る。従って、電極間の電位変化として検出できる。
The maximum length of r 1 3 + r 2 3 = r 3 3 contacted cell with 2 · (r 1 + r 2 ), the maximum diameter of the cells after fusion 2 · r 3 = 2 · ( r 1 3 + r 2 3) 1/3 . For example, the longest distance when two cells of equal radius R are in contact is 4R. The radius of the sphere after fusion is (2) 1/3 · R = 1.26 · R, and the longest distance is 2.52 · R
And 63% smaller than when two cells were in contact. Therefore, it can be detected as a potential change between the electrodes.

融合のためパルス状の電圧を印加した後、電極間の電
位変化が始まれば、その時細胞融合が始まったことにな
る。細胞融合が進行して一つの球体となると、電極間の
電位変化が小さくなる。従って、一対の細胞に融合用の
パルス状電圧を印加した直後に、電極間の電位を測定
し、その変化率を求めることにより、融合の開始点を把
握することができる。細胞融合が始まるまでは、適当な
周期でパルス状電圧を加え続け、さらに、融合が始まら
ない時には印加するパルス状電圧を漸次昇圧して印加条
件を変えることにより、細胞を融合させることができ
る。電位変化が現われて融合の開始が検出された後に
は、融合を進展させるためにパルス状電圧の印加を停止
する。また、細胞の活性が弱い場合には、パルス状電圧
の印加により細胞が破損することがあるが、この時の電
位変化のモードは急峻な変化の後に一定となるモードを
示す。従って、融合の進展に伴なって現われる緩やかな
電位変化のモードと区別することができるので、細胞の
破損時点を把握することができる。
If a potential change between the electrodes starts after a pulsed voltage is applied for fusion, cell fusion has started at that time. When cell fusion progresses into one sphere, the potential change between the electrodes becomes smaller. Therefore, immediately after the pulse voltage for fusion is applied to a pair of cells, the potential between the electrodes is measured and the rate of change is obtained, whereby the start point of fusion can be grasped. Until the cell fusion starts, the pulsed voltage is continuously applied at an appropriate cycle, and when the fusion does not start, the applied pulsed voltage is gradually increased and the application condition is changed, whereby the cells can be fused. After a potential change appears and the start of fusion is detected, the application of the pulsed voltage is stopped to advance fusion. When the activity of the cells is weak, the cells may be damaged by application of a pulsed voltage. At this time, the mode of the potential change shows a mode that becomes constant after a steep change. Therefore, it is possible to distinguish from a mode of a gradual potential change that appears with the progress of fusion, and it is possible to know the time of cell breakage.

隔室内で1個の細胞の破損が判明した場合には、残り
の細胞が未融合のまま残って、培養時に増殖することを
防ぐために、残りの細胞を破壊処理させるための高い電
圧を印加する。残存細胞の有無や破壊状況も電位変化か
ら検知できる。以上の方法により、所望の融合細胞のみ
に確実に残すことが可能である。なお、電極間距離を20
0μmとし、0.5molのソルビトール液を用いて、サラダ
菜の細胞を融合させる場合には、約25V,150μsのパル
ス状電圧を1〜数回程印加するだけで細胞融合が始ま
り、8の字状の接触状態から、だるま状、楕円体状を経
て、約2〜3分で球体状に融合が進む。
If one cell is found to be damaged in the compartment, a high voltage is applied to destroy the remaining cells in order to prevent the remaining cells from remaining unfused and growing during culture. . The presence or absence and destruction of the remaining cells can also be detected from the potential change. By the above method, it is possible to reliably leave only the desired fused cells. The distance between the electrodes is 20
When the cells of salad vegetables are fused with 0 μm and 0.5 mol of sorbitol solution, cell fusion starts only by applying a pulse voltage of about 25 V, 150 μs about once or several times, and a figure-shaped contact is made. From the state, the fusion progresses into a sphere in about 2 to 3 minutes after passing through a ball and an ellipsoid.

第1図,第3図における電極からの配線パターンは互
いに交差しないので、パターニングは簡単であるが、チ
ャンパプレート上に形成可能な隔室の数に限度がある。
第4図は配線パターンを立体的に交差する構造にするこ
とによって、隔室の数に制限なしにチャンバプレート上
に形成可能な場合の一実施例である。y方向の配線10,6
0とx方向の配線1〜7の交差点に対応して一組みの電
極11〜67がパターニングされている。それぞれの電極に
電圧を印加したり、電極間の電位を測定するための接続
方法は、公知の2次元液晶デバイスや2次元MOSイメー
ジセンサ等を駆動する方法の応用で可能である。
Since the wiring patterns from the electrodes in FIGS. 1 and 3 do not cross each other, the patterning is simple, but the number of compartments that can be formed on the champer plate is limited.
FIG. 4 shows an embodiment in which wiring patterns can be formed on a chamber plate without limitation on the number of compartments by making the wiring patterns three-dimensionally cross each other. Wiring in y direction 10,6
A set of electrodes 11 to 67 is patterned corresponding to the intersections of the 0 and the wirings 1 to 7 in the x direction. A connection method for applying a voltage to each electrode or measuring a potential between the electrodes can be applied to a known method for driving a two-dimensional liquid crystal device, a two-dimensional MOS image sensor, or the like.

第5図は第4図に示した配線方法を用いたSi製のマイ
クロチャンバプレートを拡大した断面の鳥瞰図である。
細胞を吸引位置決めする吸引孔(寸法10μm×80μm)
を有する細胞保持溝プレート200と、吸引孔の位置に対
応して隔室を構成している側壁プレート201との二枚重
ね構造である。重ね合わせる部分に形成した電極類を示
すため、細胞保持溝プレートと側壁プレートとを分離し
た状態を示してある。Au製の厚さ300nmの配線6,7および
10〜30は、第4図の配線パターンと同一番号の部分に対
応する。交差する配線の交差部分はSiO2製の絶縁層で電
気的に絶縁されている。次に、隔室37を用いて説明す
る。隔室37の吸引孔300の長手方向に配線6からの電極3
01と配線30の一部を直接電極として利用した電極302が
形成されている。吸引孔300の横方向にはSiO2製の絶縁
体の凸部303,304が形成されている。絶縁体の凸部303,3
04は吸引孔を挟んで配置されており、電極301と302との
間に電圧を印加した時に生じる電気力線を吸引孔の中央
で収束させる機能がある。従って、吸引孔上に接触位置
決めされた一対の細胞に対して効率の良い電圧印加や測
定を可能としている。
FIG. 5 is a bird's-eye view of an enlarged cross section of a microchamber plate made of Si using the wiring method shown in FIG.
Suction hole for locating cells by suction (dimensions: 10 μm × 80 μm)
And a side wall plate 201 forming a compartment corresponding to the position of the suction hole. In order to show the electrodes formed on the overlapping portion, the state where the cell holding groove plate and the side wall plate are separated is shown. Au 300nm thick wiring 6, 7 and
Reference numerals 10 to 30 correspond to portions having the same numbers as the wiring patterns in FIG. Intersecting portions of the intersecting wires are electrically insulated by an insulating layer made of SiO 2 . Next, description will be made using the compartment 37. The electrode 3 from the wiring 6 extends in the longitudinal direction of the suction hole 300 in the compartment 37.
An electrode 302 is formed using 01 and a part of the wiring 30 as a direct electrode. In the lateral direction of the suction hole 300, protrusions 303 and 304 of an insulator made of SiO 2 are formed. Insulating protrusion 303,3
Reference numeral 04 is disposed with the suction hole interposed therebetween, and has a function of converging lines of electric force generated when a voltage is applied between the electrodes 301 and 302 at the center of the suction hole. Therefore, efficient voltage application and measurement can be performed on a pair of cells positioned in contact with the suction hole.

