【発明の詳細な説明】
産業上の利用分野
本発明は、4′−イソプロピルビフェニル−4−カル
ボン酸の製造方法に関する。
ビフェニル−4,4′−ジカルボン酸は、高耐熱性、高
弾性および高張力などの優れた特性を有するポリエステ
ルあるいはアラミド樹脂の原料として注目されている
が、本発明の4′−イソプロピルビフェニル−4−カル
ボン酸はこのビフェニル−4,4′−ジカルボン酸の製造
用原料として有用な化学物質である。すなわち、4′−
イソプロピルビフェニル−4−カルボン酸を分子状酸素
で酸化することにより、容易に、しかも高収率でビフェ
ニル−4,4′−ジカルボン酸を得ることができる。
従来の技術
従来、ビフェニル4,4′−ジカルボン酸の製造法とし
て、以下の方法が知られている。
(1)ビフェニルをアセチル化して得た4,4′−ジアセ
チルビフェニルを次亜塩素酸塩で酸化する方法。(Ukr.
Khim.Zh.,30巻 938〜941頁(1964))
(2)P−ブロムトルエンをエーテル中マグネシウムを
用いて4,4′−ジメチルビフェニルとし、これを酢酸
中、コバルトおよび臭素触媒で酸化する方法。(Zh.Pri
ki.Khim.,40巻 935頁(1967))
(3)ビフェニルをニトロベンゼンあるいは二硫化炭素
溶媒中、塩化鉄、塩化アルミニウムなどを触媒として、
ハロゲン化シクロヘキサンと反応させ、4,4′−ジシク
ロヘキシルビフェニルとし、これを酢酸中コバルト、マ
ンガン、臭素触媒存在下で酸化する方法。(特開昭57−
16831号公報)
(4)4−アルキルビフェニルを、弗化水素溶媒中、BF
3を触媒として一酸化炭素と反応させ、4−アルキル−
4′−ホルミルビフェニルとし、次いでこれを酢酸中、
コバルト、マンガン、臭素触媒の存在化で酸化する方
法。(特開昭60−174745号公報)
しかしながら、これらの従来方法には、次のような問
題点がある。すなわち、
(1)法は、アセチル化の触媒として、再生が困難で腐
食性の強い塩化アルミニウムを多量に必要とする反応で
あり、また、次亜塩素酸塩による酸化も腐食が大きく、
工業的には実施しがたい。
(2)法は、高価なマグネシウムを消費するグリニャー
ル反応により原料4,4′−ジアセチルビフェニルを得る
ものであり実用的でない。
(3)法は、(1)法と同様、再生困難で、かつ腐食性
の強い、塩化鉄、塩化アルミニウム等を触媒とし、しか
も可燃性、毒性の危険が大きいニトロベンゼンあるい
は、二硫化炭素を溶媒として、原料4,4′−ジシクロヘ
キシルビフェニルを得るものであり、工業的実施には問
題が大きい。更に、この原料を酸化した場合、高価なシ
クロヘキシル基が酸化損失するので、工業的には実施し
がたい。
(4)法は、原料の4−アルキル−4′−ホルミルビフ
ェニルを得るために、腐食性が大きい弗化水素および、
BF3を使用しており、そのために反応装置を高価な耐腐
食性のものとする必要があり、しかも4,4′−体以外の
ジ置換体が生成するので、精製が煩雑となる欠点があ
る。
ビフェニル−4,4′−ジカルボン酸の製造方法として
従来提案された上記の方法は、それぞれ欠点をもち、そ
のために改良努力が重ねられているが未だ充分な効果を
あげるには至っていない。そのためビフェニル−4,4′
−ジカルボン酸の価格の高いことが用途拡大の障害とな
っている。
発明が解決しようとする問題点
本発明者らは、ビフェニル誘導体を分子状酸素で酸化
して得ビフェニル−4,4′−ジカルボン酸を製造する方
法を検討するにあたり、上記従来技術の欠点を克服し
て、原料のビフェニル誘導体が容易に入手でき、しかも
高収率で精製容易なビフェニル−4,4′−ジカルボン酸
を製造する方法を開発すべく鋭意研究を行なった。その
結果、4′−イソプロピルビフェニル−4−ジカルボン
酸が4,4′−ジイソプロピルビフェニルを酸化すること
により製造することができ、しかもこの4′−イソプロ
ピルビフェニル−4−ジカルボン酸を分子状酸素で酸化
することにより高収率で容易にビフェニル−4,4′−ジ
カルボン酸を得ることができることを見出し、本発明を
完成するに至った。
発明の構成
本発明によれば、4,4′−ジイソプロピルビフェニル
を、炭素数3以下の脂肪族モノカルボン酸溶液中で、コ
バルト触媒および/またはマンガン触媒の存在下に、分
子状酸素で酸化することを特徴とする4′−イソプロピ
ルビフェニル−4−カルボン酸の製造方法が提供され
る。
(4′−イソプロピルビフェニル−4−カルボン酸の物
性)
本発明の目的物である4′−イソプロピルビフェニル
−4−カルボン酸の確認資料として、表−1にその理化
学的性質を示す。
(4′−イソプロピルビフェニル−4−カルボン酸の製
造法)
次に、本発明に係る4′−イソプロピルビフェニル−
4−カルボン酸の製造方法について説明する。
先ず、本発明で使用する原料の4,4′−ジイソプロピ
ルビフェニルは、、ビフェニルを公知の方法でプロピル
化およびトランスアルキル化して得られるジイソプロピ
ル含有率の高い混合物から、ジイソプロピルビフェニル
類を蒸留によって分離し、次いで該ジイソプロピルビフ
ェニル類から結晶性の相違を利用して、4,4′−ジイソ
プロピルビフェニルを晶析分離し、高純度、すなわち9
9.8%以上の純度のものを得て使用した。
出発原料の4,4′−ジイソプロピルビフェニルを、炭
素数3以下の脂肪族モノカルボン酸溶媒中、コバルト触
媒および/またはマンガン触媒の存在下に、分子状酸素
で酸化し、4′−イソプロピルビフェニル−4−カルボ
ン酸を製造する。
溶媒の使用量は、原料および目的4′−イソプロピル
ビフェニル−4−カルボン酸の合計重量に対し、2〜20
重量倍が使用に便利である。
溶媒として、ギ酸、酢酸、プロピオン酸等の脂肪族モ
ノカルボン酸が挙げられるが、特に酢酸が好ましい。
コバルト触媒およびマンガン触媒としては、酸化反応
系で溶解しうる形態であれば、金属もしくは化合物のい
ずれであってもよく、例えば、酸化物;水酸化物;炭酸
塩、塩基性炭酸塩、ハロゲン化物等の無機塩;ギ酸、酢
酸、プロピオン酸、ナフテン酸、芳香族カルボン酸等の
有機カルボン酸との塩が挙げあられ、これらの内、好ま
しいのは脂肪酸塩、特に酢酸塩である。
また、酸化反応の温度は、100℃〜240℃が好ましい。
酸化反応圧力は、反応温度条件下で溶媒が液相を保つ
に必要な圧力以上であればよく、酸素分圧の高い方が良
い。
酸素分圧としては0.1〜8Kg/cm2−abs.で充分である。
不活性ガスで希釈された分子状酸素、例えば空気の場
合、全圧はゲージ圧0〜30Kg/cm2の範囲である。
酸化反応は、回分式あるいは連続式のいずれの方式で
も実施できる。
以下、実施例により本発明を詳述する。
実施例
200cc.ステンレス製オートクレーブに、4,4′−ジイ
ソプロピルビフェニル10g、氷酢酸100g、酢酸コバルト
・4水塩6.4g、酢酸マンガン・4水塩18.9gを入れ、温
度180℃、ゲージ圧15kg/cm2の圧力に保ち、激しく撹拌
しながら空気を標準状態換算で、毎時24の割合で、2.
5時間導入した。
反応後、90℃まで冷却し、内容物を濾過、少量の酢酸
で析出物を洗浄後、乾燥し、粗4′−イソプロピルビフ
ェニル−4−カルボン酸から成る析出物(A)2.81gを
得た。
この析出物2.7gを100mlのメチルエチルケトンに溶解
し、活性炭0.5gを加え濾過し、濾液より溶媒を留去、残
った固形物をベンゼン100mlから再結晶し、純度99.9%
の4′−イソプロピルビフェニル−4−カルボン酸0.54
gを得た。
また、析出物(A)を高速液体クロマトグラフィーに
より分析(※1)したところ、4′−イソプロピルビフ
ェニル−4−カルボン酸80.5重量%、ビフェニル−4,
4′−ジカルボン酸9.0重量%の組成からなり、残りは主
に触媒のコバルト及びマンガンの酢酸塩であった。
更に、析出物(A)を濾別した濾液と洗浄液を合せ
(B)ガスクロマトグラフィーで分析(※2)したとこ
ろ4′−イソプロピルビフェニル−4−カルボン酸が、
4.60g、未反応4,4′−ジイソプロピルビフェニルが2.64
g含まていた。
従って、析出物(A)と濾液、洗浄液(B)の分析結
果から、原料4,4′−ジイソプロピルビフェニルに対す
る収率は、4′−イソプロピルビフェニル−4−カルボ
ン酸68.0%、ビフェニル−4,4′−ジカルボン酸2.5%、
未反応4,4′−ジイソプロピルビフェニル26.4%であっ
た。また、4′−イソプロピルビフェニル−4−カルボ
ン酸の選択率は92.4%と高かった。
なお、上記の方法で精製して得た、純度99.8〜99.9%
の4′−イソプロピルビフェニル−4−カルボン酸10g
を200cc.のチタン製オートクレーブに入れ、これに氷酢
酸100g、酢酸コバルト・4水塩0.5g、酢酸マンガン・4
水塩1.0g、臭化アンモニウム0.05gを入れ、温度180℃、
ゲージ圧15Kg/cm2の圧力を保ち、激しく撹拌しながら空
気を標準状態換算で毎時24の割合で2時間導入し酸化
した。
反応後、冷却し、酢酸にほとんど溶解しないため析出
しているビフェニル−4,4′−ジカルボン酸を濾別、水
洗し、純度96.7%のビフェニル−4,4′−ジカルボン酸
8.3gを得た。原料の4′−イソプロピルビフェニル−4
−カルボン酸に対する収率は82.3%であった。
4,4′−ジイソプロピルビフェニルから4′−イソプ
ロピルビフェニル−4−カルボン酸への選択率が92.4%
であったから、4,4′−ジイソプロピルビフェニルから7
6.0%の高選択率で、ビフェニル−4,4′−ジカルボン酸
が生成したことになる。
一方、4′−イソプロピルビフェニル−4−カルボン
酸の代りに、4,4′−ジイソプロピルビフェニル10gを用
い、上述と同様に酸化した所、純度68.7%の粗ビフェニ
ル−4,4′−ジカルボン酸5.73gを得たのみで、原料4,
4′−ジイソプロピルビフェニルに対する収率は38.7%
であった。
この時、濾液、洗浄液の分析からは、未反応4,4′−
ジイソプロピルビフェニル、4′−イソプロピルビフェ
ニル−4−カルボン酸およびビフェニル−4,4′−ジカ
ルボン酸はほとんど検出されず、ビフェニル−4,4′−
ジカルボン酸の選択率は38.7%と低い結果であった。
※1[高速液体クロマト分析法]
カラムはLichrosorb−RP−8(Cica−Merck社製)とR
adial−Pak Cartridge C−8(Waters社製)を連結して
使用した。移動相として、リン酸でPH=3とした水/ア
セトニトリル=45/55(容量比)を用い、流速1.0ml/min
とした。検出は、波長260nmのUVモニター使用した。
※2[ガスクロマト分析法]
試料をアンバーリスト15(オルガノ工業社製の商品
名)で脱メタル処理後、トリメチルシリル化しSilicone
SE−30、2%(ガスクロ工業社製)の1mガラスカラム
を用いて分析し、100℃から250℃まで10℃/min.で昇
温、検出はFIDを使用した。
発明の効果
本発明の4′−イソプロピルビフェニル−4−カルボ
ン酸の製造方法によれば、
(1)出発原料の4,4′−ジイソプロピルビフェニルの
入手が容易であり、
(2)酸化触媒がコバルト触媒やマンガン触媒であるか
ら、反応装置として汎用の材質のもの、例えばステンレ
ス材のものが使用でき、
(3)また、生成物の4′−イソプロピルビフェニル−
4−カルボン酸を分子状酸素により酸化すれば、容易に
ビフェニル−4,4′−ジカルボン酸を製造することがで
きる。しかも、4,4′−ジイソプロピルビフェニルを、
炭素数3以下の脂肪族モノカルボン酸を少なくとも50重
量%含有する触媒中で、コバルト触媒および/またはマ
ンガン触媒と臭素化合物触媒の存在下、分子状酸素によ
り酸化してビフェニル−4,4′−ジカルボン酸を製造す
る方法よりも、同じ方法で被酸化物として単離した4′
−イソプロピルビフェニル−4−カルボン酸を使用すれ
ば、より収率よく目的化合物を得ることができる。Description: TECHNICAL FIELD The present invention relates to a method for producing 4′-isopropylbiphenyl-4-carboxylic acid. Biphenyl-4,4'-dicarboxylic acid has attracted attention as a raw material of polyester or aramid resin having excellent properties such as high heat resistance, high elasticity and high tension. -Carboxylic acid is a useful chemical as a raw material for producing this biphenyl-4,4'-dicarboxylic acid. That is, 4'-
By oxidizing isopropyl biphenyl-4-carboxylic acid with molecular oxygen, biphenyl-4,4'-dicarboxylic acid can be obtained easily and in high yield. 2. Description of the Related Art Conventionally, the following methods have been known as methods for producing biphenyl 4,4'-dicarboxylic acid. (1) A method of oxidizing 4,4'-diacetylbiphenyl obtained by acetylating biphenyl with hypochlorite. (Ukr.
Khim. Zh., Vol. 30, pp. 938-941 (1964)) (2) P-bromotoluene is converted to 4,4'-dimethylbiphenyl using magnesium in ether, and this is oxidized in acetic acid with a cobalt and bromine catalyst. Method. (Zh.Pri
ki.Khim., vol. 40, p. 935 (1967)) (3) Biphenyl in nitrobenzene or carbon disulfide solvent, using iron chloride, aluminum chloride, etc. as catalyst
A method of reacting with halogenated cyclohexane to give 4,4'-dicyclohexylbiphenyl, which is oxidized in acetic acid in the presence of a cobalt, manganese or bromine catalyst. (Japanese Patent Laid-Open No. 57-
No. 16831) (4) A 4-alkylbiphenyl is converted to BF in a hydrogen fluoride solvent.
3 as a catalyst and react with carbon monoxide to form a 4-alkyl-
4'-formylbiphenyl, which was then dissolved in acetic acid
A method of oxidizing in the presence of a cobalt, manganese, or bromine catalyst. However, these conventional methods have the following problems. That is, the method (1) is a reaction requiring a large amount of aluminum chloride, which is difficult to regenerate and is highly corrosive, as an acetylation catalyst, and oxidation by hypochlorite is also highly corrosive.
It is difficult to implement industrially. The method (2) is not practical because the raw material 4,4'-diacetylbiphenyl is obtained by a Grignard reaction that consumes expensive magnesium. The method (3) uses, as in the method (1), nitrobenzene or carbon disulfide which is difficult to regenerate and is highly corrosive, using iron chloride, aluminum chloride, or the like as a catalyst, and is highly flammable and highly toxic. As a result, 4,4'-dicyclohexylbiphenyl is obtained as a raw material, which is problematic in industrial practice. Furthermore, when this raw material is oxidized, an expensive cyclohexyl group is oxidized and lost, so that it is industrially difficult to carry out. (4) In the method, in order to obtain 4-alkyl-4'-formylbiphenyl as a raw material, highly corrosive hydrogen fluoride and
Since BF 3 is used, it is necessary to make the reactor expensive and corrosion-resistant, and disubstitutes other than the 4,4'-form are generated, so that the purification becomes complicated. is there. Each of the above-mentioned processes conventionally proposed as a process for producing biphenyl-4,4'-dicarboxylic acid has its own drawbacks, and efforts have been made to improve them, but they have not yet been able to achieve a sufficient effect. Therefore biphenyl-4,4 '
-The high price of dicarboxylic acids is an obstacle to expanding applications. DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention The present inventors have overcome the above-mentioned disadvantages of the prior art in studying a method for producing biphenyl-4,4'-dicarboxylic acid by oxidizing a biphenyl derivative with molecular oxygen. The present inventors have conducted intensive studies to develop a method for producing biphenyl-4,4'-dicarboxylic acid, which can easily obtain a raw material biphenyl derivative and can be easily purified in a high yield. As a result, 4'-isopropylbiphenyl-4-dicarboxylic acid can be produced by oxidizing 4,4'-diisopropylbiphenyl, and this 4'-isopropylbiphenyl-4-dicarboxylic acid is oxidized with molecular oxygen. By doing so, it was found that biphenyl-4,4'-dicarboxylic acid could be easily obtained in high yield, and the present invention was completed. According to the present invention, 4,4'-diisopropylbiphenyl is oxidized with molecular oxygen in an aliphatic monocarboxylic acid solution having 3 or less carbon atoms in the presence of a cobalt catalyst and / or a manganese catalyst. A process for producing 4'-isopropylbiphenyl-4-carboxylic acid is provided. (Physical properties of 4'-isopropylbiphenyl-4-carboxylic acid) Table 1 shows physical and chemical properties of 4'-isopropylbiphenyl-4-carboxylic acid, which is the object of the present invention, as identification data. (Method for producing 4'-isopropylbiphenyl-4-carboxylic acid) Next, 4'-isopropylbiphenyl-carboxylic acid according to the present invention is used.
The method for producing 4-carboxylic acid will be described. First, 4,4'-diisopropylbiphenyl as a raw material used in the present invention is obtained by separating diisopropylbiphenyls from a mixture having a high content of diisopropyl obtained by propylation and transalkylation of biphenyl by a known method, by distillation. Then, by utilizing the difference in crystallinity from the diisopropyl biphenyls, 4,4′-diisopropyl biphenyl is separated by crystallization and has a high purity, that is, 9
Purity of 9.8% or more was obtained and used. The starting material 4,4'-diisopropylbiphenyl is oxidized with molecular oxygen in an aliphatic monocarboxylic acid solvent having 3 or less carbon atoms in the presence of a cobalt catalyst and / or a manganese catalyst to give 4'-isopropylbiphenyl- Produce 4-carboxylic acid. The amount of the solvent used is 2 to 20% based on the total weight of the raw material and the target 4'-isopropylbiphenyl-4-carboxylic acid.
Weight times are convenient to use. Examples of the solvent include aliphatic monocarboxylic acids such as formic acid, acetic acid, and propionic acid, and acetic acid is particularly preferable. The cobalt catalyst and the manganese catalyst may be any metal or compound as long as they can be dissolved in the oxidation reaction system. For example, oxides, hydroxides, carbonates, basic carbonates, and halides And the like; salts with organic carboxylic acids such as formic acid, acetic acid, propionic acid, naphthenic acid and aromatic carboxylic acids. Among these, preferred are fatty acid salts, particularly acetate salts. Further, the temperature of the oxidation reaction is preferably from 100 ° C to 240 ° C. The oxidation reaction pressure may be higher than the pressure required for the solvent to maintain a liquid phase under the reaction temperature condition, and the higher the oxygen partial pressure, the better. An oxygen partial pressure of 0.1 to 8 kg / cm 2 -abs. Is sufficient.
In the case of molecular oxygen diluted with an inert gas, such as air, the total pressure is in the range of 0 to 30 kg / cm 2 gauge pressure. The oxidation reaction can be carried out in either a batch system or a continuous system. Hereinafter, the present invention will be described in detail with reference to examples. Example 200 In a stainless steel autoclave, 10 g of 4,4′-diisopropylbiphenyl, 100 g of glacial acetic acid, 6.4 g of cobalt acetate tetrahydrate, and 18.9 g of manganese acetate tetrahydrate were placed, and the temperature was 180 ° C. and the gauge pressure was 15 kg / g. While maintaining a pressure of 2 cm2 and stirring vigorously, air was converted to standard conditions at a rate of 24 per hour.
Introduced for 5 hours. After the reaction, the mixture was cooled to 90 ° C., the content was filtered, the precipitate was washed with a small amount of acetic acid, and then dried to obtain 2.81 g of a precipitate (A) composed of crude 4′-isopropylbiphenyl-4-carboxylic acid. . Dissolve 2.7 g of this precipitate in 100 ml of methyl ethyl ketone, add 0.5 g of activated carbon, filter, remove the solvent from the filtrate, recrystallize the remaining solid from 100 ml of benzene, and purify 99.9%.
4'-isopropylbiphenyl-4-carboxylic acid 0.54
g was obtained. When the precipitate (A) was analyzed by high performance liquid chromatography (* 1), 80.5% by weight of 4'-isopropylbiphenyl-4-carboxylic acid, biphenyl-4,
The composition consisted of 9.0% by weight of 4'-dicarboxylic acid, the balance being mainly the cobalt and manganese acetates of the catalyst. Further, the filtrate obtained by separating the precipitate (A) by filtration and the washing liquid were combined and (B) analyzed by gas chromatography (* 2). As a result, 4′-isopropylbiphenyl-4-carboxylic acid was obtained.
4.60 g, 2.64 g of unreacted 4,4'-diisopropylbiphenyl
g was included. Therefore, from the results of analysis of the precipitate (A), the filtrate and the washing solution (B), the yield based on the starting material 4,4'-diisopropylbiphenyl was 68.0% for 4'-isopropylbiphenyl-4-carboxylic acid and biphenyl-4,4 2.5% of '-dicarboxylic acid,
Unreacted 4,4'-diisopropylbiphenyl was 26.4%. The selectivity for 4'-isopropylbiphenyl-4-carboxylic acid was as high as 92.4%. In addition, purity 99.8-99.9% obtained by refine | purifying by the said method.
10 g of 4'-isopropylbiphenyl-4-carboxylic acid
Was placed in a 200 cc titanium autoclave, into which 100 g of glacial acetic acid, 0.5 g of cobalt acetate tetrahydrate, and 4 g of manganese acetate were added.
1.0 g of water salt and 0.05 g of ammonium bromide were added.
While maintaining a gauge pressure of 15 kg / cm 2 , air was introduced at a rate of 24 per hour in terms of standard conditions for 2 hours with vigorous stirring to oxidize. After the reaction, the reaction mixture is cooled, and the biphenyl-4,4'-dicarboxylic acid which has been precipitated since it hardly dissolves in acetic acid is separated by filtration, washed with water, and biphenyl-4,4'-dicarboxylic acid having a purity of 96.7%.
8.3 g were obtained. Starting material 4'-isopropylbiphenyl-4
-The yield based on carboxylic acid was 82.3%. 92.4% selectivity from 4,4'-diisopropylbiphenyl to 4'-isopropylbiphenyl-4-carboxylic acid
From 4,4'-diisopropylbiphenyl to 7
This means that biphenyl-4,4'-dicarboxylic acid was produced with a high selectivity of 6.0%. On the other hand, instead of 4'-isopropylbiphenyl-4-carboxylic acid, 10 g of 4,4'-diisopropylbiphenyl was used and oxidized in the same manner as described above to obtain crude biphenyl-4,4'-dicarboxylic acid having a purity of 68.7% 5.73% g, only raw material 4,
The yield based on 4'-diisopropylbiphenyl was 38.7%.
Met. At this time, from the analysis of the filtrate and the washing solution, unreacted 4,4'-
Diisopropyl biphenyl, 4'-isopropyl biphenyl-4-carboxylic acid and biphenyl-4,4'-dicarboxylic acid were hardly detected, and biphenyl-4,4'-
The selectivity of dicarboxylic acid was as low as 38.7%. * 1 [High-performance liquid chromatographic analysis] The columns are Lichrosorb-RP-8 (Cica-Merck) and R
adial-Pak Cartridge C-8 (Waters) was used in connection. As a mobile phase, water / acetonitrile = 45/55 (volume ratio) in which PH = 3 with phosphoric acid was used, and the flow rate was 1.0 ml / min.
And For detection, a UV monitor at a wavelength of 260 nm was used. * 2 [Gas chromatographic analysis method] After demetallizing the sample with Amberlyst 15 (trade name, manufactured by Organo Industries, Ltd.), trimethylsilyl was converted to Silicone.
Analysis was carried out using a 1 m glass column of SE-30, 2% (manufactured by Gaschrom Industry Co., Ltd.), and the temperature was raised from 100 ° C. to 250 ° C. at 10 ° C./min. Effects of the Invention According to the method for producing 4'-isopropylbiphenyl-4-carboxylic acid of the present invention, (1) it is easy to obtain 4,4'-diisopropylbiphenyl as a starting material, and (2) cobalt oxide is used as an oxidation catalyst. Since it is a catalyst or a manganese catalyst, a general-purpose material such as a stainless steel can be used for the reaction device. (3) Also, the product 4'-isopropylbiphenyl-
By oxidizing 4-carboxylic acid with molecular oxygen, biphenyl-4,4'-dicarboxylic acid can be easily produced. Moreover, 4,4'-diisopropylbiphenyl is
In a catalyst containing at least 50% by weight of an aliphatic monocarboxylic acid having 3 or less carbon atoms, biphenyl-4,4'- is oxidized with molecular oxygen in the presence of a cobalt catalyst and / or a manganese catalyst and a bromine compound catalyst. 4 'isolated as an oxide by the same method, rather than the method for producing dicarboxylic acid
If -isopropylbiphenyl-4-carboxylic acid is used, the target compound can be obtained with higher yield.
【図面の簡単な説明】
第1図は、本願発明の製造方法により得られた化合物の
赤外線吸収スペクトル、第2図は、核磁気共鳴吸収(NM
R)スペクトル、第3図は、質量スペクトルである。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an infrared absorption spectrum of a compound obtained by the production method of the present invention, and FIG. 2 is a nuclear magnetic resonance absorption (NM)
R) Spectrum, FIG. 3 is a mass spectrum.
─────────────────────────────────────────────────────
フロントページの続き
(56)参考文献 特開 昭61−236747(JP,A)
特開 昭61−68444(JP,A)
特開 昭57−16831(JP,A)
特開 昭51−70198(JP,A)
特開 昭53−102290(JP,A)
特開 昭63−122645(JP,A)
J.Chem.Soc.,C.,Or
g.1966(6) P.840〜845 (特に
P.842 TABLE3)
Zhurnal Prikladno
j Khimii (1967) 40巻
P.935
────────────────────────────────────────────────── ───
Continuation of front page
(56) References JP-A-61-236747 (JP, A)
JP-A-61-68444 (JP, A)
JP-A-57-16831 (JP, A)
JP-A-51-70198 (JP, A)
JP-A-53-102290 (JP, A)
JP-A-63-122645 (JP, A)
J. Chem. Soc. , C.I. , Or
g. 1966 (6) 840-845 (especially
P. 842 TABLE3)
Zhurn Prikladno
j Khimii (1967) 40 volumes
P. 935