Nothing Special   »   [go: up one dir, main page]

JP2883787B2 - Substrate for power semiconductor device - Google Patents

Substrate for power semiconductor device

Info

Publication number
JP2883787B2
JP2883787B2 JP5178386A JP17838693A JP2883787B2 JP 2883787 B2 JP2883787 B2 JP 2883787B2 JP 5178386 A JP5178386 A JP 5178386A JP 17838693 A JP17838693 A JP 17838693A JP 2883787 B2 JP2883787 B2 JP 2883787B2
Authority
JP
Japan
Prior art keywords
substrate
alumina
zirconia
added
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5178386A
Other languages
Japanese (ja)
Other versions
JPH0738014A (en
Inventor
静安 吉田
重正 齋藤
山田  克己
一也 松浦
利夫 野▲崎▼
一彦 寺村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Sumitomo Metal SMI Electronics Device Inc
Original Assignee
Fuji Electric Co Ltd
Sumitomo Metal SMI Electronics Device Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, Sumitomo Metal SMI Electronics Device Inc filed Critical Fuji Electric Co Ltd
Priority to JP5178386A priority Critical patent/JP2883787B2/en
Priority to EP95100707A priority patent/EP0727818B1/en
Publication of JPH0738014A publication Critical patent/JPH0738014A/en
Application granted granted Critical
Publication of JP2883787B2 publication Critical patent/JP2883787B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • C04B35/117Composites
    • C04B35/119Composites with zirconium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • C04B35/6263Wet mixtures characterised by their solids loadings, i.e. the percentage of solids
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • C04B35/6264Mixing media, e.g. organic solvents
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/6342Polyvinylacetals, e.g. polyvinylbutyral [PVB]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/02Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
    • C04B37/021Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles in a direct manner, e.g. direct copper bonding [DCB]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/02Containers; Seals
    • H01L23/04Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls
    • H01L23/053Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls the container being a hollow construction and having an insulating or insulated base as a mounting for the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/14Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
    • H01L23/15Ceramic or glass substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/16Fillings or auxiliary members in containers or encapsulations, e.g. centering rings
    • H01L23/18Fillings characterised by the material, its physical or chemical properties, or its arrangement within the complete device
    • H01L23/24Fillings characterised by the material, its physical or chemical properties, or its arrangement within the complete device solid or gel at the normal operating temperature of the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3735Laminates or multilayers, e.g. direct bond copper ceramic substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49541Geometry of the lead-frame
    • H01L23/49562Geometry of the lead-frame for devices being provided for in H01L29/00
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3229Cerium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5463Particle size distributions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • C04B2237/343Alumina or aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/40Metallic
    • C04B2237/407Copper
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/70Forming laminates or joined articles comprising layers of a specific, unusual thickness
    • C04B2237/704Forming laminates or joined articles comprising layers of a specific, unusual thickness of one or more of the ceramic layers or articles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/4847Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond
    • H01L2224/48472Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond the other connecting portion not on the bonding area also being a wedge bond, i.e. wedge-to-wedge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01019Potassium [K]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01322Eutectic Alloys, i.e. obtained by a liquid transforming into two solid phases

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Composite Materials (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Die Bonding (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、パワートランジスタモ
ジュールなどに適用するパワー半導体装置用基板、特に
セラミックス基板に銅板を直接接合したDBOC基板
(DirectBonding of Copper
Substrate) に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a substrate for a power semiconductor device applied to a power transistor module and the like, in particular, a DBOC substrate (Direct Bonding of Copper) in which a copper plate is directly bonded to a ceramic substrate.
Substrate).

【0002】[0002]

【従来の技術】まず、頭記のDBOC基板を採用して組
立てたパワー半導体装置の構造を図1に示す。図におい
て、1は放熱金属ベース、2はセラミックス基板2aの
表裏両面に銅板2b,2cを貼り合わせたDBOC基
板、3は半導体チップ、4は外部導出端子、5はボンデ
ィングワイヤ、6は樹脂ケース、7は端子ブロック、8
は封止樹脂、9はゲル状充填材である。
2. Description of the Related Art First, FIG. 1 shows a structure of a power semiconductor device assembled using a DBOC substrate described above. In the drawing, 1 is a heat-dissipating metal base, 2 is a DBOC substrate in which copper plates 2b and 2c are bonded to both sides of a ceramic substrate 2a, 3 is a semiconductor chip, 4 is an external lead terminal, 5 is a bonding wire, 6 is a resin case, 7 is a terminal block, 8
Is a sealing resin, and 9 is a gel filler.

【0003】ここで、DBOC基板2は、アルミナある
いは窒化アルミニウムなどのセラミックス基板2aに対
し、その両面に箔状の薄い銅板2a,2bをダイレクト
・ボンド・カッパー法により(銅と微量の酸素との反応
により生成するCu−O共晶液相を接合剤として接合す
る)直接接合したものであり、主面側の銅版2cに回路
パターンを形成した上で、ここに半導体チップ3をダイ
ボンディングし、さらにワイヤ5をボンディングして回
路を組立てた後、DBOC基板2を放熱金属ベース1の
上に半田付けし、その後外部導出端子4の半田付けを行
いパッケージングする。
Here, a DBOC substrate 2 is formed by laminating a foil-like thin copper plate 2a, 2b on both surfaces of a ceramic substrate 2a such as alumina or aluminum nitride by a direct bond copper method (copper and trace oxygen). (A Cu-O eutectic liquid phase generated by the reaction is bonded as a bonding agent). A direct bonding is performed. After a circuit pattern is formed on the copper plate 2c on the main surface side, the semiconductor chip 3 is die-bonded thereto. Further, after assembling the circuit by bonding the wires 5, the DBOC substrate 2 is soldered on the heat dissipating metal base 1, and then the external lead terminals 4 are soldered and packaged.

【0004】[0004]

【発明が解決しようとする課題】ところで、前記のDB
OC基板をパワートランジスタモジュールなどのパワー
半導体装置の基板として採用する場合には次記のような
問題がある。すなわち、パワートランジスタなどの半導
体装置では、通電動作に伴い半導体チップ3に多量の熱
を発生し、この熱がDBOC基板2を介して放熱金属ベ
ース1に伝熱した後に、金属ベースより外部に放熱され
る。したがって、このことから判るようにDBOC基板
の伝熱性の良否が半導体装置の電流容量を左右する重要
な因子となる。
By the way, the aforementioned DB
When the OC substrate is used as a substrate of a power semiconductor device such as a power transistor module, there are the following problems. That is, in a semiconductor device such as a power transistor, a large amount of heat is generated in the semiconductor chip 3 due to the energizing operation, and this heat is transferred to the heat radiating metal base 1 via the DBOC substrate 2 and then radiated to the outside from the metal base. Is done. Therefore, as can be seen from this, the quality of the heat conductivity of the DBOC substrate is an important factor that affects the current capacity of the semiconductor device.

【0005】ところで、DBOC基板2はセラミックス
基板2aを絶縁基材とした構造であるために熱伝導性が
比較的低い。ここで、セラミックス基板2aの材質とし
て従来より用いているアルミナと窒化アルミニウムの熱
伝導率を比べてみると、 アルミナ: 21W/m・K 窒化アルミニウム:180W/m・K であって、窒化アルミニウムのほうがアルミナに比べて
伝熱性がはるかに優れているが、反面、窒化アルミニウ
ムはアルミナに比べて材料コストが高い。
Incidentally, the DBOC substrate 2 has a relatively low thermal conductivity because it has a structure using the ceramic substrate 2a as an insulating base material. Here, a comparison of the thermal conductivity between alumina and aluminum nitride, which are conventionally used as the material of the ceramic substrate 2a, shows that alumina: 21 W / m · K aluminum nitride: 180 W / m · K Heat transfer is much better than alumina, but aluminum nitride has a higher material cost than alumina.

【0006】そこで、発明者等は材料費の安いアルミナ
で作られたセラミックス基板に対し、放熱性を高めるた
めに基板の板厚を極力薄くして伝熱抵抗を小さく抑える
ことを試みた。しかしながら、アルミナセラミックス基
板の板厚を例えば0.3mm程度まで薄くすると、基板
の実強度が低下し、これが基で半導体チップ(シリコ
ン),放熱金属基板(銅)との接合時には各材料の熱膨
張係数差に起因して加わる熱応力によって基板にクラッ
ク,割れの欠陥が多く発生し、これが基で基板に絶縁不
良を引き起こすことが明らかになった。なお、前記各材
料の熱膨張係数を列記すると次のごとくである。
Accordingly, the inventors have attempted to reduce the heat transfer resistance of a ceramic substrate made of alumina, which has a low material cost, by reducing the thickness of the substrate as much as possible in order to enhance heat dissipation. However, when the thickness of the alumina ceramic substrate is reduced to, for example, about 0.3 mm, the actual strength of the substrate is reduced, and the thermal expansion of each material upon joining with the semiconductor chip (silicon) and the heat dissipation metal substrate (copper) is based on this. It has been found that cracks and cracks are frequently generated in the substrate due to the thermal stress applied due to the coefficient difference, and this causes insulation failure in the substrate. The thermal expansion coefficients of the respective materials are listed below.

【0007】 シリコン(半導体チップ):4.0×10−6/℃ アルミナ: 7.5×10−6/℃ 銅: 18.0×10−6/℃ 本発明は上記の点にかんがみなされたものであり、材料
費の安価なアルミナを主材としたセラミックス基板につ
いて、その材料組成を改良することにより素材の機械的
強度,特に撓み性を高め、基板自身の薄形化と併せて放
熱性の改善が図れるようにしたパワー半導体装置用基板
を提供することを目的とする。
Silicon (semiconductor chip): 4.0 × 10 −6 / ° C. Alumina: 7.5 × 10 −6 / ° C. Copper: 18.0 × 10 −6 / ° C. The present invention has been made in view of the above points. The ceramic substrate mainly made of alumina, which has a low material cost, improves the mechanical strength of the material, especially its flexibility, by improving its material composition, and reduces the heat dissipation as well as the thinness of the substrate itself. It is an object of the present invention to provide a power semiconductor device substrate capable of improving the above.

【0008】[0008]

【課題を解決するための手段】上記目的は、本発明によ
り、セラミックス基板に銅板を直接接合したパワー半導
体装置用基板に対し、前記セラミックス基板を、主成分
のアルミナを70〜90wt%としてこれに10〜30
wt%のジルコニアを添加した合計量に対して、更に
0.5〜2wt%のイットリア,カルシア,マグネシ
ア,セリアのいずれか1つを単味で添加した高温焼成体
で構成することにより達成される。
SUMMARY OF THE INVENTION The object of the present invention is to provide a power semiconductor device substrate in which a copper plate is directly bonded to a ceramic substrate. 10-30
Achieved by constituting a high-temperature fired body in which any one of yttria, calcia, magnesia, and ceria is further added in a simple manner to the total amount of zirconia added by wt%. .

【0009】また、前記セラミックス基板のアルミナに
添加するジルコニアとして、イットリア,カルシア,マ
グネシア,セリアのいずれか1つを含有する安定化ジル
コニア、または部分安定化ジルコニアを用いることがで
きる。
Further, as the zirconia added to the alumina of the ceramic substrate, stabilized zirconia containing any one of yttria, calcia, magnesia and ceria, or partially stabilized zirconia can be used.

【0010】[0010]

【作用】上記のように、アルミナを主成分としてこれに
ジルコニアを添加して焼成したセラミックス基板は、ア
ルミナ単体のセラミックス基板と比べて機械的強度、特
に曲げ強度が大幅に高まり、この場合にジルコニアの添
加量を10〜30wt%の範囲に選定することにより、
セラミックス基板の熱伝導率を低下させることなく、機
械強度,特に撓み性が向上し、更にアルミナとジルコニ
アの合計量に対して0.5〜2wt%のイットリア,カ
ルシア,マグネシア,セリアのいずれか1つを添加する
ことにより、セラミックス基板の焼成温度を低めに抑え
つつ、ジルコニア結晶粒の靱性が改善される。これらに
より、基板自身を薄形化することでパワー半導体装置の
基板として放熱性に優れたDBOC基板が得られる。
As described above, the ceramic substrate obtained by adding alumina to the main component and adding zirconia to the ceramic substrate and firing the same has a significantly higher mechanical strength, particularly bending strength, than the ceramic substrate of alumina alone. By selecting the amount of addition in the range of 10 to 30 wt%,
The mechanical strength, especially the flexibility, is improved without lowering the thermal conductivity of the ceramics substrate. Further, any one of yttria, calcia, magnesia, and ceria of 0.5 to 2 wt% with respect to the total amount of alumina and zirconia is used. By adding the two, the toughness of the zirconia crystal grains is improved while the firing temperature of the ceramic substrate is kept low. Thus, a DBOC substrate having excellent heat dissipation can be obtained as a substrate of a power semiconductor device by reducing the thickness of the substrate itself.

【0011】また、イットリア,カルシア,マグネシ
ア,セリアは単味で1つ添加するほか、これらの中の1
つの添加材で安定化,ないしは部分安定化したジルコニ
アをアルミナに添加しても同様な効果が得られる。
In addition, yttria, calcia, magnesia, and ceria are added alone, and one of them is added.
The same effect can be obtained by adding zirconia stabilized or partially stabilized with two additives to alumina.

【0012】[0012]

【実施例】以下、本発明の実施例について説明する。ま
ず、アルミナにジルコニア,イットリアを添加して粒径
0.5〜3μm程度に粉砕混合し、さらにバインダーと
してポリビニルブチラールPVBを8wt%,溶剤とし
てトルエン,キシレン混合液を50wt%,可塑剤とし
てフタル酸ジオクチルDOPを2wt%添加して約20
時間混練した後、ドクターブレード法によりシート状に
成形してグリーンシートを得た。次にグリーンシートを
プレス加工により所定の形状に形抜きした後に温度15
50〜1650℃で焼成し、板厚0.32mmのセラミ
ックス基板を作成した。
Embodiments of the present invention will be described below. First, zirconia and yttria are added to alumina and pulverized and mixed to a particle size of about 0.5 to 3 μm. Further, 8 wt% of polyvinyl butyral PVB as a binder, 50 wt% of a mixed solution of toluene and xylene as a solvent, and phthalic acid as a plasticizer Dioctyl DOP is added at 2 wt% to about 20
After kneading for a time, it was formed into a sheet by a doctor blade method to obtain a green sheet. Next, the green sheet is cut into a predetermined shape by press working,
The resultant was fired at 50 to 1650 ° C. to prepare a ceramic substrate having a thickness of 0.32 mm.

【0013】また、上記のようにアルミナにジルコニア
を添加して作成したセラミックス基板の機械的特性を評
価するために、別途、ジルコニアの添加量を0wt%か
ら45wt%の範囲で様々に変えて前記と同じ方法で作
成した試料片を用意し、この試料片について強度試験を
行った。図2はこの強度試験結果を示すものであり、図
から判るようにアルミナにジルコニアを10wt%以上
添加することにより、アルミナ単体(ジルコニア添加量
が0wt%)のセラミックス基板(強度約300MP
a)と比べて強度が高まり、その強度は約350〜40
0MPa にも向上することが認められる。ただし、ジ
ルコニアの添加量を30wt%以上に増量しても強度の
増加は認めれない。
Further, in order to evaluate the mechanical properties of the ceramic substrate prepared by adding zirconia to alumina as described above, the amount of zirconia added was varied in the range of 0 wt% to 45 wt%. A sample piece prepared in the same manner as that described above was prepared, and a strength test was performed on this sample piece. FIG. 2 shows the results of the strength test. As can be seen from FIG. 2, by adding zirconia to alumina in an amount of 10 wt% or more, a ceramic substrate of alumina alone (the amount of zirconia added was 0 wt%) (strength of about 300 MP) was used.
The strength is higher than that of a), and the strength is about 350 to 40
It is recognized that it is improved to 0 MPa. However, no increase in strength was observed even when the amount of zirconia added was increased to 30 wt% or more.

【0014】一方、これらの試料片について熱伝導率を
調べたところ、図3のような結果を得た。すなわち、ジ
ルコニアの添加量が約30wt%までの範囲ではアルミ
ナ単体と略同じ熱伝導率を示すが、ジルコニアの添加量
が30wt%を超えると熱伝導率が低下することが判明
した。したがって、セラミックス基板の材料組成を、ア
ルミナ70〜90wt%,ジルコニア10〜30wt%
の範囲に選定することにより、アルミナ単体のセラミッ
クス基板と比べて機械的強度が向上するほか、伝熱性に
ついてもアルミナと同等な熱伝導率を得ることができ
る。
On the other hand, when the thermal conductivity of these sample pieces was examined, the results as shown in FIG. 3 were obtained. That is, it was found that when the added amount of zirconia was up to about 30 wt%, the thermal conductivity was substantially the same as that of alumina alone, but when the added amount of zirconia exceeded 30 wt%, the thermal conductivity was lowered. Therefore, the material composition of the ceramic substrate is set to 70 to 90 wt% of alumina and 10 to 30 wt% of zirconia.
By selecting the above range, the mechanical strength is improved as compared with the ceramic substrate made of alumina alone, and the heat conductivity can be obtained as high as that of alumina.

【0015】また、ジルコニアの添加量を10wt%と
して作成したセラミックス基板の試料片(板厚0.32
mm,幅寸法35mm)と、アルミナ単体で作成した同
じ寸法の試料片について、支点間距離40mmで曲げ試
験を行い、その最大撓み量を調べたところ、アルミナ単
体の試料片での撓み量が0.30mmであるのに対し、
ジルコニア添加の試料片では0.45mmの撓み量まで
耐えることが確認された。
A ceramic substrate sample (thickness: 0.32) was prepared with the addition amount of zirconia being 10 wt%.
mm, width 35 mm) and a sample piece of the same size made of alumina alone was subjected to a bending test at a fulcrum distance of 40 mm, and the maximum amount of deflection was examined. .30 mm,
It was confirmed that the zirconia-added sample piece could withstand a deflection of 0.45 mm.

【0016】なお、前記の材料組成でアルミナ,ジルコ
ニアに加えて添加したイットリアは、アルミナ,ジルコ
ニアの焼結助剤およびジルコニア結晶粒の靱性向上を目
的に添加したものである。この場合に、イットリアの添
加量は0.5〜2wt%の範囲に定めるのがよい。すな
わち、イットリアの添加量が0.5wt%以下である
と、基板の焼成温度が1650℃以上となって基板の製
造が困難となる。また、添加量を2wt%以上とする
と、セラミックス基板の収縮率,強度に大きなばらつき
が生じるようになる。また、この添加剤としてイットリ
ア以外に、カルシア,マグネシア,セリアなどを単味で
添加しても同様な効果が得られ、さらにアルミナに添加
するジルコニアとして、前記のイットリア,カルシア,
マグネシア,セリアなど安定化,あるいは部分安定化し
たジルコニアを用いても同様な効果の得られることが確
認されている。
The yttria added in addition to alumina and zirconia in the above material composition is added for the purpose of improving the toughness of sintering aids for alumina and zirconia and zirconia crystal grains. In this case, the addition amount of yttria is preferably set in the range of 0.5 to 2 wt%. That is, if the amount of yttria added is 0.5 wt% or less, the firing temperature of the substrate becomes 1650 ° C. or more, and it becomes difficult to manufacture the substrate. Further, when the addition amount is 2 wt% or more, a large variation occurs in the shrinkage ratio and strength of the ceramic substrate. The same effect can be obtained by adding calcia, magnesia, ceria, etc., as a single additive, in addition to yttria, and the above-mentioned yttria, calcia,
It has been confirmed that similar effects can be obtained by using stabilized or partially stabilized zirconia such as magnesia and ceria.

【0017】次に、上記したジルコニア添加のアルミナ
基板(板厚0.32mm)に対し、その表裏の両面に板
厚0.3mmのタフピッチ電解銅を重ね合わせた上で温
度1050〜1075℃の窒素雰囲気中で10分間加熱
し、セラミックス基板と銅板を直接接合してDBOC基
板を作成した後、このDBOC基板を用いて図1の半導
体装置を組立てた。また、比較例として、別途、板厚
0.63mm,0.32mmのアルミナ単体のセラミッ
クス基板で作成したDBOC基板を用いて同様な半導体
装置を組立て、これらの組立体に付いて機械的な変形耐
性試験,および断続通電試験を行った。
Next, on the above-mentioned zirconia-added alumina substrate (thickness 0.32 mm), tough pitch electrolytic copper having a thickness of 0.3 mm is superimposed on both front and back surfaces, and nitrogen at a temperature of 1050 to 1075 ° C. After heating in an atmosphere for 10 minutes to directly join the ceramic substrate and the copper plate to form a DBOC substrate, the semiconductor device of FIG. 1 was assembled using the DBOC substrate. As a comparative example, a similar semiconductor device was separately assembled using a DBOC substrate made of a ceramic substrate of alumina alone having a thickness of 0.63 mm and 0.32 mm, and mechanical deformation resistance was attached to these assemblies. The test and the intermittent current test were performed.

【0018】まず、変形耐性試験では放熱金属ベースに
外力を加えて強制的な変形を与え、セラミックス基板の
絶縁不良に至るまでの変形量を調べた。この結果、ジル
コニア添加のアルミナ基板(板厚0.32mm)と板厚
0.63mmのアルミナ基板とでは殆ど同等な耐性を示
したが、板厚0.32mmのアルミナ基板は、約半分の
変形量で絶縁不良に至ることが判った。つまり、アルミ
ナにジルコニアを適量添加することにより、実用的には
セラミックス基板の板厚を略1/2まで薄くできること
が可能である。
First, in the deformation resistance test, an external force was applied to the heat-dissipating metal base to forcibly deform it, and the amount of deformation until the ceramic substrate became defective in insulation was examined. As a result, the alumina substrate with a zirconia addition (plate thickness 0.32 mm) and the alumina substrate with a plate thickness of 0.63 mm showed almost the same resistance, but the alumina substrate with a plate thickness of 0.32 mm had a deformation amount of about half. It was found that this resulted in poor insulation. That is, by adding an appropriate amount of zirconia to alumina, it is possible to reduce the thickness of the ceramic substrate to about 1/2 in practical terms.

【0019】また、断続通電試験では、ジルコニア添加
のアルミナ基板(板厚0.32mm)は、板厚0.63
mmのアルミナ単体基板と比べて、同一のコレクタ損失
を与えたときの半導体チップの接合ブロック温度上昇Δ
Tj が約20%低減し、断続通電耐量が2.5〜3倍
に向上することが認められた。このことから判るよう
に、アルミナにジルコニアを添加したセラミックス基板
は、アルミナ単体の基板と比べて機械的特性に優れてお
り、基板自身の薄形化により放熱性の高い半導体装置用
基板として十分に期待できる。
In the intermittent conduction test, the zirconia-added alumina substrate (thickness: 0.32 mm) was found to have a thickness of 0.63 mm.
mm, the temperature rise of the bonding block temperature of the semiconductor chip when the same collector loss is given as compared with the alumina single substrate of mm.
It was recognized that Tj was reduced by about 20%, and the intermittent current resistance was improved 2.5 to 3 times. As can be seen from the above, the ceramic substrate obtained by adding zirconia to alumina has excellent mechanical properties compared to the substrate of alumina alone, and is sufficiently used as a substrate for a semiconductor device having high heat dissipation due to the thinness of the substrate itself. Can be expected.

【0020】なお、上記の実施例ではセラミックス基板
の板厚を0.32mmとしたが、シート形成法によれば
板厚0.05〜1mmの基板を作成することができる。
また、原料粉にポリビニルアルコールPVAなどの結合
剤を添加し、湿式混合の後にスプレードライヤで乾燥造
粒した原料を用いて成形するプレス成形法を採用すれ
ば、板厚1mm以上の基板の作成も可能である。
Although the thickness of the ceramic substrate is set to 0.32 mm in the above embodiment, a substrate having a thickness of 0.05 to 1 mm can be formed by a sheet forming method.
In addition, if a press molding method is used in which a binder such as polyvinyl alcohol PVA is added to the raw material powder, and the mixture is wet-mixed and then formed using a raw material dried and granulated by a spray dryer, a substrate having a thickness of 1 mm or more can be formed. It is possible.

【0021】[0021]

【発明の効果】以上述べたように、本発明によれば、パ
ワー半導体装置のセラミックス基板として、アルミナを
70〜90wt%としてこれに10〜30wt%のジル
コニアを添加した合計量に対して、更に0.5〜2wt
%のイットリア,カルシア,マグネシア,セリアのいず
れか1つを単味で添加した焼成体を用いることにより、
従来のアルミナ単体のセラミックス基板と比べて収縮
率,強度にばらつきを生じることなく機械的強度を大幅
に増強できる。したがって、実用上でセラミックス基板
の薄形化が可能となり、これによりパワー半導体装置用
の基板として放熱性の高いDBOC基板が得られ、パワ
ー半導体装置の小形化,並びに電流容量の増大化に大き
く寄与できる。
As described above, according to the present invention, as the ceramic substrate of the power semiconductor device, 70 to 90 wt% of alumina is added to the total amount of 10 to 30 wt% of zirconia added thereto. 0.5-2wt
% Of yttria, calcia, magnesia, and ceria,
The mechanical strength can be greatly enhanced without causing variations in shrinkage and strength as compared with a conventional alumina-only ceramic substrate. Therefore, it is possible to reduce the thickness of the ceramic substrate in practical use, thereby obtaining a DBOC substrate having high heat dissipation as a substrate for a power semiconductor device, and greatly contributing to downsizing of the power semiconductor device and increase in current capacity. it can.

【0022】[0022]

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による基板を採用して組立てた半導体装
置の構成断面図
FIG. 1 is a cross-sectional view of a configuration of a semiconductor device assembled using a substrate according to the present invention.

【図2】アルミナに添加したジルコニアの添加量と基板
の曲げ強度との関係を表す図
FIG. 2 is a diagram showing the relationship between the amount of zirconia added to alumina and the bending strength of a substrate.

【図3】アルミナに添加したジルコニアの添加量と基板
の熱伝導率との関係を表す図
FIG. 3 is a diagram showing the relationship between the amount of zirconia added to alumina and the thermal conductivity of a substrate.

【符号の説明】[Explanation of symbols]

1 放熱金属ベース 2 DBOC基板 2a セラミックス基板 2b,2c 銅板 3 半導体チップ DESCRIPTION OF SYMBOLS 1 Heat dissipation metal base 2 DBOC substrate 2a Ceramics substrate 2b, 2c Copper plate 3 Semiconductor chip

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山田 克己 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内 (72)発明者 松浦 一也 山口県美祢市大嶺町東分字岩倉2701番1 株式会社住友金属セラミックス内 (72)発明者 野▲崎▼ 利夫 山口県美祢市大嶺町東分字岩倉2701番1 株式会社住友金属セラミックス内 (72)発明者 寺村 一彦 山口県美祢市大嶺町東分字岩倉2701番1 株式会社住友金属セラミックス内 (56)参考文献 特開 平3−149860(JP,A) 特開 平4−21564(JP,A) (58)調査した分野(Int.Cl.6,DB名) H01L 23/14 C04B 35/00 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Katsumi Yamada 1-1-1, Tanabe-Nitta, Kawasaki-ku, Kawasaki-shi, Kanagawa Prefecture Inside Fuji Electric Co., Ltd. No. 1 Sumitomo Metal Ceramics Co., Ltd. (72) Inventor No ▲ Saki ▼ Toshio 2701 Iwakura, Ominecho, Mine-shi, Yamaguchi Pref. Sumitomo Metal Ceramics Co., Ltd. (72) Inventor Kazuhiko Teramura 2701-1 Iwakura, Sumitomo Metal Ceramics Co., Ltd. (56) References JP-A-3-149860 (JP, A) JP-A-4-21564 (JP, A) (58) Fields investigated (Int. Cl. 6) H01L 23/14 C04B 35/00

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】セラミックス基板に銅板を直接接合したパ
ワー半導体装置用基板において、前記セラミックス基板
が、主成分のアルミナを70〜90wt%としてこれに
10〜30wt%のジルコニアを添加した合計量に対し
て、更に0.5〜2wt%のイットリア,カルシア,マ
グネシア,セリアのいずれか1つを単味で添加した焼成
体よりなることを特徴とするパワー半導体装置用基板。
1. A power semiconductor device substrate in which a copper plate is directly bonded to a ceramic substrate, wherein the ceramic substrate has a main component alumina of 70 to 90 wt% and a total amount of 10 to 30 wt% zirconia added thereto. Further, a substrate for a power semiconductor device characterized by comprising a fired body to which 0.5 to 2 wt% of any one of yttria, calcia, magnesia and ceria is simply added.
【請求項2】請求項1記載の基板において、アルミナに
添加するジルコニアが、イットリア,カルシア,マグネ
シア,セリアのいずれか1つを含有する安定化ジルコニ
ア、または部分安定化ジルコニアであることを特徴とす
るパワー半導体装置用基板。
2. The substrate according to claim 1, wherein the zirconia added to the alumina is a stabilized zirconia containing any one of yttria, calcia, magnesia and ceria, or a partially stabilized zirconia. For power semiconductor devices.
JP5178386A 1993-07-20 1993-07-20 Substrate for power semiconductor device Expired - Lifetime JP2883787B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP5178386A JP2883787B2 (en) 1993-07-20 1993-07-20 Substrate for power semiconductor device
EP95100707A EP0727818B1 (en) 1993-07-20 1995-01-19 Zirconia-added alumina substrate with direct bonding of copper

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP5178386A JP2883787B2 (en) 1993-07-20 1993-07-20 Substrate for power semiconductor device
EP95100707A EP0727818B1 (en) 1993-07-20 1995-01-19 Zirconia-added alumina substrate with direct bonding of copper

Publications (2)

Publication Number Publication Date
JPH0738014A JPH0738014A (en) 1995-02-07
JP2883787B2 true JP2883787B2 (en) 1999-04-19

Family

ID=26138407

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5178386A Expired - Lifetime JP2883787B2 (en) 1993-07-20 1993-07-20 Substrate for power semiconductor device

Country Status (2)

Country Link
EP (1) EP0727818B1 (en)
JP (1) JP2883787B2 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2883787B2 (en) * 1993-07-20 1999-04-19 富士電機株式会社 Substrate for power semiconductor device
JP3127754B2 (en) * 1995-01-19 2001-01-29 富士電機株式会社 Semiconductor device
US5675181A (en) * 1995-01-19 1997-10-07 Fuji Electric Co., Ltd. Zirconia-added alumina substrate with direct bonding of copper
JP3176815B2 (en) * 1995-01-19 2001-06-18 富士電機株式会社 Substrate for semiconductor device
CA2255441C (en) 1997-12-08 2003-08-05 Hiroki Sekiya Package for semiconductor power device and method for assembling the same
DE102005037522A1 (en) 2005-08-09 2007-02-15 Semikron Elektronik Gmbh & Co. Kg Power semiconductor module with trough-shaped basic body
JP4526125B2 (en) * 2005-09-08 2010-08-18 日本インター株式会社 High power semiconductor devices
GB2452594B (en) 2007-08-20 2012-04-25 Champion Aerospace Inc Switching assembly for an aircraft ignition system
JP5134582B2 (en) * 2009-02-13 2013-01-30 日立オートモティブシステムズ株式会社 Connection structure and power module
HUE035758T2 (en) 2009-04-03 2018-05-28 Sumitomo Metal Smi Electronics Devices Inc Sintered ceramic and substrate comprising same for semiconductor device
WO2012060341A1 (en) 2010-11-01 2012-05-10 株式会社住友金属エレクトロデバイス Package for storing electronic component elements
JP2013032265A (en) * 2011-07-01 2013-02-14 Maruwa Co Ltd Alumina zirconia sintered board for semiconductor device and manufacturing method therefor
CN102593111B (en) * 2012-02-23 2014-12-31 株洲南车时代电气股份有限公司 IGBT (insulated gate bipolar transistor) module and manufacturing method of IGBT module
DE102012110322B4 (en) * 2012-10-29 2014-09-11 Rogers Germany Gmbh Metal-ceramic substrate and method for producing a metal-ceramic substrate
DE102013211405B4 (en) * 2013-06-18 2020-06-04 Infineon Technologies Ag METHOD FOR PRODUCING A SEMICONDUCTOR MODULE
WO2016029762A1 (en) 2014-08-28 2016-03-03 Byd Company Limited Ceramic substrate, manufacturing method thereof, and power module
CN108191449B (en) * 2018-01-03 2021-04-27 上海富乐华半导体科技有限公司 Copper-aluminum oxide ceramic substrate and preparation method thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58137285A (en) * 1982-02-10 1983-08-15 株式会社日立製作所 Ceramic board with metal plate and method of producing same
JPS6315430A (en) * 1986-07-07 1988-01-22 Fuji Electric Co Ltd Manufacture of semiconductor device
US4769294A (en) * 1986-11-26 1988-09-06 Ceramics Process Systems Corp. Alumina materials for low temperature co-sintering with refractory metallization
DE3728096C1 (en) * 1987-07-03 1989-01-12 Duerrwaechter E Dr Doduco Flat body, especially for use as a heat sink for electronic power components
JP2727651B2 (en) * 1988-08-12 1998-03-11 旭硝子株式会社 Ceramic substrate
JP2872273B2 (en) * 1989-06-26 1999-03-17 三菱電機株式会社 Ceramic substrate material
JP2883787B2 (en) * 1993-07-20 1999-04-19 富士電機株式会社 Substrate for power semiconductor device

Also Published As

Publication number Publication date
EP0727818A1 (en) 1996-08-21
JPH0738014A (en) 1995-02-07
EP0727818B1 (en) 2004-03-31

Similar Documents

Publication Publication Date Title
JP2883787B2 (en) Substrate for power semiconductor device
KR100363054B1 (en) Semiconductor device
KR102163532B1 (en) Semiconductor device, ceramic circuit board, and semiconductor device manufacturing method
EP2377839A1 (en) Silicon nitride substrate manufacturing method, silicon nitride substrate, silicon nitride circuit substrate, and semiconductor module
US5675181A (en) Zirconia-added alumina substrate with direct bonding of copper
EP0297511A2 (en) Connection structure between components for semiconductor apparatus
JP3176815B2 (en) Substrate for semiconductor device
JPS5832073A (en) Sintered body
JP2007230791A (en) Ceramic circuit board and method of manufacturing the same
JP5366859B2 (en) Silicon nitride substrate and semiconductor module using the same
JPH1067560A (en) High thermal conductivity ceramic and its production
JPS5831755B2 (en) Base for electrical insulation
JP2000119071A (en) Ceramic substrate for semiconductor device
JP5073135B2 (en) Aluminum nitride sintered body, production method and use thereof
JP2975882B2 (en) Silicon nitride heatsink for pressure welding and pressure welding structural parts using it
JPH09194254A (en) Substrate for semiconductor device
JP2967065B2 (en) Semiconductor module
JPH0748180A (en) Ceramic-metal conjugate
JPH0997862A (en) High-strength circuit board and its manufacturing method
JP2506270B2 (en) High thermal conductivity circuit board and high thermal conductivity envelope
JPH06216481A (en) Ceramic-copper circuit
JPH09260544A (en) Ceramic circuit board and manufacture therefor
JPH10251067A (en) Aluminum nitride sintered body
JP3226898B2 (en) Silicon nitride radiator for thyristor having pressure contact structure and thyristor using the same
JP2004134703A (en) Circuit board with terminal

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080205

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090205

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100205

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100205

Year of fee payment: 11

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100205

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100205

Year of fee payment: 11

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100205

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110205

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120205

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120205

Year of fee payment: 13

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120205

Year of fee payment: 13

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120205

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130205

Year of fee payment: 14

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130205

Year of fee payment: 14

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140205

Year of fee payment: 15

EXPY Cancellation because of completion of term