次に、一対の電極間に存在する細胞の状態や挙動を電
気的に検出した実施例を第6〜8図を用いて述べる。第
6図は、本発明の実施例の電極部拡大図で、電極601,60
2との間に異種細胞603,604が互いに接触し位置決めされ
ている状態を示している。これらの電極や細胞は等張液
605に浸っている。文献(細胞工学Vol.3,No.6,1988,p.4
97〜505のp.505,p.502)に示されているように、0.5mol
のソルビトールの等張液の比抵抗は約1kΩ・mmで、細胞
膜の比抵抗は約100MΩ・mmである。通常、細胞膜の厚さ
は約10nmであるのでその厚さ方向の抵抗は約1kΩであ
る。本実施例の電極601と602の間隔は200μmで、その
抵抗は約0.2kΩである。従って、対向する電極の幅を細
胞の直径より小さくするか、絶縁体(第5図の303,304
に相当)を設けて電界が細胞に集中する構造にすること
によって、電極間に存在する細胞の形状に存在する抵抗
を測定することが可能である。電極601と602間に電源60
6から定電圧をパルス状に印加して、検出処理回路607か
ら細胞の膜の厚さに存在する抵抗を求め図示していない
制御系(第2図905に相当)に出力する。なお、低電圧
をパルス状に印加するのは等張液の電気分解を防ぐため
である。測定処理後に得られる細胞の形状に存在する抵
抗値の時間的変化の例として第7,8図に示す。第7図は
融合過程の抵抗特性を示す。また第8図は細胞の破壊過
程を示す。両図とも横軸は時間t,縦軸は抵抗値rを表わ
している。
Next, an embodiment in which the state or behavior of a cell existing between a pair of electrodes is electrically detected will be described with reference to FIGS. FIG. 6 is an enlarged view of an electrode portion according to the embodiment of the present invention.
2 shows a state in which heterologous cells 603 and 604 are in contact with each other and positioned. These electrodes and cells are isotonic
Immersed in 605. Literature (Cell Engineering Vol.3, No.6, 1988, p.4
0.5 mol as shown in 97-505 p.505, p.502)
The specific resistance of the isotonic solution of sorbitol is about 1 kΩ · mm, and the specific resistance of the cell membrane is about 100 MΩ · mm. Usually, the thickness of the cell membrane is about 10 nm, so that the resistance in the thickness direction is about 1 kΩ. In this embodiment, the distance between the electrodes 601 and 602 is 200 μm, and the resistance is about 0.2 kΩ. Therefore, the width of the opposing electrode is made smaller than the diameter of the cell or the insulator (303, 304 in FIG. 5).
) To provide a structure in which the electric field concentrates on the cells, it is possible to measure the resistance existing in the shape of the cells existing between the electrodes. Power supply 60 between electrodes 601 and 602
From step 6, a constant voltage is applied in a pulse form, and the resistance existing in the thickness of the cell membrane is obtained from the detection processing circuit 607 and output to a control system (corresponding to FIG. 905) not shown. The reason why the low voltage is applied in a pulsed manner is to prevent electrolysis of the isotonic liquid. 7 and 8 show an example of a temporal change in the resistance value existing in the shape of the cell obtained after the measurement process. FIG. 7 shows the resistance characteristics of the fusion process. FIG. 8 shows the process of cell destruction. In both figures, the horizontal axis represents time t, and the vertical axis represents resistance value r.

第7図において、細胞が電極間に存在しない時間t1
は等張液のみの抵抗値r1(約0.2kΩ)、細胞が1個だけ
位置決めされている時間t2には細胞1個分の膜厚に依存
した抵抗値r2(約2kΩ)、細胞が2個だけ位置決めされ
ている時間t3には細胞2個分の膜厚に依存した抵抗値r3
(約4kΩ)、細胞融合が始まり細胞の融合が進行してい
る時間t4には、互いに接触していた部位の膜が薄くなり
融合が進むに連れて抵抗値が減少しr4となり、その結
果、雑種細胞が形成される。時間t5には雑種細胞として
依存している時の抵抗値r4を示す。
In FIG. 7, the resistance value r 1 (approximately 0.2 kΩ) of the isotonic solution alone is at time t 1 when no cell is present between the electrodes, and one cell at time t 2 when only one cell is positioned. The resistance value r 2 (about 2 kΩ) depending on the thickness of the cell, and the resistance value r 3 depending on the film thickness of two cells during the time t 3 during which only two cells are positioned.
(About 4 kΩ), at the time t 4 during which cell fusion has begun and cell fusion is proceeding, the membranes at the sites in contact with each other become thinner, and as the fusion progresses, the resistance value decreases to r 4 , As a result, hybrid cells are formed. The time t 5 shows the resistance value r 4 when dependent as hybrid cells.

第8図は細胞の数と破損の有無を示す特性の一例であ
る。時間t1〜t3までは第7図と同じである。2個存在し
ていた細胞のうち1個が破損すると時間t3とt4との間の
変化のように抵抗値の変化は急峻となる。従って、細胞
融合が進行中の緩やかな抵抗値の変化(第7図t4に相
当)と比べて識別して処理することが可能である。時間
t6の抵抗値r6(ほぼr2に等しい)は一対の細胞のうち1
個だけ破損して、残り1個となった時の細胞の抵抗値で
ある。さらに、残りの1個の細胞も破損すると、時間t7
に示すような抵抗値r7(ほぼr1に等しい)となる。な
お、それぞれの物質の抵抗値は電極の形状や等張液の濃
度,電解質の濃度,細胞の種類等により左右されること
は明らかであるが、一度条件を求めれば、大きなばらつ
きはない。また、静電容量や誘電率などの電気的特性も
検出処理回路の応用として考えることは容易である。
FIG. 8 is an example of the characteristics indicating the number of cells and the presence or absence of breakage. Until time t 1 ~t 3 is the same as Figure 7. Change in the resistance value as in the change between the one of the two was present cells to failure times t 3 and t 4 becomes steeper. Therefore, it is possible to cell fusion is changed gradual resistance (7 corresponds to FIG t 4) as compared to identify and process in progress. time
resistance r 6 of t 6 (approximately equal to r 2) is a pair of cells 1
This is the resistance value of the cell when only one cell is damaged and one cell remains. Further, when the remaining one cell is damaged, the time t 7
A resistance value r 7 (approximately equal to r 1 ) as shown in FIG. It is clear that the resistance value of each substance depends on the shape of the electrode, the concentration of the isotonic solution, the concentration of the electrolyte, the type of the cell, etc., but once the conditions are determined, there is no large variation. Further, it is easy to consider electrical characteristics such as capacitance and dielectric constant as an application of the detection processing circuit.

以上述べた実施例は、20〜100μmの細胞を取扱う場
合であるが、この寸法以外の細胞や粒子に対しても、マ
イクロチャンバプレートの隔室や吸引孔を適切に設計す
ることにより容易に応用できることは明らかである。な
お、吸引孔のμmオーダの加工は半導体プロセスで用い
られているパターニング技術やエッチング技術を応用す
ることで実現できる。また、マイクロチャンバプレート
の材料等は加工寸法や精度に応じて、Si以外の硝子や樹
脂やセラミクス等を用いることも可能である。
Although the above-described embodiment deals with cells of 20 to 100 μm, it can be easily applied to cells and particles other than this size by appropriately designing the compartments and suction holes of the micro-chamber plate. Clearly what you can do. Processing of the suction holes on the order of μm can be realized by applying a patterning technique or an etching technique used in a semiconductor process. Further, as the material and the like of the micro-chamber plate, glass, resin, ceramics, and the like other than Si can be used according to the processing size and accuracy.

さらに、本発明で示した細胞融合装置以外に、所定数
の細胞を隔室に入れてその状態を把握しながら薬品処理
を行ったり、培養処理を行う等の細胞処理装置として用
いることも可能である。
Further, in addition to the cell fusion device shown in the present invention, a predetermined number of cells may be put into a compartment to perform a chemical treatment while grasping the state thereof, or may be used as a cell treatment device for performing a culture treatment and the like. is there.

また、所定の遺伝子を懸濁した液の中に細胞の位置決
めされたマイクロチャンバプレートを入れ、細く絞った
レーザ光線やX線を細胞壁に照射して微細孔を開け、遺
伝子を細胞内に入れる遺伝子導入装置として用いること
も可能である。
In addition, a microchamber plate in which cells are positioned is placed in a liquid in which a predetermined gene is suspended, and a laser beam or X-ray squeezed finely is applied to a cell wall to open micropores, and the gene is inserted into cells. It can be used as an introduction device.

さらに、粒子として血液を用いれば、隔室に位置決め
される血球の数を計数することにより、単位流量当たり
の血球の数を計測して、血球濃度を求めることができ
る。また、隔室に位置決めした血球に電圧を印加して、
その電圧による形状の変化具合から、血球の変形能を求
めて診断に供することのできる血球処理装置として用い
ることも可能である。
Further, if blood is used as particles, the number of blood cells positioned in the compartment can be counted, and the number of blood cells per unit flow rate can be measured to determine the blood cell concentration. Also, by applying a voltage to the blood cells positioned in the compartment,
It can be used as a blood cell processing apparatus that can determine the deformability of blood cells from the degree of shape change due to the voltage and can be used for diagnosis.

なお、粒子を液体中で位置決めして扱うマイクロチャ
ンバプレートにとって、隔室や吸引孔に気泡が付着する
ことは粒子を操作する上で好ましくない。それぞれの隔
室の気泡の無い状態での電極間の電位を予め測定してお
くことにより隔室内の気泡の有無を検知し、気泡を除去
したり、データ処理上の配慮をすることが可能となるの
で、信頼性の極めて高いマイクロチャンバを提供するこ
とができる。
In addition, for a micro-chamber plate in which particles are positioned and handled in a liquid, it is not preferable for air bubbles to adhere to the compartments or the suction holes in operating the particles. It is possible to detect the presence or absence of air bubbles in the compartment by removing the air bubbles in the compartment by measuring the potential between the electrodes in the absence of air bubbles in each compartment in advance, and to consider data processing. Therefore, a highly reliable microchamber can be provided.

〔発明の効果〕〔The invention's effect〕

本発明によれば、細胞や粒子の状態を個々に、独立に
把握することができるので、従来、細胞の個体差が大き
いため人手に頼らざるを得ず自動化することが困難であ
った細胞融合を、自動的に大量に行えるシステムとする
ことが可能となったので、細胞工学の大きな発展に寄与
できる。また、マイクロチャンバプレート上の隔室の配
列は既知であるので、隔室内の粒子や、細胞を番地付け
管理することが容易にでき、種々の処理を施した後の粒
子や、細胞の挙動を個々にコンピュータに取り込み処理
するなどして、従来、不可能とされていた細胞や遺伝子
工学上の追跡研究等に貢献できる。
According to the present invention, since the states of cells and particles can be grasped individually and independently, conventionally, cell fusion has been difficult to automate due to the large individual difference of cells and having to rely on manual labor. Can be automatically performed in large quantities, which can contribute to the great development of cell engineering. In addition, since the arrangement of the compartments on the microchamber plate is known, it is easy to address and control the particles and cells in the compartment, and the behavior of the particles and cells after performing various treatments can be improved. By individually loading the data into a computer, it can contribute to cell and genetic engineering follow-up studies that have been considered impossible.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の第1の実施例の拡大断面の鳥瞰図、第
2図は第1の実施例の装置の外観図、第3図は第1の実
施例の配線パターン図、第4図は第2の実施例の配線パ
ターン図、第5図は第2の実施例の拡大断面の鳥瞰図、
第6図は本発明の実施例の電極部拡大図、第7図は融合
過程の抵抗特性を示す図、第8図は細胞の破損過程を示
す図である。 符号の説明 10〜21……配線、101〜203……隔室、603……吸引孔、8
00,801……細胞、802,803……電極、901……マイクロチ
ャンバプレート
1 is a bird's-eye view of an enlarged cross section of the first embodiment of the present invention, FIG. 2 is an external view of the device of the first embodiment, FIG. 3 is a wiring pattern diagram of the first embodiment, FIG. Is a wiring pattern diagram of the second embodiment, FIG. 5 is a bird's-eye view of an enlarged cross section of the second embodiment,
FIG. 6 is an enlarged view of the electrode part of the embodiment of the present invention, FIG. 7 is a view showing a resistance characteristic in a fusion process, and FIG. 8 is a view showing a damage process of a cell. Description of reference numerals 10 to 21: wiring, 101 to 203: compartment, 603: suction hole, 8
00,801… Cell, 802,803… Electrode, 901… Micro chamber plate

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小比田 啓之 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 (56)参考文献 特開 昭63−269977(JP,A) (58)調査した分野(Int.Cl.6,DB名) C12M 1/00──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Hiroyuki Obita 1-280 Higashi Koigakubo, Kokubunji-shi, Tokyo Inside the Central Research Laboratory, Hitachi, Ltd. (56) References JP-A-63-269977 (JP, A) (58) ) Surveyed field (Int.Cl. 6 , DB name) C12M 1/00

Claims (9)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】基板、該基板表面に形成された独立した複
数の隔室、該隔室底面から基板底面まで貫通した孔、該
隔室に設けられ且つ各隔室ごとに独立して制御可能な一
対の電極よりなることを特徴とする細胞処理のためのマ
イクロチャンバープレート。
1. A substrate, a plurality of independent compartments formed on the surface of the substrate, holes penetrating from the bottom of the compartment to the bottom of the substrate, provided in the compartments and independently controllable for each compartment. A microchamber plate for cell treatment, comprising a pair of electrodes.
【請求項2】前記一対の配線がマトリックス構成である
請求項1記載のマイクロチャンバープレート。
2. The micro-chamber plate according to claim 1, wherein said pair of wirings have a matrix configuration.
【請求項3】液体中でマイクロチャンバプレートの複数
の隔室のそれぞれに所定の細胞を位置決めすること、該
隔室に設けられた一対の電極とこれに加えられる電圧に
よって得られる電気的情報により該隔室内の細胞の有無
および状態を各隔室ごとに検出することによりなること
を特徴とする細胞検出方法。
3. A method for positioning predetermined cells in each of a plurality of compartments of a micro-chamber plate in a liquid, by using a pair of electrodes provided in the compartments and electrical information obtained by a voltage applied thereto. A method for detecting cells, comprising detecting the presence and state of cells in the compartment for each compartment.
【請求項4】液体中でマイクロチャンバプレートの複数
の隔室のそれぞれに所定の細胞を位置決めすること、該
隔室に設けられた一対の電極とこれに加えられる電圧に
よって得られる電気的情報により該隔室内の細胞の有無
および状態を各隔室ごとに検出すること、該隔室内に存
在する細胞を処理すること、前記一対の電極に加えられ
る電圧によって得られる電気的情報により処理後の細胞
の状態を細胞の存在する各隔室ごとに検出することとよ
りなることを特徴とする細胞処理方法。
4. A method of positioning a predetermined cell in each of a plurality of compartments of a micro-chamber plate in a liquid, by using a pair of electrodes provided in the compartment and electrical information obtained by a voltage applied thereto. Detecting the presence or absence and state of cells in the compartment for each compartment, processing the cells present in the compartment, and treating the cells with electrical information obtained by a voltage applied to the pair of electrodes. Detecting the state of each cell in each compartment where cells are present.
【請求項5】液体中でマイクロチャンバプレートの複数
の隔室のそれぞれに所定の細胞を位置決めする手段と、
該隔室に設けられた一対の電極とこれに加えられる電圧
によって得られる電気的情報により該隔室内の細胞の有
無および状態を各隔室ごとに検出する手段、該隔室内に
存在する細胞を処理する手段、前記一対の電極に加えら
れる電圧によって得られる電気的情報により処理後の細
胞の状態を細胞の存在する各隔室ごとに検出する手段と
よりなることを特徴とする細胞処理装置。
5. A means for positioning a predetermined cell in each of a plurality of compartments of a microchamber plate in a liquid;
Means for detecting the presence or absence and state of cells in the compartment for each compartment by electrical information obtained by a pair of electrodes provided in the compartment and voltage applied thereto, A cell processing apparatus comprising: a processing unit; and a unit configured to detect a state of a cell after the processing in each compartment where the cell is present, based on electrical information obtained by a voltage applied to the pair of electrodes.
【請求項6】前記隔室内の細胞が二つの異種の細胞の組
み合わせであり、前記細胞の処理が二つの異種の細胞の
融合処理または細胞の破壊処理である請求項5記載の細
胞処理装置。
6. The cell processing apparatus according to claim 5, wherein the cells in the compartment are a combination of two different cells, and the cell treatment is a fusion treatment of two different cells or a cell destruction treatment.
【請求項7】前記細胞の処理が液体中に漂遊する遺伝子
の導入である請求項5記載の細胞の処理装置。
7. The cell processing apparatus according to claim 5, wherein the processing of the cells is introduction of a gene that floats in a liquid.
【請求項8】前記細胞への遺伝子の導入のために細胞の
外皮に微小孔を開けるためのレーザ光線の照射手段を備
える請求項6記載の細胞の処理装置。
8. The cell processing apparatus according to claim 6, further comprising means for irradiating a laser beam for making micropores in the outer skin of the cell for introducing the gene into the cell.
【請求項9】前記細胞への遺伝子の導入のために細胞の
外皮に微小孔を開けるためのX線の照射手段を備える請
求項6記載の細胞の処理装置。
9. The cell processing apparatus according to claim 6, further comprising X-ray irradiating means for making micropores in the outer skin of the cell for introducing the gene into the cell.
JP63283601A 1988-10-26 1988-11-11 Micro-chamber plate, cell detection method, treatment method and apparatus using the same, and cell Expired - Fee Related JP2829005B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP63283601A JP2829005B2 (en) 1988-11-11 1988-11-11 Micro-chamber plate, cell detection method, treatment method and apparatus using the same, and cell
US07/425,028 US5183744A (en) 1988-10-26 1989-10-23 Cell handling method for cell fusion processor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63283601A JP2829005B2 (en) 1988-11-11 1988-11-11 Micro-chamber plate, cell detection method, treatment method and apparatus using the same, and cell

Publications (2)

Publication Number Publication Date
JPH02131569A JPH02131569A (en) 1990-05-21
JP2829005B2 true JP2829005B2 (en) 1998-11-25

Family

ID=17667618

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63283601A Expired - Fee Related JP2829005B2 (en) 1988-10-26 1988-11-11 Micro-chamber plate, cell detection method, treatment method and apparatus using the same, and cell

Country Status (1)

Country Link
JP (1) JP2829005B2 (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7622294B2 (en) 1997-03-14 2009-11-24 Trustees Of Tufts College Methods for detecting target analytes and enzymatic reactions
US20030027126A1 (en) 1997-03-14 2003-02-06 Walt David R. Methods for detecting target analytes and enzymatic reactions
US6355485B1 (en) * 1998-06-10 2002-03-12 University Of South Florida Electrofusion chamber
CA2472686A1 (en) * 2002-01-07 2003-07-17 James B. Finley Electroporation cuvette-pipette tips, multi-well cuvette arrays, and electrode template apparatus adapted for automation and uses thereof
WO2003096002A1 (en) * 2002-05-13 2003-11-20 Matsushita Electric Industrial Co., Ltd. Instrument and method for measuring action signal of biological sample
US8202439B2 (en) 2002-06-05 2012-06-19 Panasonic Corporation Diaphragm and device for measuring cellular potential using the same, manufacturing method of the diaphragm
WO2006022092A1 (en) 2004-08-25 2006-03-02 Matsushita Electric Industrial Co., Ltd. Probe for measuring cell potential
CN100487456C (en) * 2002-06-05 2009-05-13 松下电器产业株式会社 Extracellular electric potential measuring device and its manufacturing method
WO2007138902A1 (en) 2006-05-25 2007-12-06 Panasonic Corporation Electrophysiology sensor chip and electrophysiology sensor employing the same and method for fabricating electrophysiology sensor chip
JP4552423B2 (en) * 2003-11-21 2010-09-29 パナソニック株式会社 Extracellular potential measuring device and method for measuring extracellular potential using the same
JP3945338B2 (en) * 2002-08-01 2007-07-18 松下電器産業株式会社 Extracellular potential measuring device and manufacturing method thereof
JP3945317B2 (en) * 2002-06-05 2007-07-18 松下電器産業株式会社 Extracellular potential measuring device and manufacturing method thereof
NZ540442A (en) * 2002-12-03 2007-05-31 Genetronics Inc Large-scale electroporation plates, systems, and methods of use
DK1577378T3 (en) * 2004-03-15 2009-12-07 Lonza Cologne Ag Container and device for generating electric fields in separate reaction rooms
CN101031793B (en) 2005-06-07 2010-08-25 松下电器产业株式会社 Apparatus for measuring the electrical physiology of cells and a method for manufacturing the same
JP4470999B2 (en) 2005-12-20 2010-06-02 パナソニック株式会社 Cell electrophysiological sensor
EP2037258A4 (en) 2006-07-06 2013-12-04 Panasonic Corp Device for cellular electrophysiology sensor, cellular electrophysiology sensor using the device, and method for manufacturing the cellular electrophysiology sensor device
KR101015978B1 (en) * 2008-04-18 2011-02-25 대한민국 Cell fusion dish for micromanipulated cell-oocyte complex
JP5659698B2 (en) * 2010-10-29 2015-01-28 ソニー株式会社 Sample inflow device, sample inflow tip, and sample inflow method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6363372A (en) * 1986-09-05 1988-03-19 Hitachi Ltd Cell fusion device
JPH0436637Y2 (en) * 1986-10-14 1992-08-28
JPS63160575A (en) * 1986-12-24 1988-07-04 Norin Suisan Gijutsu Joho Kyokai Cell fusion apparatus
JP2619387B2 (en) * 1987-04-30 1997-06-11 株式会社日立製作所 Cell fusion method

Also Published As

Publication number Publication date
JPH02131569A (en) 1990-05-21

Similar Documents

Publication Publication Date Title
JP2829005B2 (en) Micro-chamber plate, cell detection method, treatment method and apparatus using the same, and cell
US5183744A (en) Cell handling method for cell fusion processor
US7112433B2 (en) Electrical analysis of biological membranes
US6616895B2 (en) Solid state membrane channel device for the measurement and characterization of atomic and molecular sized samples
EP1173599B1 (en) Apparatus for, and method of, introducing a substance into a cell by electroporation
US20090155877A1 (en) Biochip for sorting and lysing biological samples
Lassen et al. Direct measurements of membrane potential and membrane resistance of human red cells
US7955827B2 (en) Controlled electroporation and mass transfer across cell membranes
JP4105767B2 (en) Apparatus and method for testing particles using dielectrophoresis
EP1221046B1 (en) Assembly and method for determining and/or monitoring electrophysiological properties of ion channels
Peper et al. Distribution of acetylcholine receptors in the vicinity of nerve terminals on skeletal muscle of the frog
EP2270130B1 (en) Cell fusion device, and method for cell fusion using the same
US6776896B1 (en) Method of positioning cells for electrophysiological testing
WO2008104086A1 (en) Planar electroporation apparatus and method
JP3525837B2 (en) Automatic electrophysiological measuring device and automatic electrophysiological measuring method
KR20110116008A (en) An apparatus for the measurement of a concentration of a charged species in a sample
US7332313B2 (en) Electrical wounding assay for cells in vitro
WO2018200873A1 (en) Microelectrode techniques for electroporation
JPH0687782B2 (en) Cell electroporation method and device
US20030111343A1 (en) Extracellular recording electrode
GB2371626A (en) Positioning cells with high resistance seal
TWI668441B (en) A self-calibrated heavy metal detector
KR102443561B1 (en) Particle collecting device with independent floating electrode and particle collecting method using thereof
JP2001201481A (en) Apparatus and method of electrophysiological automatic measurement
JP2001242136A (en) Capillary dielectric phoresis method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees