Nothing Special   »   [go: up one dir, main page]

JP2882040B2 - Method for producing hydrated zirconia sol - Google Patents

Method for producing hydrated zirconia sol

Info

Publication number
JP2882040B2
JP2882040B2 JP31439990A JP31439990A JP2882040B2 JP 2882040 B2 JP2882040 B2 JP 2882040B2 JP 31439990 A JP31439990 A JP 31439990A JP 31439990 A JP31439990 A JP 31439990A JP 2882040 B2 JP2882040 B2 JP 2882040B2
Authority
JP
Japan
Prior art keywords
hydrated zirconia
mol
reaction
zirconia sol
chloride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31439990A
Other languages
Japanese (ja)
Other versions
JPH04187519A (en
Inventor
光二 松井
一 鈴木
理治 大貝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP31439990A priority Critical patent/JP2882040B2/en
Publication of JPH04187519A publication Critical patent/JPH04187519A/en
Application granted granted Critical
Publication of JP2882040B2 publication Critical patent/JP2882040B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、ジルコニア系をセラミックス原料粉末製造
中間体である水和ジルコニアゾルの製造方法、とくに、
上記原料粉末を成形性,安定化剤との固溶性のよいもの
とすることができる水和ジルコニアゾルの製造方法に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for producing a hydrated zirconia sol which is an intermediate for producing a zirconia-based ceramic raw material powder,
The present invention relates to a method for producing a hydrated zirconia sol which can make the above-mentioned raw material powder excellent in formability and solid solubility with a stabilizer.

[従来の技術] 従来、ジルコニウム塩水溶液の加水分解による水和ジ
ルコニアゾルの製造方法としては、 水溶性ジルコニウム塩を含む水溶液120〜300℃で水熱
処理する方法(米国特許第2984628号明細書) 水溶性ジルコニウム塩を含む水溶液を煮沸加水分解処
理する方法(Inorg.Chem.3,146(1964)) 水溶性ジルコニウム塩を含む水溶液に過酸化水素また
は過酸化水素を生成する化合物を加え、80〜300℃で加
熱処理する方法(特公昭61−43286号公報) ジルコニウム塩水溶液を加水分解処理したあと、0.1
〜0.3μmのものを沈降法などで分離する方法(特開昭5
8−217430号公報) 等が知られている。
[Related Art] Conventionally, as a method for producing a hydrated zirconia sol by hydrolysis of an aqueous solution of a zirconium salt, a method of performing a hydrothermal treatment at 120 to 300 ° C. containing an aqueous solution containing a water-soluble zirconium salt (US Pat. No. 2,984,628) Method of boiling and hydrolyzing an aqueous solution containing a water-soluble zirconium salt (Inorg. Chem. 3,146 (1964)) Add hydrogen peroxide or a compound that generates hydrogen peroxide to an aqueous solution containing a water-soluble zirconium salt, and heat at 80 to 300 ° C. Heat treatment method (JP-B-61-43286) After the zirconium salt aqueous solution is hydrolyzed, 0.1
A method of separating particles having a diameter of about 0.3 μm by a sedimentation method or the like (Japanese Unexamined Patent Publication No.
No. 8-217430).

[発明が解決しようとする課題] 本発明者らが検討したところによれば、水和ジルコニ
アゾルの結晶子が小さいほど、該ゾルとジルコニア系セ
ラミックスの製造に常用されるイットリア,カリシア,
マグネシア,セリアなどの安定可剤とを混合し、仮焼し
てジルコニア粉末を得るときに、固溶反応が促進してい
くことが推察され、とくに塩化ジルコニルの濃度が0.4m
ol/未満であり、かつ塩素イオン濃度が0.8以上2.0mol
/以下の条件で加水分解処理して得られた水和ジルコ
ニアゾルの結晶子は40A以下のものが得られ、水和ジル
コニアゾルの結晶子が40A以下になると、その効果がが
顕著に現れることが期待される。また、水和ジルコニア
ゾルの粒子径は、平均粒径で0.1μm以上、粒径範囲で
0.05〜0.5μmのものが好ましく、平均粒径が0.1μmよ
り小さくなると、該ゾルを仮焼してジルコニア粉末を得
るときに、強固な凝集塊が生成し、成形性および焼結体
特性の悪いジルコニア粉末が得られる。
[Problems to be Solved by the Invention] According to the studies made by the present inventors, the smaller the crystallite of the hydrated zirconia sol, the more the yttria, calicia, and yttria commonly used in the production of sol and zirconia ceramics.
It is presumed that when a zirconia powder is obtained by mixing with a stabilizer such as magnesia or ceria and calcining, the solid solution reaction is accelerated. In particular, the concentration of zirconyl chloride is 0.4 m
ol /, and the chloride ion concentration is 0.8 or more and 2.0 mol
/ The crystallites of the hydrated zirconia sol obtained by hydrolysis treatment under the following conditions are obtained with a crystallite of 40 A or less, and when the crystallite of the hydrated zirconia sol becomes 40 A or less, the effect is remarkably exhibited. There is expected. The particle size of the hydrated zirconia sol is 0.1 μm or more in average particle size, and in the particle size range.
When the average particle diameter is smaller than 0.1 μm, when the sol is calcined to obtain zirconia powder, a strong agglomerate is formed, and the moldability and the properties of the sintered body are poor. A zirconia powder is obtained.

ところで、およびの方法によって得られる水和ジ
ルニアゾルは、粒子径が500Aよりも小さいものであり、
上記のとおり、仮焼の際強固な凝集が起こり、得られる
ジルコニア粉末が成形しにくく、セラミックス原料粉末
が適さないものとなる。さらにの方法は水熱合成法で
あるため、工業的な大量生産に適さず実用適でない。
およびの方法で得られる水和ジルコニアゾルは、結晶
子が40Aよりも大きいものであり、上記のとおり、安定
化剤と固溶しにくいものと考えられる。さらにの方法
は、粒径0.1〜0.3μmのものを遠心分離しなければなら
ず、工業化は困難であり実用的ではない。
By the way, the hydrated zirconia sol obtained by the methods of and has a particle diameter of less than 500A,
As described above, during calcination, strong agglomeration occurs, and the resulting zirconia powder is difficult to mold, making the ceramic raw material powder unsuitable. Further, since the method is a hydrothermal synthesis method, it is not suitable for industrial mass production and is not practical.
The hydrated zirconia sol obtained by the methods described in (1) and (2) has a crystallite larger than 40A, and is considered to be hardly dissolved in the stabilizer as described above. Further, the method requires centrifugal separation of particles having a particle size of 0.1 to 0.3 μm, which makes industrialization difficult and impractical.

本発明は、このような従来方法における欠点を解消し
た、即ち、粒子径の大きい、且つ結晶子の小さい、した
がって成形形のよい、さらにイットリア等の安定化剤と
よく固溶しているジルコニア粉末の製造に適した水和ジ
ルコニアゾルを簡易なプロセスにより製造することがで
きる方法の提供を目的とするものである。
The present invention has solved such disadvantages in the conventional method, that is, a zirconia powder having a large particle size and a small crystallite, and thus having a good molded shape, and further having a solid solution with a stabilizer such as yttria. It is an object of the present invention to provide a method capable of producing a hydrated zirconia sol suitable for the production of zirconia by a simple process.

[課題を解決するための手段] 本発明は、塩化ジルコニル水溶液の加水分解により水
和ジルコニアゾルを製造する方法において、0.4mol/
未満の塩化ジルコニル濃度で、塩素イオン濃度で0.8以
上2.0mol/未以下にし、かつ、加水分解反応終了時の
反応液のpHが0.4以上1以下の範囲となるように調整さ
れた塩化ジルコニル水溶液を80℃以上煮沸温度以下で加
水分解処理することによる水和ジルコニアゾルの製造方
法、を要旨とするものである。以下本発明を更に詳細に
説明する。
[Means for Solving the Problems] The present invention relates to a method for producing a hydrated zirconia sol by hydrolysis of an aqueous solution of zirconyl chloride, comprising 0.4 mol / mol
A zirconyl chloride aqueous solution adjusted so that the zirconyl chloride concentration is less than 0.8 and 2.0 mol / mol or less in chloride ion concentration, and the pH of the reaction solution at the end of the hydrolysis reaction is in the range of 0.4 or more and 1 or less. A method for producing a hydrated zirconia sol by performing a hydrolysis treatment at a temperature not lower than 80 ° C. and not higher than the boiling temperature. Hereinafter, the present invention will be described in more detail.

本発明で得られる水和ジルコニアゾルの粒径は、電子
顕微鏡による粒径観察または粒度分布測定器による粒径
測定、例えば光子相関法等で得られる。
The particle size of the hydrated zirconia sol obtained in the present invention can be obtained by particle size observation using an electron microscope or particle size measurement using a particle size distribution analyzer, for example, a photon correlation method or the like.

塩化ジルコニル水溶液を加水分解すると、水和ジルコ
ニアゾルと酸が生成し、反応の進行につれて反応系のpH
が低下していく。これらの塩化ジルコニルのジルコニア
換算濃度0.1mol/未満の水溶液をなんらの処理をもす
ることもなく加熱して加水分解を完了させると、反応径
のpHは1よりも大きくなり、さらに塩素イオン濃度が0.
8mol/未満になる。したがって、本発明を実施するに
あたり、前もって塩化ジルコニル水溶液に酸を添加して
pHを低くし、さらにpHにあまり影響のない塩素化合物を
添加して塩素イオン濃度を高くして、加水分解反応終了
時の系のpHが0.4以上1以下、かつ塩素イオン濃度が0.8
以上2mol/以下となるようにしなければならない。添
加する酸としては、塩酸,硝酸,硫酸等の無機酸を挙げ
ることができるが、これらの他の酢酸,クエン酸等の有
機酸でもよい。好ましくは塩酸である。また、塩素化合
物としては、塩化アンモニウム,金属塩化物、例えば塩
化ナトリウム,塩化カルシウム等のアルカリ金属または
アルカリ土類金属,塩化アルミニウム等を挙げることが
でき、好ましくは塩化アンモニウム,塩化ナトリウムで
ある。
Hydrolysis of an aqueous solution of zirconyl chloride produces a hydrated zirconia sol and an acid.
Decreases. When these aqueous solutions of zirconyl chloride having a zirconia equivalent concentration of less than 0.1 mol / are heated without any treatment to complete the hydrolysis, the pH of the reaction diameter becomes larger than 1, and the chloride ion concentration is further increased. 0.
Less than 8 mol /. Therefore, in carrying out the present invention, an acid is added to the aqueous solution of zirconyl chloride in advance.
The pH is lowered, and a chlorine compound that does not significantly affect the pH is added to increase the chloride ion concentration, so that the pH of the system at the end of the hydrolysis reaction is 0.4 to 1 and the chloride ion concentration is 0.8.
It must be more than 2 mol / or less. Examples of the acid to be added include inorganic acids such as hydrochloric acid, nitric acid and sulfuric acid, and other organic acids such as acetic acid and citric acid may also be used. Preferably it is hydrochloric acid. Examples of the chlorine compound include ammonium chloride, metal chlorides, for example, an alkali metal or an alkaline earth metal such as sodium chloride and calcium chloride, and aluminum chloride. Ammonium chloride and sodium chloride are preferred.

また塩化ジルコニルのジルコニア換算濃度が0.1以上
0.4mol/未満の水溶液を加熱して加水分解を完了させ
ると、反応系のpHは0.4以上1以下の範囲に入るが、塩
素イオン濃度は0.8mol/未満である。このときは、pH
にあまり影響のない塩素化合物のみを添加して塩素イオ
ン濃度を高くして、加水分解反応終了時の系の塩素イオ
ン濃度が0.8以上2mol/l以下となるようにしなければな
らない。添加する塩素化合物としては、上記に記述した
ものでよい。
The zirconia equivalent concentration of zirconyl chloride is 0.1 or more
When the hydrolysis is completed by heating an aqueous solution of less than 0.4 mol /, the pH of the reaction system falls within the range of 0.4 or more and 1 or less, but the chloride ion concentration is less than 0.8 mol /. In this case, pH
It is necessary to increase the chloride ion concentration by adding only a chlorine compound that does not significantly affect the water content, so that the chloride ion concentration of the system at the end of the hydrolysis reaction is 0.8 to 2 mol / l. As the chlorine compound to be added, those described above may be used.

この加水分解反応終了時のpHが1よりも大きいと0.1
μm以上の平均粒径および40A以下の結晶子をもつ水和
ジルコニアゾルを製造できず、またpHが0.4未満になる
と水和ジルコニアゾルの平均粒径が0.1μmよりも小さ
くなるとともに反応率が低下し、さらに反応時間が長く
なる。さらに、塩素イオン濃度が0.8mol/未満になる
と40A以下の結晶子をもつ水和ジルコニアが得られず、
また塩素イオン濃度が2mol/より大きくなると水和ジ
ルコニアの結晶性が低下するとともに反応率が低下し、
反応時間が長くなる。
If the pH at the end of the hydrolysis reaction is greater than 1, 0.1
A hydrated zirconia sol having an average particle size of μm or more and a crystallite of 40 A or less cannot be produced, and when the pH is less than 0.4, the average particle size of the hydrated zirconia sol becomes smaller than 0.1 μm and the reaction rate decreases. And the reaction time becomes longer. Furthermore, when the chloride ion concentration is less than 0.8 mol /, hydrated zirconia having a crystallite of 40 A or less cannot be obtained,
Also, when the chloride ion concentration is greater than 2 mol /, the crystallinity of the hydrated zirconia decreases and the reaction rate decreases,
The reaction time becomes longer.

上記で調製した原料液の加水分解条件、すなわち反応
温度は、80℃以上煮沸温度以下に設定しなければならな
い。反応温度が煮沸温度よりも高くなると、水和ジルコ
ニアの結晶子が40Aよりも大きくなるとともに平均粒径
が0.1μmよりも小さくなり、目的とする水和ジルコニ
アゾルが製造できず、さらに水熱合成であることから工
業的な大量生産が困難になるため実用的でなくなる。反
応温度が80℃未満になると加水分解反応の完結に長い時
間を要するため、生産効率が低下する。
The hydrolysis conditions of the raw material liquid prepared above, that is, the reaction temperature, must be set to 80 ° C. or higher and the boiling temperature or lower. When the reaction temperature is higher than the boiling temperature, the crystallite of hydrated zirconia becomes larger than 40A and the average particle size becomes smaller than 0.1 μm, so that the desired hydrated zirconia sol cannot be produced, and further hydrothermal synthesis is performed. Therefore, industrial mass production becomes difficult, so that it is not practical. When the reaction temperature is lower than 80 ° C., it takes a long time to complete the hydrolysis reaction, so that the production efficiency decreases.

また、反応時間は反応温度にもよるが、約50〜150時
間である。
The reaction time is about 50 to 150 hours, depending on the reaction temperature.

[作用] 水和ジルコニアゾルの結晶子および粒径が、反応系の
塩素イオン濃度およびpH、特に反応終了時の塩素イオン
濃度およびpHに依存する理由は明らかではないが、得ら
れる水和ジルコニアゾルは、結晶性のよい1次粒子が凝
集した2次粒子からなることが知られており(特公昭61
−43286号公報)、塩素イオンは加水分解反応のときに
生成る水和ジルコニアの結晶核に吸着して結晶成長を阻
害し1次粒子(結晶子)を小さくする因子とて考えられ
る。またpHは2次粒子に作用する因子と考えられ、加水
分解反応により生成する1次粒子との粒径に関する粒子
間相互作用と、反応系のpHとの相乗作用により、1次粒
子間の凝集結合が促進され、生成2次粒子の粒径に影響
することによるものと推察される。
[Action] It is not clear why the crystallites and particle size of the hydrated zirconia sol depend on the chloride ion concentration and pH of the reaction system, particularly the chloride ion concentration and pH at the end of the reaction. Is known to be composed of secondary particles in which primary particles having good crystallinity are aggregated (Japanese Patent Publication No. Sho 61).
Chloride ion is considered to be a factor that adsorbs on crystal nuclei of hydrated zirconia generated during the hydrolysis reaction, inhibits crystal growth, and reduces primary particles (crystallites). The pH is considered to be a factor acting on the secondary particles, and the interaction between the primary particles formed by the hydrolysis reaction and the synergistic effect with the pH of the reaction system causes the aggregation between the primary particles. This is presumed to be due to the promotion of bonding, which affects the particle size of the formed secondary particles.

[発明の効果] 以上説明したとおり、本発明によれば、粒子径の大き
い、且つ結晶子の小さい、したがって成形性のよい、さ
らにイットリア等の安定化剤とよく固溶しているジルコ
ニア粉末の製造に適した水和ジルコニアゾルを製造する
ことができる。
[Effects of the Invention] As described above, according to the present invention, a zirconia powder having a large particle diameter and a small crystallite, and thus having good moldability, and further having a solid solution with a stabilizer such as yttria is well formed. A hydrated zirconia sol suitable for production can be produced.

本発明で得られる平均粒径が0.1μm以上であり、か
つ40A以下の結晶子の水和ジルコニアゾルは、ジルコニ
ウム塩濃度,陰イオン濃度,酸またはアルカリの添加量
などに依存するので、これらの条件を加水分解反応終了
時の懸濁液のpHを本発明で限定した範囲に制御できるよ
うに適宜設定することによって、ゾル粒径および結晶子
を制御することができる。
The hydrated zirconia sol having an average particle size of 0.1 μm or more and a crystallite of 40 A or less obtained in the present invention depends on the zirconium salt concentration, the anion concentration, the amount of acid or alkali added, and the like. The sol particle size and the crystallite can be controlled by appropriately setting the conditions so that the pH of the suspension at the end of the hydrolysis reaction can be controlled within the range limited by the present invention.

[実施例] 以下、実施例により本発明を具体的に説明する。EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples.

実施例1 2mol/のオキシ塩化ジルコニウム100mlに塩化アンモ
ニウムを30g添加して蒸留水を加え、ジルコニア加算0.2
mol/の水溶液にした。このときの塩素イオン濃度は、
0.96mol/であった。この調整した原料液を攪拌しなが
ら100時間煮沸し、加水分解反応を行った。反応終了後
の懸濁液のpHは、0.7であった。
Example 1 To 100 ml of 2 mol / zirconium oxychloride, 30 g of ammonium chloride was added, and distilled water was added.
mol / aqueous solution. The chlorine ion concentration at this time is
0.96 mol /. The prepared raw material liquid was boiled for 100 hours with stirring to perform a hydrolysis reaction. After the completion of the reaction, the pH of the suspension was 0.7.

得られた水和ジルコニアの光子相関法による平均粒径
は0.24μmであり、粉末X線回折による結晶子径は約36
Aであった。
The average particle size of the obtained hydrated zirconia by photon correlation method is 0.24 μm, and the crystallite size by powder X-ray diffraction is about 36.
A.

実施例2 塩化アンモニウムを塩化ナトリウムに代えた以外は実
施例1の条件と同様に行なった。反応終了後の懸濁液の
pHは、0.65であり、塩素イオン濃度は1.0mol/であっ
た。
Example 2 Example 2 was carried out under the same conditions as in Example 1 except that sodium chloride was used instead of ammonium chloride. Of the suspension after the end of the reaction
pH was 0.65 and chloride ion concentration was 1.0 mol /.

得られた水和ジルコニアの光子相関法による平均粒径
は0.26μmであり、粉末X線回折による結晶子径は約34
Aであった。
The average particle size of the obtained hydrated zirconia by photon correlation method is 0.26 μm, and the crystallite size by powder X-ray diffraction is about 34
A.

実施例3 2mol/のオキシ塩化ジルコニウム25mlに1mol/の塩
酸を300mlおよび塩化ナトリウムを30g添加して蒸留水を
加え、ジルコニア換算0.05mol/の水溶液にした。この
ときの塩素イオン濃度は、0.9mol/であった。この調
整した原料液を撹拌しながら80時間煮沸し、加水分解反
応を行った。反応終了後の懸濁液のpHは、0.68であっ
た。
Example 3 To 25 ml of 2 mol / zirconium oxychloride, 300 ml of 1 mol / hydrochloric acid and 30 g of sodium chloride were added, and distilled water was added to obtain an aqueous solution of 0.05 mol / in terms of zirconia. At this time, the chloride ion concentration was 0.9 mol /. The prepared raw material liquid was boiled for 80 hours with stirring to perform a hydrolysis reaction. After the completion of the reaction, the pH of the suspension was 0.68.

得られた水和ジルコニアの光子相関法による平均粒径
は0.25μmであり、粉末X線回折による結晶子径は約38
Aであった。
The average particle size of the obtained hydrated zirconia by photon correlation method is 0.25 μm, and the crystallite size by powder X-ray diffraction is about 38
A.

実施例4 塩化アンモニウムを塩化ナトリウムに代えた以外は実
施例3の条件と同様に行なった。反応終了後の懸濁液の
pHは、0.71であり、塩素イオン濃度は1mol/であっ
た。
Example 4 The procedure was carried out in the same manner as in Example 3 except that sodium chloride was used instead of ammonium chloride. Of the suspension after the end of the reaction
pH was 0.71 and chloride ion concentration was 1 mol /.

得られた水和ジルコニアの光子相関法による平均粒径
は0.28μmであり、粉末X線回折による結晶子径は約32
Aであった。
The average particle size of the obtained hydrated zirconia by photon correlation method is 0.28 μm, and the crystallite size by powder X-ray diffraction is about 32.
A.

比較例1 2mol/のオキシ塩化ジルコニウム100mlに蒸留水を加
え、ジルコニア換算0.2mol/の水溶液にして100時間煮
沸し、加水分解反応を行った。反応終了後の懸濁液のpH
は、0.69であった。
Comparative Example 1 Distilled water was added to 100 ml of 2 mol / zirconium oxychloride to prepare a 0.2 mol / conversion aqueous solution of zirconia, and the mixture was boiled for 100 hours to perform a hydrolysis reaction. PH of suspension after completion of reaction
Was 0.69.

得られた水和ジルコニアの光子相関法による平均粒径
は0.25μmであり粉末X線回折による結晶子径は53Aで
あった。
The average particle size of the obtained hydrated zirconia by photon correlation method was 0.25 μm, and the crystallite size by powder X-ray diffraction was 53A.

比較例2 2mol/のオキシ塩化ジルコニウム25mlに蒸留水を加
え、ジルコニア換算0.05mol/の水溶液にして80時間煮
沸し、加水分解反応を行った。反応終了後の懸濁液のpH
は、1.2であった。
Comparative Example 2 Distilled water was added to 25 ml of 2 mol / zirconium oxychloride to make an aqueous solution of 0.05 mol / in terms of zirconia, and the mixture was boiled for 80 hours to carry out a hydrolysis reaction. PH of suspension after completion of reaction
Was 1.2.

得られた水和ジルコニアの光子相関法による平均粒径
は0.07μmであり、粉末X線回折による結晶子径は75A
であった。
The average particle size of the obtained hydrated zirconia by photon correlation method is 0.07 μm, and the crystallite size by powder X-ray diffraction is 75A.
Met.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】塩化ジルコニル水溶液の加水分解により水
和ジルコニアゾルを製造する方法において、0.4mol/
未満の塩化ジルコニル濃度で、塩素イオン濃度を0.8以
上2.0mol/以下にし、かつ、加水分解反応終了時の反
応液のpHが0.4以上1以下の範囲となるように調整され
た塩化ジルコニル水溶液を80℃以上煮沸温度以下で加水
分解処理することを特徴とする、水和ジルコニアゾルの
製造方法
1. A method for producing a hydrated zirconia sol by hydrolysis of an aqueous solution of zirconyl chloride, comprising:
An aqueous solution of zirconyl chloride adjusted so that the zirconyl chloride concentration is less than 0.8, the chloride ion concentration is 0.8 to 2.0 mol / or less, and the pH of the reaction solution at the end of the hydrolysis reaction is in the range of 0.4 to 1 is 80 or less. A method for producing a hydrated zirconia sol, wherein the hydration zirconia sol is subjected to a hydrolysis treatment at a temperature of not lower than a boiling point and a boiling point.
JP31439990A 1990-11-21 1990-11-21 Method for producing hydrated zirconia sol Expired - Fee Related JP2882040B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31439990A JP2882040B2 (en) 1990-11-21 1990-11-21 Method for producing hydrated zirconia sol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31439990A JP2882040B2 (en) 1990-11-21 1990-11-21 Method for producing hydrated zirconia sol

Publications (2)

Publication Number Publication Date
JPH04187519A JPH04187519A (en) 1992-07-06
JP2882040B2 true JP2882040B2 (en) 1999-04-12

Family

ID=18052884

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31439990A Expired - Fee Related JP2882040B2 (en) 1990-11-21 1990-11-21 Method for producing hydrated zirconia sol

Country Status (1)

Country Link
JP (1) JP2882040B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016051870A1 (en) 2014-09-29 2016-04-07 第一稀元素化学工業株式会社 Sol comprising amorphous zr-o-based particles as dispersoid and method for producing same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7241437B2 (en) * 2004-12-30 2007-07-10 3M Innovative Properties Company Zirconia particles

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016051870A1 (en) 2014-09-29 2016-04-07 第一稀元素化学工業株式会社 Sol comprising amorphous zr-o-based particles as dispersoid and method for producing same

Also Published As

Publication number Publication date
JPH04187519A (en) 1992-07-06

Similar Documents

Publication Publication Date Title
EP0229657B1 (en) High-dispersion sol or gel of monoclinic zirconia supermicrocrystals and a process for its production
JP3284413B2 (en) Method for producing hydrated zirconia sol and zirconia powder
CN112745105A (en) High-sintering-activity alumina ceramic powder and preparation method thereof
JPH0472774B2 (en)
JPS62162624A (en) Agglomerated particle of monoclinic zirconia ultrafine crystal oriented in fiber-bundle form and production thereof
JP3250243B2 (en) Method for producing zirconia-based sol
JP2882040B2 (en) Method for producing hydrated zirconia sol
JPH0346407B2 (en)
JPH0624977B2 (en) Needle-shaped titanium dioxide and method for producing the same
JP3339076B2 (en) Zirconia fine powder
JPS61141619A (en) Production of zirconia fine powder
JPH03141115A (en) Production of fine yttrium oxide powder
JP3208768B2 (en) Method for producing hydrated zirconia sol
JP3265597B2 (en) Method for producing zirconia fine powder
JP3237140B2 (en) Method for producing hydrated zirconia sol and zirconia powder
JP3896614B2 (en) Zirconia powder and method for producing the same
JP3254693B2 (en) Preparation of hydrated zirconia sol and zirconia powder
JPH04198022A (en) Production of hydrated zirconia sol
KR100473399B1 (en) Process for the preparation of fine ceramic powders
JP3484706B2 (en) Hydrated zirconia sol and method for producing the same
JPS61141620A (en) Crystalline zirconia fine powder, and production thereof
JP3286679B2 (en) Method for producing hydrated zirconia sol
JPH01278417A (en) Novel reactive derivative of zirconium and method for its manufacture
JPH04104910A (en) Production of hydrated zirconium sol
JPH0651568B2 (en) Method for producing fine zirconium oxide powder

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees