Nothing Special   »   [go: up one dir, main page]

JP2848617B2 - Frequency doubler - Google Patents

Frequency doubler

Info

Publication number
JP2848617B2
JP2848617B2 JP1090889A JP1090889A JP2848617B2 JP 2848617 B2 JP2848617 B2 JP 2848617B2 JP 1090889 A JP1090889 A JP 1090889A JP 1090889 A JP1090889 A JP 1090889A JP 2848617 B2 JP2848617 B2 JP 2848617B2
Authority
JP
Japan
Prior art keywords
gate
frequency
drain
dgfet
wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1090889A
Other languages
Japanese (ja)
Other versions
JPH02192205A (en
Inventor
寿一 尾崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP1090889A priority Critical patent/JP2848617B2/en
Publication of JPH02192205A publication Critical patent/JPH02192205A/en
Application granted granted Critical
Publication of JP2848617B2 publication Critical patent/JP2848617B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Networks Using Active Elements (AREA)
  • Amplifiers (AREA)

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明はデュアルゲート電界効果トランジスタを用い
た周波数2逓倍器に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial application field) The present invention relates to a frequency doubler using a dual gate field effect transistor.

(従来の技術) マイクロ波の周波数逓倍器は所望の出力レベル、周波
数安定度雑音性能等を有する高い周波数の信号が直接発
信等で得られない場合に用いる。今後通信等における使
用周波数帯の高周波化、例えばミリ波化により逓倍器は
ますます重要な部品となってくる。
(Prior Art) A microwave frequency multiplier is used when a high-frequency signal having a desired output level, frequency stability noise performance, or the like cannot be obtained by direct transmission or the like. In the future, frequency multipliers will become more and more important parts due to the use of higher frequency bands in communications and the like, for example, the use of millimeter waves.

逓倍器に利用する非線形素子としてダイオード、電界
効果トランジスタ(FET)等がある。FETを用いた場合、
変換利得が期待でき今後発展が予想されるモノリシック
マイクロ波集積回路(MMIC)に適している。
Non-linear elements used in the multiplier include a diode, a field effect transistor (FET), and the like. When using FET,
It is suitable for monolithic microwave integrated circuits (MMICs), which have high conversion gain and are expected to develop in the future.

第3図にシングルゲートFET(SGFET)を用いた周波数
2逓倍器の従来例を示す。なお簡単のためバイアス回路
は省略してある。同図において、101はSGFET、102は基
本周波数(fo)に対する整合回路、103は周波数2逓倍
波(2fo)に対する整合回路である。
FIG. 3 shows a conventional example of a frequency doubler using a single gate FET (SGFET). The bias circuit is omitted for simplicity. In the figure, 101 is an SGFET, 102 is a matching circuit for a fundamental frequency (fo), and 103 is a matching circuit for a frequency doubled (2fo).

基本周波数信号は、入力端子104より印加し、FETのゲ
ートを励振する。FETは通常ピンチオフ近傍にバイアス
されるので、ゲートの非線形によりFETのドレイン
(b)点には fo,2fo,3fo…nfo…… …(1) の高周波成分が発生する。
The fundamental frequency signal is applied from the input terminal 104 to excite the gate of the FET. Since the FET is normally biased near the pinch-off, high frequency components of fo, 2fo, 3fo... Nfo (1) are generated at the drain (b) point of the FET due to gate non-linearity.

帯域通過濾波器(以下BPFと略称)105により2foの波
だけを出力端子106より取出す。
Only a 2fo wave is extracted from an output terminal 106 by a band-pass filter (hereinafter abbreviated as BPF) 105.

一般に、前記(b)点よりBPF側をみたfoに対する終
端条件は、変換効率を高めるため短絡、あるいは開放状
態に選ぶ。しかし、(b)点でFET側に反射したfoの波
は、FETの帰還容量(Cf)によりCfを介して、FETのゲー
トにあらわれる。このfoの波は、ゲートに印加される基
本周波数信号に干渉し、入力側のfoに対する整合が非常
に取りにくくなることがあった。そこで、通常(b)点
よりBPF側をみた終端条件は短絡あるいは開放の点より
わずかに誘導性に選ぶことが多い。これにより整合の取
りにくい点は解消されるが、逓倍器の負荷が誘導性の場
合には発振等の不安定動作を起こすことがあった。
In general, the termination condition for fo as viewed from the point (b) on the BPF side is selected to be short-circuit or open in order to increase the conversion efficiency. However, the fo wave reflected on the FET side at the point (b) appears on the gate of the FET via the feedback capacitance (C f ) of the FET and C f . The fo wave interferes with the fundamental frequency signal applied to the gate, and it may be very difficult to match the fo on the input side. Therefore, the termination condition on the BPF side from the point (b) is usually selected to be slightly more inductive than the short or open point. This eliminates the difficulty of matching, but may cause unstable operation such as oscillation when the load of the multiplier is inductive.

(発明が解決しようとする課題) 以上述べてきた様に従来のSGFET逓倍器では帰還容量
の影響により入力側の整合が取りにくかったり、発振等
の不安定動作をおこしたりしていた。
(Problems to be Solved by the Invention) As described above, in the conventional SGFET multiplier, matching on the input side is difficult due to the influence of the feedback capacitance, or unstable operation such as oscillation occurs.

本発明はFET帰還容量による入力側の整合の取りにく
いことと、不安定動作の解消した周波数2逓倍器を提供
することを目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a frequency doubler in which matching on the input side due to FET feedback capacitance is difficult and unstable operation is eliminated.

〔発明の構成〕[Configuration of the invention]

(課題を解決するための手段) この発明にかかる周波数2逓倍器は、デュアルゲート
電界効果トランジスタに対し、ソースを接地し、第1ゲ
ートとドレイン間を基本周波数に対し適当な位相遅延を
つけて高周波的に接続し、第2ゲートに基本周波数信号
を印加し、かつドレインに帯域通過濾波器を接続しこれ
より周波数2逓倍信号を取出すことを特徴とする。
(Means for Solving the Problems) A frequency doubler according to the present invention provides a dual gate field effect transistor with a source grounded and a proper phase delay between the first gate and the drain with respect to the fundamental frequency. A high frequency connection, a fundamental frequency signal is applied to the second gate, and a band-pass filter is connected to the drain to extract a frequency doubled signal therefrom.

(作 用) 本発明の周波数2逓倍器ではDGFETのドレイン端で反
射したfoの波が帰還容量を介して第2ゲートにあらわれ
る波と、位相遅延回路を介して第1ゲートに入射し第2
ゲートにあらわれる波との位相差が180゜になる様に選
べば、帰還容量の影響を取除くことができる。
(Operation) In the frequency doubler of the present invention, the fo wave reflected at the drain end of the DGFET and the wave appearing at the second gate via the feedback capacitor and the fo wave incident on the first gate via the phase delay circuit are transmitted to the second gate.
If the phase difference with the wave appearing at the gate is selected to be 180 °, the effect of the feedback capacitance can be eliminated.

また、本発明の周波数2逓倍器では、DGFETの乗算機
能を利用するため、FETの非線形動作で発生する高周波
を取出す様なSGFET2逓倍器より変換利得が高いという利
点もある。
Further, since the frequency doubler of the present invention utilizes the multiplication function of the DGFET, there is an advantage that the conversion gain is higher than that of the SGFET doubler that extracts a high frequency generated by the non-linear operation of the FET.

(実施例) 以下、本発明の一実施例につき、第1図および第2図
を参照して説明する。
(Embodiment) An embodiment of the present invention will be described below with reference to FIG. 1 and FIG.

第1図に本発明にかかる周波数2逓倍器の回路図を示
す。なお、従来例において第3図につき説明した各部と
変わらない部分については、図面に従来と同じ符号をつ
けて示し、説明を省略する。
FIG. 1 shows a circuit diagram of a frequency doubler according to the present invention. Note that, in the conventional example, portions that are the same as those described with reference to FIG. 3 are denoted by the same reference numerals in the drawings, and description thereof will be omitted.

第1図において、11は逓倍用デュアルゲート電界効果
トランジスタ(以下DGFETと略称する)、12は位相遅延
回路でこれによりDGFETのドレインと第1ゲートは高周
波的に接続されている。
In FIG. 1, reference numeral 11 denotes a multiplication dual gate field effect transistor (hereinafter abbreviated as DGFET), and reference numeral 12 denotes a phase delay circuit, whereby the drain and the first gate of the DGFET are connected at a high frequency.

第2図はDGFETの静特性を示す図である。本発明の周
波数2逓倍器では、DGFETはピンチオフ近傍(第2図A,
B)あるいはIDSS(ソース接地でソース・ゲート間を短
絡しドレイン電圧VDSを印加したときのドレイン電流)
近傍(第2図C)にバイアスする。ここで基本周波数
(fo)信号が入力端子104に印加されると、DGFET11はそ
の信号電圧によりドレイン・ソース間電流(IDS)が矩
形波状にスイッチングする。これにより、DGFET11のド
レイン端(a)点には fo,3fo,5fo,…(2n−1)fo, …(2) の信号があらわれる。ここで簡単のためfoのみを考え
る。本発明の周波数2逓倍器では(a)点よりBPF105側
をみた終端条件を開放状態に選ぶ(発振停止の防止)。
これにより、BPFで反射したfoの波はDGFET11のドレイン
に入射するものと位相遅延回路12を介して第1ゲートに
入射するものとにわかれる。ここで、ドレインより入射
し帰還容量を介して第2ゲートにあらわれる波と、第1
ゲートより入射し第2ゲートにあらわれる波との位相差
が180゜になる様に位相遅延回路を選べば互いに打消し
合い帰還容量の影響は取除くことができ、入力の整合が
取りやすくなる。また、第1ゲートより入射した波はDG
FET11の乗算機能により第2ゲートに印加される基本周
波数信号と混合され、結果、DGFET11のドレイン端
(a)には直流と2foがあらわれる。ここで2foの波だけ
をBPFより選択し、出力端子106により周波数2逓倍信号
を取出すことができる。
FIG. 2 is a diagram showing static characteristics of the DGFET. In the frequency doubler of the present invention, the DGFET is in the vicinity of the pinch-off (FIG. 2A,
B) or I DSS (drain current when drain voltage VDS is applied by short-circuiting between source and gate with common source)
Bias to the vicinity (FIG. 2C). Here, if the fundamental frequency (fo) signal is applied to the input terminal 104, DGFET11 the drain-source current (I DS) is switched to the rectangular wave by the signal voltage. As a result, signals of fo, 3fo, 5fo,... (2n-1) fo,... (2) appear at the drain end (a) of the DGFET 11. Here, only fo is considered for simplicity. In the frequency doubler of the present invention, the termination condition on the BPF 105 side from the point (a) is selected to be open (prevention of oscillation stop).
As a result, the fo wave reflected by the BPF is divided into a wave incident on the drain of the DGFET 11 and a wave incident on the first gate via the phase delay circuit 12. Here, the wave incident from the drain and appearing on the second gate through the feedback capacitor is the same as the first wave.
If the phase delay circuits are selected so that the phase difference between the incident wave from the gate and the wave appearing at the second gate becomes 180 °, they cancel each other out and the influence of the feedback capacitance can be eliminated, and the input can be easily matched. The wave incident from the first gate is DG
The multiplication function of the FET 11 mixes with the fundamental frequency signal applied to the second gate. As a result, DC and 2fo appear at the drain end (a) of the DGFET 11. Here, only the 2fo wave is selected from the BPF, and the frequency doubled signal can be extracted from the output terminal 106.

一般にソース接地したDGFET11は、第1ゲートより信
号を入力した場合、DGFETは増幅機能を持つ。従って、
ドレイン端より第1ゲートに入射したfoの波はここで増
幅され、その後、第2ゲートより印加した基本周波数信
号と混合される。即ち、本発明の周波数2逓倍器は、基
本周波数信号増幅器と周波数変換器に分けて考えること
ができる。従って、FETの非線形動作で発生する高調波
成分を取出す様なSGFET逓倍器に比べ、増幅機能を有す
るため変換利得は大きくなる。
Generally, when a signal is input from the first gate to the DGFET 11 whose source is grounded, the DGFET has an amplification function. Therefore,
The fo wave incident on the first gate from the drain end is amplified here, and then mixed with the fundamental frequency signal applied from the second gate. That is, the frequency doubler of the present invention can be divided into a fundamental frequency signal amplifier and a frequency converter. Therefore, as compared with an SGFET multiplier that extracts a harmonic component generated by the non-linear operation of the FET, the conversion gain is increased because of the amplification function.

一般に、SGFET逓倍器の変換利得は0dB〜4dB程度であ
るが、本発明による逓倍器の変換利得は5dB〜6dB程度期
待できる。
Generally, the conversion gain of the SGFET multiplier is about 0 dB to 4 dB, but the conversion gain of the multiplier according to the present invention can be expected to be about 5 dB to 6 dB.

〔発明の効果〕〔The invention's effect〕

以上述べたように、本発明によれば入力の整合が取り
やすく、動作が安定で、しかも変換利得の優れた周波数
2逓倍器を提供することができる顕著な利点がある。
As described above, according to the present invention, there is a remarkable advantage that it is possible to provide a frequency doubler in which input matching can be easily performed, operation is stable, and the conversion gain is excellent.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明にかかるDGFET周波数2逓倍器の等価回
路図、第2図はDGFETの静特性図、第3図は従来のSGFET
周波数2逓倍器の等価回路図である。 11……DGFET 12……位相遅延回路 102,103……整合回路 104……入力端子 105……帯域通過濾波器
FIG. 1 is an equivalent circuit diagram of a DGFET frequency doubler according to the present invention, FIG. 2 is a static characteristic diagram of the DGFET, and FIG.
It is an equivalent circuit diagram of a frequency doubler. 11 DGFET 12 Phase delay circuit 102, 103 Matching circuit 104 Input terminal 105 Band-pass filter

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】デュアルゲート電界効果トランジスタに対
し、ソースを接地し、第1ゲートとドレイン間を基本周
波数に対し適当な位相遅延をつけて高周波的に接続し、
第2ゲートに基本周波数信号を印加し、かつドレインに
帯域通過濾波器を接続しこれにより周波数2逓倍信号を
取出すことを特徴とする周波数2逓倍器。
1. A dual-gate field-effect transistor in which a source is grounded and a first gate and a drain are connected at a high frequency with an appropriate phase delay with respect to a fundamental frequency.
A frequency doubler for applying a fundamental frequency signal to a second gate and connecting a band-pass filter to a drain to extract a frequency doubled signal.
JP1090889A 1989-01-19 1989-01-19 Frequency doubler Expired - Fee Related JP2848617B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1090889A JP2848617B2 (en) 1989-01-19 1989-01-19 Frequency doubler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1090889A JP2848617B2 (en) 1989-01-19 1989-01-19 Frequency doubler

Publications (2)

Publication Number Publication Date
JPH02192205A JPH02192205A (en) 1990-07-30
JP2848617B2 true JP2848617B2 (en) 1999-01-20

Family

ID=11763387

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1090889A Expired - Fee Related JP2848617B2 (en) 1989-01-19 1989-01-19 Frequency doubler

Country Status (1)

Country Link
JP (1) JP2848617B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2797709B2 (en) * 1990-11-30 1998-09-17 日本電気株式会社 Multiplier
CN116760366B (en) * 2023-08-24 2023-11-07 成都世源频控技术股份有限公司 Low-noise fractional frequency multiplication circuit and implementation method thereof

Also Published As

Publication number Publication date
JPH02192205A (en) 1990-07-30

Similar Documents

Publication Publication Date Title
US4675911A (en) Monolithic microwave integrated circuit broadband mixer
JPH0347766B2 (en)
US6329864B2 (en) Semiconductor circuitry
CA1118849A (en) Wideband mesfet microwave frequency divider
US4677691A (en) Microwave receiver
US6369675B2 (en) Frequency multiplier capable of taking out efficiently and stably harmonics higher than fourth order
JPH1070481A (en) Intermediate frequency signal generator, frequency converter, transmitter, receiver and transmitter-receiver
EP0196098A2 (en) Broadband Amplifier/Mixer
JP2000156611A5 (en)
Campos-Roca et al. Coplanar pHEMT MMIC frequency multipliers for 76-GHz automotive radar
US6124742A (en) Wide bandwidth frequency multiplier
JP2848617B2 (en) Frequency doubler
JP2807508B2 (en) Microwave frequency multiplier
Minakawa et al. An extremely small 26 GHz monolithic image-rejection mixer without DC power consumption
Van Tuyl A monolithic GaAs FET RF signal generation chip
CA2033305C (en) Amplifier circuit having second order signal cancellation
Sokolov et al. X-band monolithic GaAs push-pull amplifiers
JPH05167352A (en) Frequency converter
JP2002314340A (en) High frequency circuit and communication equipment using the same
JPH0740647B2 (en) Field effect transistor circuit
Nam et al. Fully integrated Q-band MMIC transmitter and receiver chips using resistive PHEMT mixers
JP2000156612A5 (en)
JP3169600B2 (en) High frequency module
JP2000156612A (en) Frequency multiplier
JPH05275930A (en) Multiplier

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20071106

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081106

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees