JP2846673B2 - Method for producing zinc electrode for alkaline storage battery - Google Patents
Method for producing zinc electrode for alkaline storage batteryInfo
- Publication number
- JP2846673B2 JP2846673B2 JP1263284A JP26328489A JP2846673B2 JP 2846673 B2 JP2846673 B2 JP 2846673B2 JP 1263284 A JP1263284 A JP 1263284A JP 26328489 A JP26328489 A JP 26328489A JP 2846673 B2 JP2846673 B2 JP 2846673B2
- Authority
- JP
- Japan
- Prior art keywords
- zinc
- additive
- electrode
- powder
- storage battery
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/24—Electrodes for alkaline accumulators
- H01M4/244—Zinc electrodes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Battery Electrode And Active Subsutance (AREA)
Description
【発明の詳細な説明】 (イ) 産業上の利用分野 本発明は、ニッケル−亜鉛蓄電池、銀−亜鉛蓄電池な
どの負極活物質として亜鉛を用いるアルカリ蓄電池用亜
鉛極の製造方法に関するものである。The present invention relates to a method for producing a zinc electrode for an alkaline storage battery using zinc as a negative electrode active material, such as a nickel-zinc storage battery and a silver-zinc storage battery.
(ロ) 従来の技術 負極活物質としての亜鉛は、単位重量当りのエネルギ
ー密度が大きく、安価であり、かつ無公害であるという
利点があり、このような亜鉛極を有してなるアルカリ蓄
電池は高エネルギー密度で作動電圧が高い等の特徴があ
り、二次電池としての期待が大きい。(B) Conventional technology Zinc as a negative electrode active material has the advantages of high energy density per unit weight, low cost, and non-polluting. It has features such as high energy density and high operating voltage, and is expected to be a secondary battery.
ところが、この種のアルカリ蓄電池では、充放電サイ
クルを繰り返すと、放電時に亜鉛極において亜鉛がアル
カリ電解液中に溶出して亜鉛酸イオンとなり、充電時に
この亜鉛酸イオンが亜鉛極表面上に樹枝状あるいは海綿
状に電析する。その結果、充放電反応の繰り返しにより
電析亜鉛がセパレーターを貫通して内部短絡を生じた
り、亜鉛極の形状が変形して反応面積が減少し、電池特
性の劣化が生じる。この様な亜鉛極の形状変形あるいは
樹枝状亜鉛の結晶生長を防ぐ方法として、例えば特公昭
52−19685号公報、特開昭59−189562号公報の様にイン
ジウム、タリウム等の亜鉛よりも水素過電圧が大きく、
かつ亜鉛よりも酸化還元電位が貴な添加剤を添加する方
法がある。However, in this type of alkaline storage battery, when the charge / discharge cycle is repeated, zinc is eluted in the alkaline electrolyte at the zinc electrode during discharging to form zincate ions, and the zincate ions are dendritic on the surface of the zinc electrode during charging. Alternatively, it is deposited in a spongy manner. As a result, the electrodeposited zinc penetrates through the separator to cause an internal short circuit due to the repetition of the charge / discharge reaction, or the shape of the zinc electrode is deformed to reduce the reaction area, thereby deteriorating the battery characteristics. As a method of preventing such a shape deformation of the zinc electrode or crystal growth of dendritic zinc, for example,
JP-A-52-19685 and JP-A-59-189562 have a larger hydrogen overvoltage than zinc such as indium and thallium,
There is also a method of adding an additive whose oxidation-reduction potential is more noble than zinc.
ところが、単に乾混合するのみでは添加剤の分散性が
悪いため添加剤としての効果が十分発揮されない。特に
添加剤が十分に分布していない充放電サイクル初期にお
いては、充電時に樹枝状亜鉛結晶が生長し易く、初期不
良率が大きいという問題点があった。このため、特開昭
63−158749号公報、特開昭63−158750号公報等では放電
リザーブとして電極作製時に加える亜鉛に、添加剤を保
持させて分散性を向上させている。しかしながら、出発
物質の亜鉛は酸化亜鉛に比べて粒径が非常に大きいた
め、充電時に樹枝状亜鉛結晶生長の核になりやすく、添
加量を大きくすると樹枝状亜鉛結晶が生長しやすくなる
ため、その添加量は酸化亜鉛に対して10重量%〜50重量
%しか添加できない。そのため、添加剤の分散が不十分
で、その効果が十分に発揮できず、急速充電時にデンド
ライトショートによる初期不良が生ずるという問題があ
った。However, simply by dry mixing, the effect of the additive is not sufficiently exhibited because the dispersibility of the additive is poor. In particular, at the beginning of the charge / discharge cycle in which the additive is not sufficiently distributed, the dendritic zinc crystal tends to grow at the time of charging, and the initial failure rate is large. For this reason,
In JP-A-63-158749 and JP-A-63-158750, an additive is retained in zinc added as a discharge reserve at the time of manufacturing an electrode to improve dispersibility. However, since the starting material zinc has a very large particle size as compared with zinc oxide, it tends to become the nucleus of dendritic zinc crystal growth during charging, and if the amount of addition is increased, the dendritic zinc crystal tends to grow. The addition amount can be only 10% by weight to 50% by weight based on zinc oxide. For this reason, there is a problem that the dispersion of the additive is insufficient, the effect cannot be sufficiently exhibited, and initial failure due to dendrite short-circuit occurs during quick charging.
(ハ) 発明が解決しようとする課題 添加剤を保持させた亜鉛粉末を用いれば、添加剤の分
散性が向上するので、充放電サイクル初期の不良率を低
くすることができ、急速充電時において樹枝状亜鉛結晶
生長抑制の効果は認められるが、完全には防止できな
い。(C) Problems to be Solved by the Invention If zinc powder holding an additive is used, the dispersibility of the additive is improved, so that the defective rate at the initial stage of the charge / discharge cycle can be reduced, and during the rapid charging, Although the effect of suppressing dendritic zinc crystal growth is recognized, it cannot be completely prevented.
そこで本発明はかかる問題点に鑑みてなされたもので
あって、亜鉛極における添加剤の分散性を向上させ得る
亜鉛極の製造方法を提案するものである。そして、前記
添加剤の添加効果を十分に発揮させ亜鉛極からの樹枝状
亜鉛の結晶生長を抑制し、サイクル特性に優れたアルカ
リ蓄電池を提供するものである。The present invention has been made in view of such a problem, and proposes a method for producing a zinc electrode capable of improving the dispersibility of an additive in the zinc electrode. In addition, the present invention provides an alkaline storage battery having excellent cycle characteristics by sufficiently exhibiting the effect of the additive and suppressing crystal growth of dendritic zinc from the zinc electrode.
(ニ) 課題を解決するための手段 本発明のアルカリ蓄電池用亜鉛極の製造方法は、亜鉛
粉末及び酸化亜鉛粉末に、亜鉛よりも水素過電圧が大き
く且つ酸化還元電位が貴である元素を含む添加剤を夫々
添加して表面を改質若しくは表面に付加した後、該亜鉛
粉末と該酸化亜鉛粉末とを混合して導電芯体に保持させ
ることを特徴とするものである。(D) Means for Solving the Problems In the method for producing a zinc electrode for an alkaline storage battery according to the present invention, a method of adding a zinc powder and a zinc oxide powder containing an element having a larger hydrogen overvoltage and a noble redox potential than zinc to zinc powder. After the surface is modified or added to the surface by adding the respective agents, the zinc powder and the zinc oxide powder are mixed and held on the conductive core.
尚、前記添加剤の形態としては、金属、酸化物、水酸
化物のいずれかの形態であっても良い。The form of the additive may be any of metal, oxide, and hydroxide.
(ホ) 作用 亜鉛極を備えたアルカリ蓄電池を用いて充放電サイク
ルを繰り返すと、充電時に亜鉛がアルカリ電解液中に溶
出して亜鉛酸イオンとなる。そして、充電時にこの亜鉛
酸イオンが亜鉛極表面上に樹枝状あるいは海綿状に電析
し、この充放電反応の繰り返しにより電析亜鉛がセパレ
ーターを貫通して内部短絡を生じたり、亜鉛極の形状が
変形して反応面積が減少し、電池特性の劣化が生じる。
そのため、インジウム、タリウム等の亜鉛よりも水素過
電圧が大きく且つ酸化還元電位の貴な添加剤を添加すれ
ば、亜鉛酸イオンの電析の過電圧を増大しうるので、デ
ンドライトショートを防止し、初期不良率を減少させる
ことが可能となる。しかし、添加剤粉末と亜鉛活物質粉
末を単に乾混合したり、あるいは亜鉛に添加剤を保持さ
せて亜鉛極を作製する方法では、充放電サイクル初期の
添加剤の亜鉛極における分散性が悪く、急速充電時にお
いてはデンドライトショートによる初期不良率が増大す
るという欠点がある。そこで、本発明の如く、亜鉛粉末
および酸化亜鉛粉末それぞれに、亜鉛よりも水素過電圧
が大きく、かつ亜鉛よりも酸化還元電位が貴な元素を含
有させる添加剤を添加して表面を改質若しくは表面に付
加した後、混合することにより、 微視的にみた場合は、前記添加剤の作用により亜鉛
酸イオンの電析反応の過電圧を増大させ、その結果、活
物質粒子表面への亜鉛酸イオンの電析は緩やかに、かつ
均一に生じさせることができる。そのため、亜鉛極から
の樹枝状亜鉛結晶の生長は有効に阻止される。(E) Action When the charge / discharge cycle is repeated using an alkaline storage battery provided with a zinc electrode, zinc is eluted into the alkaline electrolyte during charging to become zincate ions. Then, during charging, the zincate ions are deposited on the surface of the zinc electrode in a dendritic or sponge form, and the repetition of this charge / discharge reaction causes the deposited zinc to penetrate the separator, causing an internal short circuit or the shape of the zinc electrode. Are deformed, the reaction area is reduced, and the battery characteristics deteriorate.
Therefore, if an additive having a higher hydrogen overvoltage and a noble redox potential than zinc such as indium and thallium is added, the overvoltage of zincate ion deposition can be increased, thereby preventing dendrite short circuit and initial failure. The rate can be reduced. However, in the method in which the additive powder and the zinc active material powder are simply dry-mixed, or the zinc electrode is prepared by holding the additive in zinc, the dispersibility of the additive in the zinc electrode in the early charge / discharge cycle is poor. At the time of quick charging, there is a disadvantage that the initial failure rate due to dendrite short-circuit increases. Therefore, as in the present invention, to each of the zinc powder and the zinc oxide powder, an additive that contains an element having a higher hydrogen overpotential than zinc and a redox potential noble than zinc is added to modify or modify the surface. After adding to the mixture, by mixing, when viewed microscopically, the action of the additive increases the overpotential of the electrodeposition reaction of the zincate ion, and as a result, the zincate ion Electrodeposition can occur slowly and uniformly. Therefore, the growth of dendritic zinc crystals from the zinc electrode is effectively prevented.
巨視的にみた場合は、添加剤が活物質構成粒子であ
る酸化亜鉛と亜鉛の近傍に均一に存在するため、充放電
サイクル初期から添加剤としての効果が有効に発揮さ
れ、電極全体の電流分布が均一になり、急速充電を行っ
てもサイクル特性の劣化が生じない。When viewed macroscopically, the additive is uniformly present in the vicinity of the active material constituent particles, zinc oxide and zinc. And the cycle characteristics are not deteriorated even when quick charging is performed.
(ヘ) 実施例 以下に、本発明の実施例と比較例との対比に言及し、
詳述する。(F) Examples Hereinafter, reference will be made to a comparison between examples of the present invention and comparative examples,
It will be described in detail.
[実施例] 亜鉛粉末を0.1mol/lの塩化インジウム水溶液に浸漬さ
せ、30分間撹拌した後、0.1mol/lの水酸化カリウム水溶
液を加え、その後十分に水洗し、インジウムを添加した
表面改質亜鉛粉末(亜鉛粉末)を得た。尚、この時の置
換したインジウムの重量は亜鉛重量の約2重量%であっ
た。次に、酸化亜鉛を硝酸インジウム水溶液に十分浸漬
した後、水分を除去して酸化亜鉛表面に硝酸インジウム
を付加させた。さらに希アルカリで処理し、表面に付加
した硝酸インジウムを酸化インジウムに変化させ酸化イ
ンジウムを添加した。そして、これを酸化亜鉛粉末とし
て用いた。この様にして得た、前記亜鉛粉末と酸化亜鉛
粉末を、重量比で1:2の割り合いで乾混合した。[Example] Zinc powder was immersed in a 0.1 mol / l indium chloride aqueous solution, stirred for 30 minutes, added with a 0.1 mol / l potassium hydroxide aqueous solution, and then thoroughly washed with water, and surface modified with indium added. A zinc powder (zinc powder) was obtained. The weight of the substituted indium at this time was about 2% by weight of the weight of zinc. Next, after the zinc oxide was sufficiently immersed in an aqueous solution of indium nitrate, water was removed to add indium nitrate to the surface of the zinc oxide. Further, the substrate was treated with a dilute alkali to convert indium nitrate added to the surface into indium oxide, and indium oxide was added. This was used as zinc oxide powder. The zinc powder and zinc oxide powder thus obtained were dry-mixed at a weight ratio of 1: 2.
次に、これらの亜鉛活物質95重量%、フッ素樹脂5重
量%から成る混合粉末に水を加え、混練し、ペーストを
得、パンチングメタルよりなる導電芯体上に圧着して亜
鉛極とした。この亜鉛極を、公知の焼結式ニッケル極と
組み合わせて、公称容量500mAhの円筒密閉型ニッケル−
亜鉛蓄電池を得た。そして、この電池を本発明電池Aと
した。Next, water was added to the mixed powder composed of 95% by weight of the zinc active material and 5% by weight of the fluororesin, and kneaded to obtain a paste. The paste was pressed on a conductive core made of punched metal to form a zinc electrode. This zinc electrode is combined with a well-known sintered nickel electrode to form a cylinder-sealed nickel-nickel with a nominal capacity of 500 mAh.
A zinc storage battery was obtained. This battery was designated as Battery A of the present invention.
[比較例1] 前記実施例における亜鉛活物質中の酸化亜鉛、亜鉛、
インジウムのモル比と同様になるように、酸化亜鉛、亜
鉛、水酸化インジウムの三者を乾混合した以外は、前記
実施例と同様にして亜鉛極を得、電池を組み立て比較電
池Bとした。尚、この酸化亜鉛及び亜鉛は、添加剤を含
有していない。[Comparative Example 1] Zinc oxide and zinc in the zinc active material in the above example,
A zinc electrode was obtained in the same manner as in the above example, except that the zinc oxide, zinc, and indium hydroxide were dry-mixed so that the molar ratio of indium was the same as that of the indium. The zinc oxide and zinc do not contain any additives.
[比較例2] 前記実施例における亜鉛活物質中の酸化亜鉛、亜鉛、
インジウムのモル比と同様になるように、亜鉛、インジ
ウムを含有せる前記表面改質酸化亜鉛、水酸化インジウ
ムの三者を混合した以外は前記実施例と同様にして亜鉛
極を得、電池を組み立て比較電池Cとした。この亜鉛
は、添加剤を含有していない。[Comparative Example 2] Zinc oxide, zinc in the zinc active material in the above example,
A zinc electrode was obtained and a battery was assembled in the same manner as in the above example except that zinc, the surface-modified zinc oxide containing indium, and indium hydroxide were mixed so as to have the same molar ratio of indium. Comparative battery C was obtained. This zinc contains no additives.
[比較例3] 前記実施例における亜鉛活物質中の酸化亜鉛、亜鉛、
インジウムのモル比と同様になるように、インジウムを
含有せる前記表面改質亜鉛、酸化亜鉛、水酸化インジウ
ムの三者を混合した以外は前記実施例と同様にして亜鉛
極を得、電池を組み立て比較電池Dとした。尚、この酸
化亜鉛は、添加剤を含有していない。[Comparative Example 3] Zinc oxide, zinc in the zinc active material in the above example,
A zinc electrode was obtained and the battery was assembled in the same manner as in the above example except that the surface-modified zinc containing indium, zinc oxide, and indium hydroxide were mixed so that the molar ratio of indium was the same as that of indium. Comparative battery D was used. In addition, this zinc oxide does not contain an additive.
このようにして得た電池A、B、C、Dを用い、充放
電サイクル特性の比較を行った。この時のサイクル条件
は、各電池を1000mAの充電電流で0.5時間充電した後、5
00mAの充電電流で電池電圧が1.4Vになる迄放電するとい
うものであり、電池容量が350mAhになる迄、充放電を繰
り返し行った。Using the batteries A, B, C, and D thus obtained, comparison of charge / discharge cycle characteristics was performed. The cycle conditions at this time were as follows: after charging each battery with a charging current of 1000 mA for 0.5 hour,
The battery was discharged at a charge current of 00 mA until the battery voltage reached 1.4 V, and charging and discharging were repeated until the battery capacity reached 350 mAh.
この結果を、第1図に示す。 The result is shown in FIG.
一方、各電池の初期不良率を調べた。初期不良率は、
充放電サイクルが20回を経過した時点で、各同一条件の
電池20セル中における初期不良セル数より算出したもの
である。Meanwhile, the initial failure rate of each battery was examined. The initial failure rate is
It is calculated from the initial number of defective cells in 20 cells under the same conditions when the number of charge / discharge cycles has elapsed 20 times.
この結果を、第1表に示す。 The results are shown in Table 1.
第1図及び第1表から明らかなように、本発明電池A
は、比較電池B、C、Dに比べ、初期不良率が極めて低
く、優れたサイクル特性を有することが理解される。 As apparent from FIG. 1 and Table 1, the battery A of the present invention was used.
It is understood that the test sample has an extremely low initial failure rate and excellent cycle characteristics as compared with the comparative batteries B, C, and D.
尚、本実施例では、亜鉛粉末に添加剤である金属を添
加して表面を改質若しくは表面に付加する方法として、
イオン交換反応を用いたが、亜鉛と他金属の共融物を噴
射させて得た粉末を用いても同等の効果が得られる。ま
た、酸化亜鉛に他金属である添加剤を 添加して表面を
改質若しくは表面に付加する方法としては、他金属塩の
溶液を用いる方法以外に無電解メッキ法や蒸着法等が考
えられるが、これらについても同等の効果が得られるの
は言うまでもない。In this embodiment, as a method of modifying the surface or adding to the surface by adding a metal as an additive to zinc powder,
Although an ion exchange reaction was used, the same effect can be obtained by using a powder obtained by spraying a eutectic of zinc and another metal. As a method for modifying or adding a surface to the surface by adding an additive of another metal to zinc oxide, other than a method using a solution of a salt of another metal, an electroless plating method, a vapor deposition method, or the like can be considered. Needless to say, the same effect can be obtained for these.
また、亜鉛や酸化亜鉛に添加する添加剤としてインジ
ウムの例を示したが、亜鉛よりも酸化還元電位が貴であ
り且つ水素過電圧が亜鉛よりも大きい元素であれば、金
属あるいはその化合物の形態であっても同様の効果が期
待できる。尚添加剤中に含有せる元素としては、前記イ
ンジウム以外に、タリウム、スズ、ビスマス、カドミウ
ム等を用いることができる。Also, an example of indium was shown as an additive to be added to zinc or zinc oxide. However, as long as the element has a redox potential nobleer than zinc and a hydrogen overpotential larger than zinc, it is in the form of a metal or a compound thereof. Even if there is, the same effect can be expected. As an element to be contained in the additive, thallium, tin, bismuth, cadmium and the like can be used in addition to indium.
(ト) 発明の効果 本発明のアルカリ蓄電池用亜鉛極の製造方法によれ
ば、亜鉛極における添加剤の分散性が向上しその添加効
果を十分に発揮させ、樹枝状亜鉛生長に起因させる初期
不良率を極めて低く抑えることが可能となり、サイクル
特性に優れたアルカリ蓄電池を提供することができるの
で、その工業的価値は極めて大きい。(G) Effect of the Invention According to the method for producing a zinc electrode for an alkaline storage battery of the present invention, the dispersibility of the additive in the zinc electrode is improved, the effect of the addition is sufficiently exerted, and the initial failure caused by dendritic zinc growth. The rate can be kept extremely low, and an alkaline storage battery having excellent cycle characteristics can be provided, so that its industrial value is extremely large.
第1図は電池のサイクル特性比較図である。 A……本発明電池、 B、C、D……比較電池。 FIG. 1 is a comparison diagram of cycle characteristics of a battery. A: battery of the present invention, B, C, D: comparative battery.
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭63−158749(JP,A) 特開 昭63−158750(JP,A) (58)調査した分野(Int.Cl.6,DB名) H01M 4/24 - 4/26 H01M 4/42 H01M 4/62────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-63-1558749 (JP, A) JP-A-63-158750 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) H01M 4/24-4/26 H01M 4/42 H01M 4/62
Claims (1)
水素過電圧が大きく且つ酸化還元電位が貴である元素を
含む添加剤を夫々添加して表面を改質若しくは表面に付
加した後、該亜鉛粉末と該酸化亜鉛粉末とを混合して導
電芯体に保持させることを特徴とするアルカリ蓄電池用
亜鉛極の製造方法。(1) After adding an additive containing an element having a larger hydrogen overpotential than zinc and a noble redox potential to zinc powder and zinc oxide powder to modify or add the surface to the surface, A method for producing a zinc electrode for an alkaline storage battery, comprising mixing zinc powder and the zinc oxide powder and holding the mixture on a conductive core.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1263284A JP2846673B2 (en) | 1989-10-09 | 1989-10-09 | Method for producing zinc electrode for alkaline storage battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1263284A JP2846673B2 (en) | 1989-10-09 | 1989-10-09 | Method for producing zinc electrode for alkaline storage battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH03127451A JPH03127451A (en) | 1991-05-30 |
JP2846673B2 true JP2846673B2 (en) | 1999-01-13 |
Family
ID=17387330
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1263284A Expired - Fee Related JP2846673B2 (en) | 1989-10-09 | 1989-10-09 | Method for producing zinc electrode for alkaline storage battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2846673B2 (en) |
-
1989
- 1989-10-09 JP JP1263284A patent/JP2846673B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH03127451A (en) | 1991-05-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3642539A (en) | Secondary battery with indate ion in the electrolyte | |
JP2846673B2 (en) | Method for producing zinc electrode for alkaline storage battery | |
JP2562669B2 (en) | Alkaline storage battery | |
JP3183073B2 (en) | Active material for nickel electrode and method for producing the same | |
JP2987873B2 (en) | Alkaline storage battery | |
JPH09180717A (en) | Nickel electrode for alkaline storage battery | |
JPH06260166A (en) | Nickel electrode for alkaline storage battery | |
JPS6188453A (en) | Nickel positive electrode for alkaline storage battery | |
JPH079806B2 (en) | Zinc electrode for alkaline storage battery | |
JP2735887B2 (en) | Zinc active material for alkaline storage battery and method for producing the same | |
JPH073793B2 (en) | Alkaline zinc storage battery | |
JP3118812B2 (en) | Alkaline storage battery | |
JP2614486B2 (en) | Alkaline zinc storage battery | |
JP2578633B2 (en) | Zinc electrode for alkaline storage batteries | |
JP2538303B2 (en) | Zinc electrode for alkaline storage battery | |
JPH079807B2 (en) | Zinc electrode for alkaline storage battery | |
JPH11204104A (en) | Nickel-hydrogen secondary battery and manufacture of hydrogen storage alloy thereof | |
JP2589750B2 (en) | Nickel cadmium storage battery | |
JP2734149B2 (en) | Manufacturing method of paste-type cadmium negative electrode | |
JP2931316B2 (en) | Manufacturing method of alkaline zinc storage battery | |
JP3233013B2 (en) | Nickel electrode for alkaline storage battery | |
JP2007234440A (en) | Nickel-hydrogen battery and its manufacturing method | |
CN1747207A (en) | Positive conducting agent with nickel of basic accumulator | |
JPH07114122B2 (en) | Zinc electrode for alkaline storage battery | |
JPS58137966A (en) | Zinc electrode |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |