JP2890865B2 - Dielectric ceramic composition for temperature compensation - Google Patents
Dielectric ceramic composition for temperature compensationInfo
- Publication number
- JP2890865B2 JP2890865B2 JP3041388A JP4138891A JP2890865B2 JP 2890865 B2 JP2890865 B2 JP 2890865B2 JP 3041388 A JP3041388 A JP 3041388A JP 4138891 A JP4138891 A JP 4138891A JP 2890865 B2 JP2890865 B2 JP 2890865B2
- Authority
- JP
- Japan
- Prior art keywords
- oxide
- composition
- dielectric ceramic
- weight
- parts
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Compositions Of Oxide Ceramics (AREA)
- Ceramic Capacitors (AREA)
- Inorganic Insulating Materials (AREA)
Description
【0001】[0001]
【産業上の利用分野】この発明は温度補償用誘電体磁器
組成物に関し、特にたとえば積層コンデンサの誘電体磁
器として用いられる温度補償用誘電体磁器組成物に関す
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a temperature compensating dielectric porcelain composition, and more particularly to a temperature compensating dielectric porcelain composition used, for example, as a dielectric porcelain for a multilayer capacitor.
【0002】[0002]
【従来の技術】従来、この種の温度補償用誘電体磁器組
成物としては、MgTiO3 −CaTiO3 系の磁器組
成物が用いられていた。2. Description of the Related Art Conventionally, as this kind of dielectric ceramic composition for temperature compensation, a MgTiO 3 —CaTiO 3 series ceramic composition has been used.
【0003】[0003]
【発明が解決しようとする課題】しかしながら、MgT
iO3 −CaTiO3 系の磁器組成物では、その焼結温
度が1300℃以上と高く、さらに、中性または還元性
の低酸素分圧下で焼成した場合に磁器が還元されて半導
体化するという問題点を有していた。However, MgT
iO 3 In -CaTiO 3 based ceramic composition, as high as the sintering temperature is 1300 ° C. or higher, further, a problem that the semiconductive ceramic is reduced when fired at low oxygen partial pressure neutral or reducing Had a point.
【0004】そのため、内部電極の材料として、誘電体
磁器材料が焼結する温度で溶融せず、かつ、誘電体磁器
材料が半導体化しない高い酸素分圧下で焼成されても酸
化されない金属を用いなければならない。このため、従
来の材料を積層コンデンサの誘電体磁器として用いる際
には、内部電極の材料として高融点かつ高温で酸化しに
くい高価な白金やパラジウムを使用しなければならず、
積層コンデンサの低価格化の大きな妨げとなっていた。Therefore, a metal which does not melt at a temperature at which the dielectric ceramic material sinters and which is not oxidized even when fired under a high oxygen partial pressure at which the dielectric ceramic material does not turn into a semiconductor must be used as a material of the internal electrode. Must. For this reason, when using a conventional material as the dielectric porcelain of the multilayer capacitor, expensive platinum or palladium which has a high melting point and is hardly oxidized at a high temperature must be used as a material of the internal electrode.
This hindered the cost reduction of multilayer capacitors.
【0005】そこで、上述の問題点を解決するために、
内部電極の材料を高価な貴金属からたとえばニッケルや
銅などの安価な卑金属にすることが望まれていた。しか
し、このような卑金属を内部電極の材料として使用し、
従来の条件下で焼成すると、電極材料が酸化したり溶融
したりしてしまう。そのため、このような卑金属を内部
電極の材料として使用するために、酸素分圧の低い中性
または還元性の雰囲気中において低温で焼成しても半導
体化せず、コンデンサ用の誘電体磁器材料として充分な
比抵抗と優れた誘電特性とを有する誘電体磁器組成物が
必要とされていた。Therefore, in order to solve the above problems,
It has been desired that the material of the internal electrodes be changed from expensive noble metals to inexpensive base metals such as nickel and copper. However, using such a base metal as the material of the internal electrode,
When firing under conventional conditions, the electrode material is oxidized or melted. Therefore, in order to use such a base metal as a material for the internal electrode, it does not turn into a semiconductor even when fired at a low temperature in a neutral or reducing atmosphere having a low oxygen partial pressure, and as a dielectric ceramic material for a capacitor. There has been a need for a dielectric ceramic composition having sufficient specific resistance and excellent dielectric properties.
【0006】この種の問題点を解決するための誘電体磁
器組成物が、特開平1−102808号公報などに開示
されている。この誘電体磁器組成物は、酸素分圧の低い
中性または還元性の雰囲気中において焼成が可能であ
る。したがって、この誘電体磁器組成物を使用して、ニ
ッケルや銅などの卑金属を内部電極の材料とする温度補
償用積層コンデンサを提供することができる。しかし、
この誘電体磁器組成物は、焼成温度や誘電体の温度係数
に関しては、上述の問題点を解決するものの、Q値は1
MHzで2000以下と小さかった。A dielectric porcelain composition for solving this kind of problem is disclosed in Japanese Patent Application Laid-Open No. 1-108808. This dielectric ceramic composition can be fired in a neutral or reducing atmosphere having a low oxygen partial pressure. Therefore, a multilayer capacitor for temperature compensation using a base metal such as nickel or copper as a material of an internal electrode can be provided by using this dielectric ceramic composition. But,
This dielectric porcelain composition solves the above-mentioned problems with respect to the firing temperature and the temperature coefficient of the dielectric, but has a Q value of 1
It was as small as 2000 or less at MHz.
【0007】それゆえに、この発明の主たる目的は、酸
素分圧の低い中性または還元性の雰囲気中において、1
000℃以下の低温で還元されることなく焼結し、か
つ、静電容量の温度係数の絶対値が60ppm/℃以
下、Q値が2500以上、20℃における比抵抗値が1
×1013Ωcm以上である誘電体磁器を得ることがで
き、銅などの卑金属を内部電極として使用できる温度補
償用誘電体磁器組成物を提供することである。[0007] Therefore, the main object of the present invention is to provide a neutral or reducing atmosphere having a low oxygen partial pressure.
Sintered without reduction at a low temperature of 000 ° C. or less, and the absolute value of the temperature coefficient of capacitance is 60 ppm / ° C. or less, the Q value is 2500 or more, and the specific resistance at 20 ° C. is 1
An object of the present invention is to provide a dielectric ceramic composition for temperature compensation which can provide a dielectric ceramic having a density of × 10 13 Ωcm or more and can use a base metal such as copper as an internal electrode.
【0008】[0008]
【課題を解決するための手段】この発明は、酸化マグネ
シウム,酸化カルシウム,酸化ストロンチウム,酸化珪
素,酸化ジルコニウムおよび酸化アルミニウムを主成分
として含み、酸化マグネシウム,酸化カルシウムおよび
酸化ストロンチウムの含有量の合計を(Mg1-a-b Ca
a Srb )O(ただし、0<a,0<b,0<a+b≦
0.95)に換算してX重量部とし、酸化ジルコニウム
および酸化アルミニウムの含有量の合計を{(Zr
O2 )1-c (Al2 O3 )c }(ただし、0≦c≦0.
5)に換算してY重量部とし、酸化珪素の含有量をSi
O2 に換算してZ重量部としたとき(ただし、X+Y+
Z=100)、次の各点A,B,CおよびD(X,Y,
Z) A(50,2.5,47.5) B(50,30,20) C(20,60,20) D(20,2.5,77.5) を頂点とした多角形で囲まれる範囲にある組成に、主成
分100重量部に対して、さらに酸化チタニウムをTi
O2 に換算してW重量部(ただし、0≦W≦10)添加
した、温度補償用誘電体磁器組成物である。SUMMARY OF THE INVENTION The present invention comprises magnesium oxide, calcium oxide, strontium oxide, silicon oxide, zirconium oxide and aluminum oxide as main components, and reduces the total content of magnesium oxide, calcium oxide and strontium oxide. (Mg 1-ab Ca
a Sr b) O (provided that, 0 <a, 0 <b , 0 <a + b ≦
0.95) and converted to X parts by weight, and the total content of zirconium oxide and aluminum oxide is defined as {(Zr
O 2 ) 1-c (Al 2 O 3 ) c } (where 0 ≦ c ≦ 0.
5) and converted to Y parts by weight, and the content of silicon oxide
When converted to O 2 and expressed as Z parts by weight (however, X + Y +
Z = 100), the following points A, B, C and D (X, Y,
Z) A (50, 2.5, 47.5) B (50, 30, 20) C (20, 60, 20) D (20, 2.5, 77.5) Surrounded by a polygon with vertices Titanium oxide is further added to 100 parts by weight of
This is a dielectric ceramic composition for temperature compensation to which W parts by weight (where 0 ≦ W ≦ 10) is added in terms of O 2 .
【0009】[0009]
【発明の効果】この発明によれば、酸素分圧の低い中性
または還元性の雰囲気中において、1000℃以下の低
温で還元されることなく焼結し、静電容量の温度係数の
絶対値が60ppm/℃以下で、Q値が2500以上で
あり、20℃における比抵抗値が1×1013Ωcm以上
の特性を有する誘電体磁器を得ることができる温度補償
用誘電体磁器組成物が得られる。したがって、この温度
補償用誘電体磁器組成物を積層コンデンサ用材料として
用いれば、銅など卑金属を内部電極として使用すること
が可能となる。そのため、積層コンデンサの大容量化に
伴う電極のコストの増大を解消することができ、低価格
の積層コンデンサを提供することができる。また、この
温度補償用誘電体磁器組成物から得られる誘電体磁器
は、Q値が高いので、高周波用のLCフィルタ,RFモ
ジュールなどの材料として使用することができる。According to the present invention, in a neutral or reducing atmosphere having a low oxygen partial pressure, it is sintered without being reduced at a low temperature of 1000 ° C. or less, and the absolute value of the temperature coefficient of capacitance is obtained. Is 60 ppm / ° C. or less, the Q value is 2500 or more, and a dielectric ceramic composition for temperature compensation capable of obtaining a dielectric ceramic having a characteristic of a specific resistance of 1 × 10 13 Ωcm or more at 20 ° C. is obtained. Can be Therefore, when this dielectric ceramic composition for temperature compensation is used as a material for a multilayer capacitor, a base metal such as copper can be used as an internal electrode. Therefore, it is possible to eliminate an increase in the cost of the electrodes due to the increase in the capacity of the multilayer capacitor, and to provide a low-cost multilayer capacitor. Further, since the dielectric ceramic obtained from the dielectric ceramic composition for temperature compensation has a high Q value, it can be used as a material for high frequency LC filters, RF modules and the like.
【0010】この発明の上述の目的,その他の目的,特
徴および利点は、図面を参照して行う以下の実施例の詳
細な説明から一層明らかとなろう。The above objects, other objects, features and advantages of the present invention will become more apparent from the following detailed description of embodiments with reference to the drawings.
【0011】[0011]
【実施例】まず、出発原料として、主成分のMgC
O3 ,CaCO3 ,SrCO3 ,ZrO2 ,Al2 O3
およびSiO2 と副成分のTiO2 とをそれぞれ表1に
示す組成となるように秤量し、それらをボールミルで1
6時間湿式混合した後、蒸発乾燥して混合粉末を得た。EXAMPLE First, as a starting material, the main component was MgC.
O 3 , CaCO 3 , SrCO 3 , ZrO 2 , Al 2 O 3
And SiO 2 and TiO 2 as a sub-component were weighed so as to have the compositions shown in Table 1, respectively.
After wet mixing for 6 hours, the mixture was evaporated to dryness to obtain a mixed powder.
【0012】次に、この混合粉末を850℃で2時間仮
焼し、これに結合材として酢酸ビニルを8重量部加え、
再びボールミルで16時間湿式混合,粉砕して粉砕物を
得た。Next, the mixed powder was calcined at 850 ° C. for 2 hours, and 8 parts by weight of vinyl acetate was added thereto as a binder.
The mixture was again wet-mixed and pulverized by a ball mill for 16 hours to obtain a pulverized product.
【0013】そして、この粉砕物を蒸発乾燥して整粒
し、顆粒状の粉末を得た。それから、こうして得た顆粒
状の粉末を乾式プレス機で2ton/cm2 の圧力で加
圧し、直径20mm,厚さ1.0mmの円板状に成形し
て成形物を得た。[0013] The pulverized material was evaporated to dryness and sized to obtain a granular powder. Then, the granular powder thus obtained was pressed with a dry press at a pressure of 2 ton / cm 2 and formed into a disc having a diameter of 20 mm and a thickness of 1.0 mm to obtain a molded product.
【0014】次に、この成形物をN2 −H2 ガス雰囲気
中で表2に示した各温度条件で2時間焼成を行って、焼
成物素子を得た。Next, this molded product was fired in an N 2 -H 2 gas atmosphere at each temperature condition shown in Table 2 for 2 hours to obtain a fired device.
【0015】さらに、得られた素子の両主面に、In−
Ga合金を塗布して電極を形成し、試料(コンデンサ)
1〜22を作製した。[0015] Furthermore, In-
A sample (capacitor) is formed by applying a Ga alloy to form an electrode
1 to 22 were produced.
【0016】そして、得られた試料について、誘電率
ε,Q値,静電容量の温度係数α(ppm/℃),20
℃における比抵抗ρ20(Ωcm)の各特性を次のそれぞ
れの条件や測定方法で測定し、その結果を表2に示し
た。 (1)誘電率ε:周波数1MHz,電圧1Vrms,温
度20℃の条件下で測定した。 (2)Q値(品質係数):周波数1MHz,電圧1Vr
ms,温度20℃の条件下で測定した。 (3)静電容量の温度係数α(ppm/℃):20℃で
の静電容量C20および85℃での静電容量C85とから次
式によって求めた。 α(ppm/℃)={(C85−C20)/C20}×{1/(85−20)} ×106 (4)20℃における比抵抗ρ20(Ωcm):20℃に
おいて500Vの直流電圧を印加したときに流れる電流
値から求めた。Then, the obtained sample was measured for dielectric constant ε, Q value, temperature coefficient of capacitance α (ppm / ° C.), 20
Each characteristic of the specific resistance ρ 20 (Ωcm) at ° C. was measured under the following conditions and measuring methods, and the results are shown in Table 2. (1) Dielectric constant ε: Measured under the conditions of a frequency of 1 MHz, a voltage of 1 Vrms and a temperature of 20 ° C. (2) Q value (quality factor): frequency 1 MHz, voltage 1 Vr
The measurement was performed under the conditions of ms and a temperature of 20 ° C. (3) Temperature coefficient of capacitance alpha (ppm / ° C.): was determined by the following equation from the capacitance C 85 Metropolitan in the electrostatic capacitance C 20 and 85 ° C. at 20 ° C.. α (ppm / ° C.) = {(C 85 −C 20 ) / C 20 } × {1 / (85−20)} × 10 6 (4) Specific resistance ρ 20 (Ωcm) at 20 ° C .: 500 V at 20 ° C. Was determined from the current value flowing when the DC voltage was applied.
【0017】なお、表1および表2中で*印を付したも
のはこの発明の範囲外のものであり、それ以外はこの発
明の範囲内のものである。In Tables 1 and 2, those marked with * are out of the scope of the present invention, and the others are within the scope of the present invention.
【0018】[0018]
【表1】[Table 1]
【0019】[0019]
【表2】[Table 2]
【0020】 また、表1および表2に示した各試料の主
成分の組成を図1中に3成分組成図で示した。この図面
において○印を付した数字は各試料番号を示す。 Further, as shown in the ternary diagram of composition of the main component of each sample shown in Table 1 and Table 2 in FIG. In this drawing, the number with a circle indicates each sample number.
【0021】 さらに、図1中には、この発明の組成物の
主成分の組成比を示す領域を、組成点A,B,Cおよび
Dを頂点とした4角形で示した。すなわち、酸化マグネ
シウム,酸化カルシウムおよび酸化ストロンチウムの含
有量の合計を(Mg1-a-b Caa Srb )Oに換算して
X重量部とし、酸化ジルコニウムおよび酸化アルミニウ
ムの含有量の合計を{(ZrO2 )1-c (Al2 O3 )
c }に換算してY重量部とし、酸化珪素の含有量をSi
O2 に換算してZ重量部としたとき(ただし、X+Y+
Z=100)、この発明の組成物の主成分の組成比
(X,Y,Z)は、組成点A(50,2.5,47.
5),B(50,30,20),C(20,60,2
0)およびD(20,2.5,77.5)を頂点とした
多角形で囲まれる領域内の組成比に相当するのである。 Furthermore, in the figure 1, the region showing the main component composition ratio of the composition of the invention, illustrated composition point A, B, in square with an apex C and D. That is, the sum of the contents of magnesium oxide, calcium oxide, and strontium oxide is converted to (Mg 1 -abCa a Sr b ) O as X parts by weight, and the sum of the contents of zirconium oxide and aluminum oxide is expressed as {(ZrO 2 ) 1-c (Al 2 O 3 )
c Converted to 重量, Y parts by weight, and the content of silicon oxide
When converted to O 2 and expressed as Z parts by weight (however, X + Y +
Z = 100), and the composition ratio (X, Y, Z) of the main components of the composition of the present invention is represented by composition point A (50, 2.5, 47.
5), B (50, 30, 20), C (20, 60, 2)
0) and D (20, 2.5, 77.5) correspond to the composition ratio in a region surrounded by a polygon having vertices.
【0022】 そして、この発明にかかる組成物は、主成
分100重量部に対して、酸化チタニウムがTiO2 に
換算してW重量部(ただし、0≦W≦10)添加され
る。 In the composition according to the present invention, titanium oxide is added in an amount of W parts by weight (where 0 ≦ W ≦ 10) in terms of TiO 2 with respect to 100 parts by weight of the main component.
【0023】 なお、この図中には、この発明にかかる組
成物において、0<a,0<b,0<a+b≦0.9
5,0≦c≦0.5の関係が成り立つことは表されてい
ない。 In the figure, 0 <a, 0 <b, 0 <a + b ≦ 0.9 in the composition according to the present invention.
It is not shown that the relationship of 5,0 ≦ c ≦ 0.5 holds.
【0024】 次に、この発明にかかる温度補償用誘電体
磁器組成物を上述の範囲に限定した理由について説明す
る。 (1)3成分組成図に示す組成点AおよびBを結ぶ線分
の外側の組成領域では、Q値が2500以下となり、か
つ焼結磁器素体の表面上にガラス質が浮くので好ましく
ない(試料番号6参照)。 (2)3成分組成図に示す組成点AおよびDを結ぶ線分
の外側の組成領域では、Q値が2500以下となり、か
つ比抵抗が1013Ωcm未満となり、しかも焼結磁器素
体の表面上にガラス質が浮くので好ましくない(試料番
号5参照)。 (3)3成分組成図に示す組成点BおよびCを結ぶ線分
の外側の組成領域では、1150℃の温度で焼成しても
緻密な焼結体が得られないので好ましくない(試料番号
7参照)。 (4)3成分組成図に示す組成点CおよびDを結ぶ線分
の外側の組成領域では、Q値が2500以下となり、か
つ比抵抗が1013Ωcm未満となるので好ましくない
(試料番号8参照)。 (5)a+bが0.95より大きな場合、焼成温度が1
000℃以上になるので好ましくない(試料番号12お
よび14参照)。 (6)cが0.5より大きな場合、1150℃の温度で
焼成しても緻密な焼結体が得られないので好ましくない
(試料番号18参照)。 (7)Wが10より大きな場合、焼成温度が1000℃
以上になりかつQ値が2500以下となり、しかも、静
電容量の温度係数の絶対値が60ppm/℃より大きく
なるので好ましくない(試料番号22参照)。 Next, explaining the temperature compensation dielectric ceramic composition according to the present invention have been selected for the reasons to the above-mentioned range. (1) In the composition region outside the line connecting the composition points A and B shown in the three-component composition diagram, the Q value is 2500 or less, and the glassy material floats on the surface of the sintered ceramic body. See Sample No. 6). (2) In the composition region outside the line connecting the composition points A and D shown in the three-component composition diagram, the Q value is 2500 or less, the specific resistance is less than 10 13 Ωcm, and the surface of the sintered ceramic body is It is not preferable because vitreous material floats on the surface (see sample No. 5). (3) In the composition region outside the line connecting the composition points B and C shown in the three-component composition diagram, a dense sintered body cannot be obtained even when fired at a temperature of 1150 ° C. (Sample No. 7) reference). (4) In the composition region outside the line connecting the composition points C and D shown in the three-component composition diagram, the Q value is 2500 or less and the specific resistance is less than 10 13 Ωcm, which is not preferable (see Sample No. 8). ). (5) When a + b is larger than 0.95, the firing temperature is 1
2,000 ° C. or higher, which is not preferable (see sample numbers 12 and 14). (6) If c is larger than 0.5, it is not preferable because a dense sintered body cannot be obtained even when firing at a temperature of 1150 ° C. (see Sample No. 18). (7) When W is larger than 10, the firing temperature is 1000 ° C.
This is not preferable because the Q value becomes 2500 or less and the absolute value of the temperature coefficient of the capacitance becomes greater than 60 ppm / ° C. (see Sample No. 22).
【0025】 それに対して、この発明の範囲内の試料で
は、還元性雰囲気中において、1000℃以下の低温で
焼結し、静電容量の温度係数の絶対値が60ppm/℃
以下と小さく、品質係数(Q値)が2500以上と高
く、20℃における比抵抗値が1×1013Ωcm以上の
特性が得られる。 [0025] In contrast, in the sample in the scope of the invention, in a reducing atmosphere and sintered at a low temperature of 1000 ° C. or less, the absolute value of the temperature coefficient of capacitance 60 ppm / ° C.
The following characteristics are obtained: a high quality factor (Q value) of 2500 or more, and a specific resistance at 20 ° C. of 1 × 10 13 Ωcm or more.
【0026】 したがって、この発明にかかる誘電体磁器
組成物をセラミックコンデンサの誘電体として用いれ
ば、銅など卑金属を内部電極として使用することが可能
となる。そのため、積層コンデンサの大容量化に伴う電
極のコストの増大を解消することができ、低価格の積層
コンデンサを得ることができる。また、この誘電体磁器
組成物は、Q値が高いので、高周波用のLCフィルタ,
RFモジュールなどの材料として使用することができ
る。 [0026] Thus, by using the dielectric ceramic composition according to the present invention as a dielectric ceramic capacitor, it is possible to use a base metal such as copper as internal electrodes. Therefore, it is possible to eliminate the increase in the cost of the electrodes accompanying the increase in the capacity of the multilayer capacitor, and to obtain a low-cost multilayer capacitor. In addition, since the dielectric ceramic composition has a high Q value, an LC filter for high frequency,
It can be used as a material for RF modules and the like.
【0027】 なお、上述の実施例において焼成雰囲気と
してN2 −H2 からなる還元性雰囲気を用いたが、この
発明では、Ar,CO,CO2 ,H2 ,N2 およびこれ
らの混合雰囲気ガスを用いてもよいことはいうまでもな
い。 In the above embodiment, a reducing atmosphere composed of N 2 -H 2 was used as the sintering atmosphere. However, in the present invention, Ar, CO, CO 2 , H 2 , N 2 and a mixed atmosphere gas thereof are used. It is needless to say that may be used.
【図1】この発明の組成物の主成分の配合比を示す3成
分組成図である。FIG. 1 is a three-component composition diagram showing the mixing ratio of the main components of the composition of the present invention.
【表1】 [Table 1]
【表2】 [Table 2]
───────────────────────────────────────────────────── フロントページの続き (72)発明者 坂 部 行 雄 京都府長岡京市天神二丁目26番10号 株 式会社 村田製作所内 (56)参考文献 特開 昭60−137868(JP,A) 特開 昭62−252341(JP,A) 特開 昭63−295473(JP,A) 特開 平1−102808(JP,A) ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Yukio Sakabe 2-26-10 Tenjin, Nagaokakyo-shi, Kyoto Murata Manufacturing Co., Ltd. (56) References JP-A-60-137868 (JP, A) JP-A-62-252341 (JP, A) JP-A-63-295473 (JP, A) JP-A-1-102808 (JP, A)
Claims (1)
化ストロンチウム,酸化珪素,酸化ジルコニウムおよび
酸化アルミニウムを主成分として含み、 前記酸化マグネシウム,前記酸化カルシウムおよび前記
酸化ストロンチウムの含有量の合計を(Mg1-a-b Ca
a Srb )O(ただし、0<a,0<b,0<a+b≦
0.95)に換算してX重量部とし、前記酸化ジルコニ
ウムおよび前記酸化アルミニウムの含有量の合計を
{(ZrO2 )1-c (Al2 O3 )c}(ただし、0≦
c≦0.5)に換算してY重量部とし、前記酸化珪素の
含有量をSiO2 に換算してZ重量部としたとき(ただ
し、X+Y+Z=100)、次の各点A,B,Cおよび
D(X,Y,Z) A(50,2.5,47.5) B(50,30,20) C(20,60,20) D(20,2.5,77.5) を頂点とした多角形で囲まれる範囲にある組成に、前記
主成分100重量部に対して、さらに酸化チタニウムを
TiO2 に換算してW重量部(ただし、0≦W≦10)
添加した、温度補償用誘電体磁器組成物。The present invention comprises magnesium oxide, calcium oxide, strontium oxide, silicon oxide, zirconium oxide and aluminum oxide as main components, and the total content of magnesium oxide, calcium oxide and strontium oxide is expressed as (Mg 1-ab Ca
a Sr b) O (provided that, 0 <a, 0 <b , 0 <a + b ≦
0.95) and converted to X parts by weight, and the total content of the zirconium oxide and the aluminum oxide is {(ZrO 2 ) 1 -c (Al 2 O 3 ) c } (where 0 ≦
c ≦ 0.5), and the silicon oxide content is converted to SiO 2 to be Z parts by weight (where X + Y + Z = 100), and the following points A, B, C and D (X, Y, Z) A (50, 2.5, 47.5) B (50, 30, 20) C (20, 60, 20) D (20, 2.5, 77.5) In the composition within the range surrounded by the polygon having the apex, titanium oxide is further converted to TiO 2 with respect to 100 parts by weight of the main component and W parts by weight (where 0 ≦ W ≦ 10).
An added dielectric ceramic composition for temperature compensation.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3041388A JP2890865B2 (en) | 1991-01-16 | 1991-01-16 | Dielectric ceramic composition for temperature compensation |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3041388A JP2890865B2 (en) | 1991-01-16 | 1991-01-16 | Dielectric ceramic composition for temperature compensation |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH05128913A JPH05128913A (en) | 1993-05-25 |
JP2890865B2 true JP2890865B2 (en) | 1999-05-17 |
Family
ID=12607001
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3041388A Expired - Lifetime JP2890865B2 (en) | 1991-01-16 | 1991-01-16 | Dielectric ceramic composition for temperature compensation |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2890865B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10035172B4 (en) * | 2000-07-19 | 2004-09-16 | Epcos Ag | Ceramic mass and capacitor with the ceramic mass |
-
1991
- 1991-01-16 JP JP3041388A patent/JP2890865B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH05128913A (en) | 1993-05-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3028503B2 (en) | Non-reducing dielectric porcelain composition | |
JP2958817B2 (en) | Non-reducing dielectric porcelain composition | |
JP3143922B2 (en) | Non-reducing dielectric ceramic composition | |
JP2890865B2 (en) | Dielectric ceramic composition for temperature compensation | |
JP2958818B2 (en) | Non-reducing dielectric porcelain composition | |
JPH0528448B2 (en) | ||
JPH0824007B2 (en) | Non-reducing dielectric ceramic composition | |
JP2967440B2 (en) | Dielectric ceramic composition for temperature compensation | |
JPH0824006B2 (en) | Non-reducing dielectric ceramic composition | |
JP3291748B2 (en) | Dielectric ceramic composition for temperature compensation | |
JP2967438B2 (en) | Dielectric ceramic composition for temperature compensation | |
JP2869900B2 (en) | Non-reducing dielectric porcelain composition | |
JPH0828127B2 (en) | Dielectric ceramic composition for temperature compensation | |
JP3089833B2 (en) | Dielectric ceramic composition for temperature compensation | |
JP3109171B2 (en) | Non-reducing dielectric porcelain composition | |
JP3120500B2 (en) | Non-reducing dielectric porcelain composition | |
JP2531548B2 (en) | Porcelain composition for temperature compensation | |
JP2958820B2 (en) | Non-reducing dielectric porcelain composition | |
US4988651A (en) | Temperature compensating dielectric ceramic composition | |
JP2958822B2 (en) | Non-reducing dielectric porcelain composition | |
JP3185333B2 (en) | Non-reducing dielectric ceramic composition | |
JPH1095667A (en) | Dielectric ceramic composition and ceramic capacitor | |
JP3185331B2 (en) | Non-reducing dielectric ceramic composition | |
JPH051565B2 (en) | ||
US5284810A (en) | Dielectric ceramic composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090226 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090226 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100226 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110226 Year of fee payment: 12 |