Nothing Special   »   [go: up one dir, main page]

JP2727205B2 - Method for improving segregation of continuous cast slab - Google Patents

Method for improving segregation of continuous cast slab

Info

Publication number
JP2727205B2
JP2727205B2 JP30394288A JP30394288A JP2727205B2 JP 2727205 B2 JP2727205 B2 JP 2727205B2 JP 30394288 A JP30394288 A JP 30394288A JP 30394288 A JP30394288 A JP 30394288A JP 2727205 B2 JP2727205 B2 JP 2727205B2
Authority
JP
Japan
Prior art keywords
slab
zone
segregation
molten steel
reduction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP30394288A
Other languages
Japanese (ja)
Other versions
JPH02151354A (en
Inventor
浩一 磯部
弘文 前出
三和人 野口
一郎 工藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP30394288A priority Critical patent/JP2727205B2/en
Publication of JPH02151354A publication Critical patent/JPH02151354A/en
Application granted granted Critical
Publication of JP2727205B2 publication Critical patent/JP2727205B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、連続鋳造法により製造される鋳片内部に形
成されるミクロ、セミマクロ、マクロ偏析を低減し、偏
析に起因して製品に出現する異常組織の発生や製品の機
械的特性の劣化防止を図るものである。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention reduces micro, semi-macro and macro segregation formed inside a slab produced by a continuous casting method, and anomalies appearing in products due to segregation. The purpose is to prevent generation of tissue and deterioration of mechanical properties of the product.

従来の技術 鋼を連続鋳造することは従来から実施されており、こ
の連続鋳造法により製造された鋳片のデンドライト樹間
にはミクロ偏析が、また、鋳片厚み中心部には粒状の偏
析がV状あるいは線、帯状に連なったV偏析や中心偏析
が形成され、これらの偏析に起因する品質の劣化が避け
られなかった。ミクロ偏析は固液共存相を有する金属が
凝固する際の固液間の溶質分配に起因して生成され、V
偏析や中心偏析は溶鋼静圧による凝固シェルのバルジン
グやミスアライメント等の機械的要因や凝固収縮、熱収
縮に起因するサクション(吸引)により樹間濃化溶鋼が
鋳片中心部に集積し生成される。
2. Description of the Related Art Continuous casting of steel has been conventionally performed, and micro-segregation occurs between dendrite trees of slabs produced by this continuous casting method, and granular segregation occurs in the center of slab thickness. V-shaped or linear or band-shaped V segregation and center segregation were formed, and quality deterioration due to these segregation was inevitable. Micro-segregation is generated due to solute distribution between solid and liquid when a metal having a solid-liquid coexisting phase is solidified.
Segregation and center segregation are produced by mechanical factors such as bulging and misalignment of the solidified shell due to the molten steel static pressure, and by suction (suction) caused by solidification shrinkage and heat shrinkage, and the dense wood melt is accumulated in the center of the slab. You.

従来より、このような機構で生成される偏析に対し、
種々の対策が提案され実施されてきた。
Conventionally, for segregation generated by such a mechanism,
Various measures have been proposed and implemented.

偏析の改善方法としては有害な偏析元素(例えばP、
S等)を溶鋼段階で予め低減しておく方法、電磁撹拌に
より凝固組織の等軸晶化および微細化により偏析を分散
させる方法、連続鋳造機のロール間隔を短縮しバルジン
グを抑制する方法等が一般に行なわれている。
As a method of improving segregation, harmful segregation elements (for example, P,
S) in advance in the molten steel stage, a method of dispersing segregation by equiaxed crystallization and refinement of the solidified structure by electromagnetic stirring, and a method of reducing bulging by shortening the roll interval of a continuous casting machine. Generally done.

また、凝固末期の鋳片をロールや面状、バー状の圧下
端子により圧下して凝固収縮や熱収縮を補償し、濃化溶
鋼の流動を抑制し、偏析を改善する方法(特公昭59−16
862号、特公昭59−16541、特公昭59−39225、特開昭56
−45256)が行なわれつつある。
In addition, a method of reducing the slab in the final stage of solidification with rolls, sheet-like or bar-shaped reduction terminals to compensate for solidification shrinkage and heat shrinkage, to suppress the flow of concentrated molten steel, and to improve segregation. 16
No. 862, JP-B-59-16541, JP-B-59-39225, JP-A-56
−45256) is taking place.

特公昭62−34460では電磁撹拌と凝固末期の圧下によ
り、マクロな中心偏析とV偏析を形成するセミマクロ偏
析を防止する方法が開示されている。
Japanese Patent Publication No. 62-34460 discloses a method for preventing semi-macro segregation which forms macro center segregation and V segregation by electromagnetic stirring and reduction at the end of solidification.

一方、連鋳鋳片内の冷却速度を低下し、δ→γ変態時
の溶質再分配および固相内の拡散を促進し、偏析の分離
や分散を図る方法(特開昭60−166150、特開昭62−674
4)が、さらに、特開昭61−154748ではδ→γ変態時の
溶質再分配による偏析分離効果を高める方法としてMoの
添加する偏析改善方法が提案されている。
On the other hand, a method of lowering the cooling rate in the continuous cast slab, promoting redistribution of solute during δ → γ transformation and diffusion in the solid phase, and separating or dispersing segregation (Japanese Patent Application Laid-Open No. 60-166150, Kaisho 62-674
4) In addition, Japanese Patent Application Laid-Open No. 61-154748 proposes a segregation improvement method in which Mo is added as a method for increasing the segregation separation effect by solute redistribution at the time of δ → γ transformation.

しかしながら、偏析厳格材である高級鋼の連鋳化や、
従来材の高品質化および工程省略等により、鋳片に許容
される偏析レベルが益々厳しくなり、以上述べたような
偏析対策では不十分となる場合がある。
However, continuous casting of high-grade steel, which is a strict segregation material,
Due to the high quality of the conventional material and the omission of the process, etc., the segregation level allowed for the cast slab becomes increasingly severe, and the segregation measures as described above may not be sufficient.

発明が解決しようとする課題 本発明は、従来の偏析対策ではその達成が困難であっ
た偏析レベルを満足し、従来対策で発生していた偏析起
因の異常組織や機械的特性の劣化を防止する偏析改善技
術を提供するものであり、この偏析改善技術により、従
来偏析が主因で達成できなかった高級鋼の連鋳化や、従
来材の高品質化、および工程省略等を可能とする方法を
提供しようとするものである。
Problems to be Solved by the Invention The present invention satisfies the segregation level that was difficult to achieve with conventional segregation countermeasures, and prevents the segregation-induced abnormal structure and deterioration of mechanical properties caused by conventional countermeasures. It provides segregation improvement technology, and this segregation improvement technology provides a method that enables continuous casting of high-grade steel that could not be achieved mainly due to segregation, higher quality of conventional materials, and omission of processes. It is something to offer.

課題を解決するための手段 上記課題を解決するための本発明は、以下の7項であ
る。
Means for Solving the Problems The present invention for solving the above problems is the following seven items.

(1)連続鋳造法により鋳片を製造するに際し、タンデ
ィッシュにおける溶鋼過熱度を5〜50℃に制御し、鋳型
または鋳型とそれに引続く2次冷却帯〜凝固完了位置間
に設けた電磁撹拌装置により溶鋼を撹拌しながら鋳造を
行ない、2次冷却帯以降の少なくとも2次冷却帯出側〜
圧下帯入側の間に加熱帯または保温帯と加熱帯を設けて
鋳片を加熱あるいは保温、加熱すると共に、鋳片断面中
心部の固相率が0.3〜0.8の範囲において鋳片に4mm以上
の圧下を加えることを特徴とする連鋳鋳片の偏析改善方
法。
(1) In producing a slab by the continuous casting method, the degree of superheat of molten steel in a tundish is controlled at 5 to 50 ° C., and a magnetic stirring is provided between a mold or a mold and a subsequent secondary cooling zone to a solidification completion position. Casting is performed while stirring the molten steel by the device, and at least the secondary cooling zone exit side after the secondary cooling zone
A heating zone or a heating zone and a heating zone are provided between the reduction zone entrance side to heat or heat and heat the slab, and the slab is 4 mm or more when the solid phase ratio at the center of the slab cross section is 0.3 to 0.8. A method for improving segregation of continuously cast slabs, characterized by applying a reduction of (a).

(2)第1項記載の方法において、圧下帯長さを2m以上
とし、ロールピッチ500mm以下に設定された複数対のロ
ールにより鋳片を圧下する方法。
(2) The method according to (1), wherein the slab is reduced by a plurality of pairs of rolls having a reduction band length of 2 m or more and a roll pitch of 500 mm or less.

(3)第1項記載の方法において、鋳片搬送機構を有す
る圧下装置を設け、面状またはバー状の圧下端子により
鋳片を圧下する方法。
(3) The method according to (1), further comprising the step of providing a pressing device having a slab conveying mechanism, and reducing the slab by a planar or bar-shaped pressing terminal.

(4)タンディッシュの溶鋼過熱度を5〜50℃に制御す
るために誘導加熱装置または冷材添加装置あるいは両装
置をタンディッシュに設け、第1項記載の方法を適用す
る連続鋳造方法。
(4) A continuous casting method in which an induction heating device or a cooling material adding device or both devices are provided in a tundish in order to control the degree of superheat of molten steel in the tundish to 5 to 50 ° C., and the method described in item 1 is applied.

(5)タンディッシュの溶鋼温度、鋳型冷却水量および
鋳型冷却水の温度変化等の1次冷却操業条件と2次冷却
水量等の2次冷却操業条件、保温帯の保温能力および加
熱帯の操業条件、雰囲気温度、鋳片サイズおよび鋳造速
度からなるプロセス情報に基づき凝固計算を行ない、圧
下帯における鋳片断面中心部の固相率が0.3〜0.8の範囲
になるよう、あるいは圧下帯が鋳片断面中心部の固相率
が0.3〜0.8の範囲を含むよう2次冷却水量や加熱帯操業
条件および鋳造速度を制御する方法を組合せる、第1項
記載の方法。
(5) Primary cooling operation conditions such as the temperature of molten steel in the tundish, mold cooling water amount and temperature change of mold cooling water, secondary cooling operation conditions such as secondary cooling water amount, heat insulation capacity of the heat insulation zone, and operation conditions of the heating zone. The solidification calculation is performed based on the process information consisting of the ambient temperature, the slab size, and the casting speed, so that the solid phase ratio at the center of the slab cross section in the reduction zone is in the range of 0.3 to 0.8, or the reduction zone is the slab cross section. 2. The method according to claim 1, wherein a method of controlling the secondary cooling water amount, the operating conditions of the heating zone, and the casting speed is combined so that the solid fraction in the center portion is in the range of 0.3 to 0.8.

(6)タンディッシュの溶鋼温度は、鋳型冷却水量およ
び鋳型冷却水の温度変化等の1次冷却操業条件と2次冷
却水量等の2次冷却操業条件、保温帯の保温能力および
加熱帯の操業条件、雰囲気温度、鋳片サイズおよび鋳造
速度からなるプロセス情報に基づき凝固計算を行ない、
圧下帯が鋳片断面中心部の固相率が0.3〜0.8の範囲に来
るよう、あるいは圧下帯が鋳片断面中心部の固相率が0.
3〜0.8の範囲を含むよう圧下帯位置を制御する方法を組
合せる、第1項記載の方法。
(6) The temperature of the molten steel in the tundish is determined by the primary cooling operation conditions such as the amount of mold cooling water and the temperature change of the mold cooling water, the secondary cooling operation conditions such as the amount of secondary cooling water, the heat insulation capacity of the heat insulation zone, and the operation of the heating zone. Perform solidification calculation based on process information consisting of conditions, ambient temperature, slab size and casting speed,
The reduction zone is such that the solid phase ratio at the center of the slab cross section is in the range of 0.3 to 0.8, or the reduction zone is 0.
2. The method according to claim 1, wherein a method of controlling the position of the rolling band is included so as to include a range of 3 to 0.8.

(7)上記第5項および第6項記載の両制御方法を組合
せる、第1項記載の方法。
(7) The method according to (1), wherein the control methods described in (5) and (6) are combined.

以下、本発明について更に詳述する。 Hereinafter, the present invention will be described in more detail.

本発明の第1項の基本構成は、連鋳鋳片の中心偏析や
V偏析の主因である濃化溶鋼の流動、集積を抑制する方
法と、凝固組織の等軸晶化、微細化による偏析の分散を
図る方法、さらに、緩冷却により鋳片を高温に保持して
鋳片に形成されつつあるまた形成された偏析を拡散させ
るあるいは分離する方法よりなり、これらを適切に組合
せることにより大幅な改善効果を有する偏析改善技術を
提供するものである。
The basic constitution of the first aspect of the present invention is a method for suppressing the flow and accumulation of concentrated molten steel, which is the main cause of central segregation and V segregation of continuous cast slabs, and segregation due to equiaxed crystallization and refinement of solidification structure. And a method of diffusing or separating the segregation that is being formed in the slab while maintaining the slab at a high temperature by slow cooling. It is intended to provide a segregation improvement technique having a significant improvement effect.

第1項の発明では凝固組織の等軸晶化、微細化を図る
ために、タンディッシュにおける溶鋼過熱度を50℃以下
に制御し低温鋳造を実現し、さらに電磁撹拌装置により
溶鋼を撹拌することにより、結晶生成と生成した結晶の
安定化を促す。タンディッシュにおける溶鋼過熱度を5
℃以上に制御する理由は、低温鋳造時の介在物による連
鋳材の品質劣化やノズル詰り等の操業トラブルを防止す
るためである。
In the invention of the first aspect, in order to achieve equiaxed crystallization and refinement of the solidification structure, the superheat degree of the molten steel in the tundish is controlled to 50 ° C. or less, low-temperature casting is realized, and the molten steel is further stirred by an electromagnetic stirrer. This promotes crystal generation and stabilization of the generated crystal. Superheat degree of molten steel in tundish is 5
The reason for controlling the temperature to at least ° C. is to prevent operational troubles such as deterioration of the quality of the continuous cast material and nozzle clogging due to inclusions during low-temperature casting.

保温帯や加熱帯の設置は緩冷却を実現するためであ
り、鋳片断面中心部の固相率が0.3〜0.8の範囲における
4mm以上の鋳片圧下は、圧下により溶鋼流動の主原因で
ある凝固収縮量、熱収縮量を補償し、凝固末期の溶鋼流
動に伴う偏析の生成を抑制するためである。
The heat insulation zone and heating zone are installed to achieve slow cooling, and the solid phase ratio at the center of the slab section is 0.3 to 0.8.
The slab reduction of 4 mm or more is intended to compensate for the solidification shrinkage and the heat shrinkage, which are the main causes of the molten steel flow, and to suppress the generation of segregation accompanying the molten steel flow at the end of solidification.

第2項、第3項に記載の発明は、凝固末期の溶鋼流動
を効果的に防止する凝固末期の鋳片の圧下方法であり、
第4項の方法はタンディッシュに溶鋼温度の調整機能を
もたせ、タンディッシュに溶鋼過熱度の制御を容易に
し、且つ、その精度を向上する方法に関わる発明であ
る。
The invention described in the second and third aspects is a method of rolling down a slab at the end of solidification to effectively prevent the flow of molten steel at the end of solidification,
The method according to the fourth aspect is an invention relating to a method of providing a tundish with a function of adjusting the temperature of molten steel, facilitating control of the degree of superheat of the molten steel in the tundish, and improving the accuracy thereof.

第5項、第6項および第7項の発明は、溶鋼流動の抑
制を図る凝固末期の圧下を適用する第1項記載の方法に
おいて、圧下帯が偏析改善に有効な固相率範囲に来るよ
う制御する方法を提供するものである。
Item 5, Item 6 and Item 7 provide the method according to Item 1, wherein the reduction at the end of solidification is applied to suppress the flow of molten steel, and the reduction zone comes to a solid phase ratio range effective for improving segregation. The control method is provided.

以下に具体的な実施例を図面を用いて説明する。 Hereinafter, specific examples will be described with reference to the drawings.

第1図は本発明の実施態様を示す説明図であり、以下
の実施例で用いた弯曲型の試験連鋳機の概要も示してい
る。
FIG. 1 is an explanatory view showing an embodiment of the present invention, and also shows an outline of a curved type continuous test caster used in the following examples.

1は誘導加熱装置、2は冷材添加装置、3はタンディ
ッシュ、4は鋳型と鋳型内電磁撹拌装置、5は2次冷却
帯に設置された電磁撹拌装置、6は2次冷却帯、7は保
温帯、8は加熱帯、9は圧下帯、10は圧下ロール、11お
よび12はそれぞれ固相率0.3と0.8の等固相率線を示し、
13は鋳片である。
1 is an induction heating device, 2 is a cooling material addition device, 3 is a tundish, 4 is a mold and an electromagnetic stirring device in a mold, 5 is an electromagnetic stirring device installed in a secondary cooling zone, 6 is a secondary cooling zone, 7 Is a heat retention zone, 8 is a heating zone, 9 is a reduction zone, 10 is a reduction roll, 11 and 12 show isosolid fraction lines having solid fractions of 0.3 and 0.8, respectively.
13 is a slab.

まず最初に本発明の第1項記載の方法において、濃化
溶鋼の流動、集積を抑制する方法と凝固組織の等軸晶
化、微細化による偏析の分散を図る方法、さらに、緩冷
却により偏析の分散と分離を図る方法を組合せる理由に
ついて説明する。
First, in the method according to the first aspect of the present invention, a method for suppressing the flow and accumulation of the concentrated molten steel, a method for dispersing segregation by equiaxed crystallization and refining of the solidified structure, and a method for segregating by slow cooling. The reason for combining the methods for dispersing and separating is described.

本発明者等は、連続鋳造法により製造される鋳片内部
に形成されるミクロ、セミマクロ、マクロ偏析を低減す
る偏析改善方法を確立するために種々の研究を重ね、以
下のような知見を得た。
The present inventors have conducted various studies to establish a segregation improvement method for reducing micro, semi-macro and macro segregation formed inside a slab manufactured by a continuous casting method, and obtained the following knowledge. Was.

第2図は、凝固組織の等軸晶化による偏析改善効果
と、凝固末期に鋳片を圧下し流動を抑制することによる
偏析改善効果について、本発明者らが調査した結果を示
す図である。第2図の横軸の上面側等軸晶率は弯曲型連
鋳機により鋳造した鋳片の上面側の等軸晶化の程度を表
す指標であり、縦軸の中心偏析評点は中心偏析の程度を
示す指標である。本調査はS45C〜S48Cを第1図に示した
試験連鋳機(弯曲部の半径12m)で保温帯、加熱帯を設
置しない状態で鋳造した鋳片(鋳片サイズ:162mm厚×16
2mm幅)について行なった。
FIG. 2 is a diagram showing the results of investigations by the present inventors on the effect of improving segregation by equiaxed crystallization of the solidification structure and the effect of suppressing segregation by rolling down the slab at the end of solidification. . The upper-axis equiaxed crystal ratio on the horizontal axis in FIG. 2 is an index indicating the degree of equiaxed crystallization on the upper surface side of a slab cast by a curved continuous caster, and the center segregation score on the vertical axis is the center segregation score. It is an index indicating the degree. In this study, S45C-S48C were cast with the test continuous caster (radius of the curved part 12m) shown in Fig. 1 without heat insulation zone and heating zone (cast size: 162mm thickness x 16).
2 mm width).

本サイズの鋳片を鋳造する場合、鋳片の偏平比(鋳片
厚みに対する鋳片幅の比)が1と小さく、偏平比が大き
いスラブ等のようにバルジングによる残溶鋼の流動はほ
とんど起きない。第2図からも明らかなように電磁撹拌
等による凝固組織の等軸晶化および微細化により中心偏
析は改善されるが、その改善程度には限界がある。
When casting a slab of this size, the flattening ratio of the slab (the ratio of the slab width to the slab thickness) is as small as 1 and almost no flow of the residual molten steel due to bulging occurs as in a slab or the like having a large flattening ratio. . As is clear from FIG. 2, the center segregation is improved by equiaxed crystallization and refinement of the solidified structure by electromagnetic stirring or the like, but the degree of improvement is limited.

一方、凝固収縮、熱収縮に伴う濃化溶鋼の流動を防止
するため、凝固末期に圧下した鋳片の中心偏析は等軸晶
化が同程度の場合、流動を抑制しなかった場合に比べ大
幅に改善されている。また、鋳片を圧下し流動を抑制し
た場合においても、圧下しない場合ではないが上面側等
軸晶率の増加につれ中心偏析は軽減される傾向がある。
On the other hand, in order to prevent the flow of concentrated molten steel due to solidification shrinkage and heat shrinkage, the center segregation of the slab that was rolled down at the end of solidification is significantly greater when the equiaxed crystallization is about the same as when the flow was not suppressed. Has been improved. Further, even when the slab is rolled down to suppress the flow, the center segregation tends to be reduced as the upper surface side equiaxed crystal ratio increases, although this is not the case.

従って、凝固組織を十分等軸晶化すると共に、凝固末
期の圧下やバルジングの防止等により残溶鋼の流動を抑
制することでより良好な中心偏析レベルが達成される。
原理的には凝固末期の流動が完全に防止されれば、濃化
溶鋼の鋳片中心部への集積は阻止され、中心偏析が生成
しないはずであるが、現実には操業条件の変動や鋳片凝
固状況のバラツキ等により、溶鋼の流動を完全に防止で
きる理想的な条件を常に精度良く再現することは困難で
ある。
Therefore, the solidified structure is sufficiently equiaxed and the flow of the residual molten steel is suppressed by reducing the pressure at the end of solidification or preventing bulging, thereby achieving a better center segregation level.
In principle, if the flow at the end of solidification is completely prevented, the accumulation of concentrated molten steel in the center of the slab should be prevented, and no center segregation should occur. It is difficult to always accurately reproduce ideal conditions for completely preventing the flow of molten steel due to variations in the state of flake solidification.

第2図において凝固末期に鋳片を圧下し、溶鋼の流動
抑制を図った場合にも、等軸晶の増加に連れ偏析が改善
された理由は、完全に防止されなかった溶鋼流動に対
し、等軸晶の偏析分散効果が有効に寄与したためと推察
される。従って、流動を完全に停止できなかった場合に
生じる偏析に対する対策の意味からも、可能な限り凝固
組織の等軸晶化、微細化を図る必要がある。
In FIG. 2, even when the slab was lowered at the end of solidification to suppress the flow of molten steel, the reason why segregation was improved with the increase of equiaxed crystals was that the flow of molten steel that was not completely prevented, It is presumed that the effect of segregation and dispersion of equiaxed crystals effectively contributed. Accordingly, it is necessary to make the solidified structure as equiaxed as possible and finer as much as possible from the viewpoint of measures against segregation that occurs when the flow cannot be completely stopped.

本発明者らが実験した範囲では、濃化溶鋼の流動を抑
制する方法と凝固組織の等軸晶化、微細化による偏析改
善方法を組合せた場合においても、鋳片厚み中心部には
数mmオーダーの偏析粒が存在し、デンドライト樹間のミ
クロ偏析が数10〜数100μmオーダーのサイズであるこ
とを考えると、中心偏析の生成を完全に防止するに至っ
ていない。
In the range tested by the present inventors, even when combining the method of suppressing the flow of concentrated molten steel and the method of equiaxed crystallization of the solidified structure, the method of improving segregation by refining, the center of the slab thickness is several mm. Considering that segregated grains of the order exist and the micro-segregation between the dendrite trees is of the order of several tens to several hundreds μm, the generation of the central segregation has not yet been completely prevented.

上記のような偏析を更に改善する方法としては、溶鋼
流動の防止を図る凝固末期の圧下条件をより理想的な条
件に精度良く制御することもあるが、それにも限界があ
り、以上述べた以外の機構で偏析を改善する方法を、適
用することが必要と考えられる。その一つとして鋳片内
の冷却速度を低下し、鋳片をより高温状態に保持するこ
とにより、偏析の拡散促進と固相変態時の溶質再分配を
利用した偏析元素の分離を促進することが有効と考えら
れ、それらによる偏析改善効果について検討を行なっ
た。
As a method for further improving the segregation as described above, there is a case where the rolling conditions at the end of solidification for preventing the flow of molten steel are accurately controlled to more ideal conditions. It is considered necessary to apply a method of improving segregation by the above mechanism. One of them is to reduce the cooling rate in the slab and maintain the slab at a higher temperature to promote the diffusion of segregation and the separation of segregated elements using solute redistribution during solid phase transformation. Was considered to be effective, and the segregation improvement effect by them was examined.

第3図は鋳片中心部における中心偏析評点とPの高濃
度部の面積率の関係と鋳片を保温、加熱し緩冷却するこ
とによるスポット状偏析の改善効果を示す図である。
FIG. 3 is a diagram showing the relationship between the center segregation score at the center of the slab and the area ratio of the P-rich portion, and the effect of improving spot-like segregation by keeping the slab warm, heated and slowly cooled.

上記緩冷却化による偏析改善効果について本発明者等
が検討した効果によれば、鋳片の緩冷却を単独で適用し
た場合も、デンドライト樹間のミクロ偏析や、鋳片中心
部にっ存在するスポット状偏析(セミマクロ偏析)は、
緩冷却化の効果により改善されるが、特に、鋳片中心部
のスポット状偏析については緩冷却化により溶質の拡散
促進を図ったとしても、最終的な到達レベルはその偏析
が形成された直後の状態、つまり、その後の拡散により
分散される以前の偏析生成状況に強く依存することが明
らかになった。
According to the effects studied by the present inventors on the segregation improvement effect due to the slow cooling, even when the slow cooling of the slab is applied alone, micro segregation between dendrite trees and the slab exists in the center of the slab Spot-like segregation (semi-macro segregation)
It is improved by the effect of slow cooling, but especially for spot-like segregation in the center of the slab, even if the solute diffusion is promoted by slow cooling, the final attained level is immediately after the segregation is formed. , That is, it strongly depends on the state of segregation generation before being dispersed by the subsequent diffusion.

即ち、鋳片中止部に顕著なマクロ偏析が生成し、粗大
なスポット状偏析が鋳片中心部に多数存在するような中
心偏析評点が悪い場合には、第3図に示すように緩冷却
によりそのような偏析の拡散を図ったとしても、Pの高
濃度部(P/Po≧8、Po:溶鋼P濃度)の面積率を十分減
少させることはできない。
That is, when significant macrosegregation is generated in the slab discontinuation portion and the center segregation score is poor such that a large number of coarse spot-like segregations are present in the center of the slab, the cooling is performed by slow cooling as shown in FIG. Even if such segregation is diffused, the area ratio of the high concentration portion of P (P / Po ≧ 8, Po: molten steel P concentration) cannot be sufficiently reduced.

一方、凝固末期の鋳片に圧下を加えて流動を抑制し、
鋳片中心部に形成されるマクロ偏析(中心偏析)の生成
を改善した場合は、第3図に示したように、緩冷却によ
る偏析拡散効果とあいまって、Pの高濃度部の面積率は
大幅に低下し、良好な偏析レベルを達成することが可能
となる。
On the other hand, the flow is suppressed by applying rolling to the slab at the end of solidification,
When the generation of macro-segregation (center segregation) formed in the center of the slab is improved, as shown in FIG. It is greatly reduced, and a good segregation level can be achieved.

次に凝固組織の等軸晶化、微細化を促進する条件につ
いて検討した結果について次に述べる。
Next, the results of examining conditions for promoting equiaxed crystallization and refinement of the solidified structure will be described below.

第4図は等軸晶が生成するタンディッシュ溶鋼過熱度
の範囲を示す図である。普通鋼の連続鋳造において製造
された鋳片の凝固組織は、鋳造する鋼種やタンディッシ
ュにおける溶鋼過熱度や電磁撹拌等での溶鋼の撹拌によ
り変化することは良く知られており、タンディッシュに
おける溶鋼過熱度を低下するほど、また電磁撹拌等によ
り溶鋼を撹拌することにより安定して等軸晶を生成させ
ることができる。
FIG. 4 is a view showing the range of the degree of superheating of a tundish molten steel in which equiaxed crystals are generated. It is well known that the solidification structure of slabs produced in continuous casting of ordinary steel changes depending on the type of steel to be cast and the degree of superheat of the molten steel in the tundish or the stirring of the molten steel by electromagnetic stirring. As the degree of superheat is reduced, the equiaxed crystal can be more stably generated by stirring the molten steel by electromagnetic stirring or the like.

そこで鋳片の凝固組織とタンディッシュにおける溶鋼
過熱度の関係について3鋼種について調査した結果、第
4図に示すような結果が得られた。調査対象とした鋼種
は、普通鋼の中で最も等軸晶化しにくいS48C、等軸晶化
が容易なS35Cと等軸晶化のしやすさが上記2鋼種の中間
程度であるS10Cとした。
Therefore, as a result of investigating the relationship between the solidification structure of the slab and the superheat degree of molten steel in the tundish for three steel types, the results shown in FIG. 4 were obtained. The steel types to be investigated were S48C, which is the least likely to be equiaxed among ordinary steels, S35C, which is easy to be equiaxed, and S10C, which has an intermediate degree of ease of equiaxed crystallization.

第4図より判るように凝固組織等軸晶化のタンディッ
シュにおける溶鋼過熱度に対する依存性は、鋼種によっ
て異なるが、凝固組織を等軸晶化するには電磁撹拌を適
用した場合においても、タンディッシュにおける溶鋼過
熱度を50℃以下に制限する必要が、いずれの鋼種につい
ても有る。それ以上の過熱度では、鋳片中心部まで柱状
晶が発達する可能性がかなり高くなる。
As can be seen from FIG. 4, the dependence of the equiaxed crystallization of the solidified structure on the degree of superheat of the molten steel in the tundish varies depending on the steel type. It is necessary to limit the degree of superheat of molten steel in a dish to 50 ° C. or less for all steel types. At a higher degree of superheat, the possibility that columnar crystals develop up to the center of the slab becomes considerably high.

タンディッシュにおける溶鋼過熱度を5℃以上に制限
する理由は、溶鋼過熱度が5℃未満で操業すると、溶鋼
の粘性増加等による介在物の巻き込みが多くなり、連鋳
材の表面性状や内部性状を劣化させる原因となり、ま
た、ノイズ詰り等のトラブルにより、安定な鋳造が困難
となる。従って、そのような低温鋳造は品質上また操業
上からも避けるのが好ましい。
The reason for limiting the superheat of molten steel in a tundish to 5 ° C or higher is that when the molten steel superheat is operated at less than 5 ° C, inclusions of inclusions due to an increase in the viscosity of the molten steel increase, and the surface and internal properties of the continuous cast material , And troubles such as noise clogging make stable casting difficult. Therefore, it is preferable to avoid such low-temperature casting in terms of quality and operation.

電磁撹拌を付与するストランド方向の位置について
は、凝固シェルの厚みが増加するほど溶鋼に作用する電
磁力は減衰するため、凝固シェルが最も薄い鋳型位置に
おいて撹拌するのが最も効率的な方法であり、更に鋳型
とそれに引続く2次冷却帯〜凝固完了位置間に設けた電
磁撹拌装置により、多段撹拌することで結晶生成の促進
と結晶の安定化が図られ、より多くの等軸晶を安定して
生成させることが可能となる。
Regarding the position in the strand direction where the electromagnetic stirring is applied, the electromagnetic force acting on the molten steel is attenuated as the thickness of the solidified shell increases, so the most efficient method is to stir at the position of the mold where the solidified shell is thinnest. In addition, the electromagnetic stirring device provided between the mold and the subsequent secondary cooling zone to the solidification completion position promotes crystal formation and stabilizes crystals by multi-stage stirring, stabilizing more equiaxed crystals And generate it.

次に凝固末期の溶鋼流動を抑制するために、鋳片断面
中心部の固相率が0.3〜0.8の範囲において、鋳片に4mm
以上の圧下を加える理由について以下に説明する。本発
明者は第1図に示す弯曲型の連鋳機を用い、凝固末期の
鋳片をロールにより圧下する場合について溶鋼流動を抑
制し、偏析改善効果が得られる適正な固相率範囲と、圧
下量について検討するため、鋳造速度と圧下量を変えた
試験を行なった。
Next, in order to suppress the flow of molten steel at the end of solidification, the solid phase ratio at the center of the slab cross section is in the range of 0.3 to 0.8, 4mm to the slab
The reason for applying the above reduction will be described below. The inventor uses a curved type continuous casting machine shown in FIG. 1 to suppress the flow of molten steel in the case where the slab at the end of solidification is rolled down by a roll, and a proper solid phase ratio range in which an effect of improving segregation is obtained. In order to examine the rolling reduction, a test was performed with changing the casting speed and the rolling reduction.

本試験でも保温帯、加熱帯のない状態で鋼種はS48Cを
用い、鋳片サイズは162mm厚×162mm幅で実施した。ロー
ルによる圧下方法を採用し、最終凝固部附近に500mmピ
ッチで配した5本のロールにより圧下を加えた。尚、こ
の場合の圧下帯の長さは圧下帯入側ロールから出側ロー
ル間の距離で2mとなる。本試験において適正固相率範囲
について検討した結果を第5図に示す。
In this test, the steel type was S48C and the slab size was 162 mm thick x 162 mm width without the heat insulation zone and the heating zone. A rolling method using rolls was adopted, and rolling was performed with five rolls arranged at a pitch of 500 mm near the final solidification part. In this case, the length of the rolling band is 2 m, which is the distance between the roll on the entering side and the roll on the exit side. FIG. 5 shows the results of examination of the appropriate solid phase ratio range in this test.

図中の実線は本試験での鋳片を保温、加熱しない場合
の、圧下帯入側ロール位置での鋳片中心部の固相率と中
心偏析の関係と、圧下帯出側ロール位置での鋳片中心部
の固相率と中心偏析の関係を示している。図中の破線は
後述する鋳片を保温、加熱した場合の、関係を示してい
る。
The solid line in the figure shows the relationship between the solid phase ratio and center segregation in the center of the slab at the roll entry side roll position and the casting at the reduction band exit roll position when the slab in this test is not kept warm or heated. The relationship between the solid fraction at the center of one side and the center segregation is shown. The broken line in the figure shows the relationship when a slab, which will be described later, is kept warm and heated.

本図より明らかなように圧下帯入側ロール位置での鋳
片中心部の固相率が0.3以上で、圧下帯出側ロール位置
での鋳片中心部の固相率が0.8以下において、中心偏析
はほぼ最も良好なレベルとなっており、凝固末期の圧下
により偏析改善を図る場合に適正な圧下範囲は鋳片中心
部の固相率で0.3〜0.8の範囲にあることがわかる。
As is clear from this figure, when the solid phase ratio at the center of the slab at the roll entry side roll position is 0.3 or more and the solid phase ratio at the slab center at the roll exit side roll position is 0.8 or less, the center segregation occurs. Is almost at the best level, and it can be seen that the appropriate rolling range for improving segregation by rolling at the end of solidification is in the range of 0.3 to 0.8 in terms of the solid fraction at the center of the slab.

第6図には圧下帯における、上記固相率を適正範囲
(0.3〜0.8)に制御し、偏析改善に必要な圧下量につい
て検討した結果を示す。第6図で明らかなように圧下量
の増加に伴い中心偏析評点は改善され、特に圧下量が4m
m以上において偏析の改善代が大きい。
FIG. 6 shows the results of examining the amount of reduction necessary for improving segregation by controlling the solid phase ratio in the reduction zone to an appropriate range (0.3 to 0.8). As can be seen in FIG. 6, the center segregation score was improved with the increase of the rolling reduction.
Above m, the margin of segregation is large.

以上述べたように凝固末期の圧下により中心偏析の改
善を図る場合、鋳片中心部の固相率が0.3〜0.8の範囲に
おいて4mm以上の圧下量を確保する必要があることが判
明した。
As described above, when the center segregation was improved by the reduction at the end of solidification, it was found that it was necessary to secure a reduction amount of 4 mm or more when the solid fraction at the center of the slab was in the range of 0.3 to 0.8.

次に上記試験と同一の連鋳機の第1図に示す2次冷却
帯出側〜圧下帯入側の間に保温帯、加熱帯を設置し、鋳
片の保温、加熱する緩冷却による偏析改善効果の確認
と、その緩冷却と組合せた場合の適正な凝固末期の圧下
条件について調査するために行なった試験の結果につい
て説明する。尚、本試験に先立ち凝固計算により、鋳片
内の冷却速度を低下させるのに適正な保温帯、加熱帯設
置位置について検討を行なった。その結果、特に鋳片中
心部の冷却速度を低減し、偏析を拡散により分散するた
めには、凝固が完了する位置附近を保温、加熱するだけ
では不十分であり、十分に冷却速度を低下するには、よ
り上流側から鋳片を保温、加熱しなければならないこと
が判明した。
Next, a heat insulation zone and a heating zone were installed between the secondary cooling zone exit side and the reduction zone entrance side shown in FIG. 1 of the same continuous caster as in the above test, and the segregation was improved by maintaining the cast slab and heating slowly cooling. The results of a test performed to confirm the effect and to investigate the appropriate rolling conditions at the end of solidification when combined with slow cooling will be described. Prior to the present test, a solidification calculation was carried out to determine a proper heat retaining zone and heating zone installation position for reducing the cooling rate in the slab. As a result, in order to reduce the cooling rate, especially in the center of the slab, and to disperse the segregation by diffusion, it is not enough to keep the temperature near the position where solidification is completed and to heat, and to sufficiently reduce the cooling rate. , It was found that the slab had to be kept warm and heated from the more upstream side.

この理由の一つは保温、加熱により鋳片表面を昇温し
て、凝固シェル内の温度勾配を低下するのに、ある程度
の時間を要するためであり、もう一つの理由は未凝固相
が中心部から消失すると、未凝固相の凝固に伴う潜熱の
放出が行なわれず、急激に鋳片内の温度が低下するため
である。
One reason for this is that it takes a certain amount of time to raise the temperature of the slab surface by heat retention and heating to reduce the temperature gradient in the solidified shell. When it disappears from the portion, the latent heat accompanying the solidification of the unsolidified phase is not released, and the temperature in the slab rapidly decreases.

従って、緩冷却により偏析を改善するには、より上流
側から鋳片を保温、加熱し、鋳片表面温度を上昇させ、
鋳片中心部に未凝固相をできるだけ長く存在させること
が好ましい。以上が特許請求の範囲第1項において「2
次冷却帯以降少なくとも2次冷却帯出側〜圧下帯入側の
間に加熱帯または加熱帯と保温帯を設けて鋳片を加熱あ
るいは保温、加熱する」理由である。
Therefore, in order to improve segregation by slow cooling, the slab is kept warm and heated from the more upstream side to increase the slab surface temperature,
It is preferred that the unsolidified phase be present at the center of the slab as long as possible. The above is described in claim 1 as “2.
A heating zone or a heating zone and a heat insulation zone are provided at least between the secondary cooling zone exit side and the reduction zone entrance side after the next cooling zone to heat or keep and heat the slab.

鋳片を保温、加熱した場合の適正固相率範囲について
検討した結果を前述の第5図中に破線で示した。第5図
より判るように、鋳片を保温、加熱した場合の適正固相
率範囲は保温、加熱しない場合に比較し、若干拡大して
いるようであるが、やはり鋳片断面中心部の固相率が0.
3〜0.8の範囲で、偏析は最も良好となっている。
The results of the examination of the appropriate solid phase ratio range when the slab was kept warm and heated are shown by broken lines in FIG. 5 described above. As can be seen from FIG. 5, the range of the appropriate solid phase ratio when the slab is heated and heated is slightly larger than that when the slab is not heated and heated. Phase ratio is 0.
The segregation is best in the range of 3 to 0.8.

本試験における鋳片圧下量と中心偏析の関係について
検討した結果を第6図に示す。圧下ロール5本全てを用
いロールピッチ500mmで行なった本試験の結果では、保
温、加熱した場合としない場合では、あまり差が認めら
れなかった。従って、緩冷却により偏析を改善する方法
を組合せる場合も、鋳片断面中心部の固相率が0.3〜0.8
の範囲で、4mm以上の圧下量を加えることが、凝固末期
の溶鋼流動を抑制するための適正な条件である。
FIG. 6 shows the results of an examination of the relationship between the slab reduction and the center segregation in this test. In the results of this test performed using all five rolling rolls at a roll pitch of 500 mm, no significant difference was observed between the case where the heat was retained and the case where the heating was not performed. Therefore, even when a method for improving segregation by slow cooling is combined, the solid fraction at the center of the slab section is 0.3 to 0.8.
Applying a rolling amount of 4 mm or more within the range is an appropriate condition for suppressing the flow of molten steel at the end of solidification.

さらに鋳片を鋳片の保温、加熱により緩冷却し、しか
も上記適正条件で圧下を付加した鋳片デンドライト部の
ミクロ偏析について調査した結果を第7図に示す。本図
には緩冷却対策を採らず、通常冷却した鋳片の同一位置
のミクロ偏析について調査した結果も合せて示す。
Further, FIG. 7 shows the results of investigating the micro-segregation of the slab dendrite portion in which the slab was slowly cooled by keeping the slab warm and heated, and under the above-mentioned appropriate conditions, where the reduction was applied. This figure also shows the results of an investigation on microsegregation at the same position in a normally cooled slab without taking measures against slow cooling.

緩冷却された鋳片のミクロ偏析部のPの高濃度部(P/
Po≧8)の面積率は、通常冷却材のミクロ偏析部の面積
率に比べ大幅に低下しており、従って、請求項第1項に
記載の方法は、鋳片内のミクロ偏析の改善にも有効であ
ることが判る。
High-concentration P (P /
The area ratio of Po ≧ 8) is usually much lower than the area ratio of the micro-segregated portion of the coolant. Therefore, the method according to claim 1 is effective in improving the micro-segregation in the slab. Is also effective.

上記試験に引続き試験連鋳機を用いて、請求項第1項
に記載の方法でしかもロールにより圧下を加える際の必
要な圧下帯長さと、適正なロールピッチについて検討を
行なった。本検討は鋳造速度を、鋳片中心部の固相率が
0.3〜0.8の範囲に来る速度1水準において実施した。圧
下帯長さの検討では圧下帯中央部のロール3本で圧下す
る試験と、1本増やし4本で圧下する試験を行ない、5
本全部で圧下した場合と比較検討した。ロールピッチに
関する検討では5本の圧下ロールのうち1段おきに3本
で圧下する試験と、圧下帯入り側と出側ロールの2本の
みを用いて圧下する試験を実施し、ロールピッチ500mm
(5本圧下)の場合と比較した。いずれの試験でも圧下
量については圧下帯でのトータルの圧下量が同一になる
ように各ロールの圧下量を設定した。
Subsequent to the above-mentioned test, a test continuous caster was used to examine the required reduction band length when applying a reduction by a roll and an appropriate roll pitch by the method described in claim 1. In this study, the casting speed and the solid fraction at the center of the slab were
The test was performed at a speed of 1 level, which ranged from 0.3 to 0.8. In examining the length of the rolling band, a test was performed with three rolls at the center of the rolling band, and a test was performed with one additional roll and four rolls.
A comparison was made with the case where the entire book was reduced. In examining the roll pitch, a test was conducted in which three of the five rolls were rolled down every other stage, and a test was performed in which only two rolls were used, one on the entrance side and the other on the exit side.
(5 pressure reductions). In each of the tests, the reduction amount of each roll was set so that the total reduction amount in the reduction zone was the same.

第8図に圧下帯長さについて検討した結果を、第9図
にロールピッチについて検討した結果を示す。これらの
図より、圧下帯長さが2mの範囲では、圧下帯長さの増加
に連れ中心偏析は改善され、圧下ロールピッチも、試験
を行なった500mmまではロールピッチが減少するにとも
ない偏析は改善される傾向にある。
FIG. 8 shows the results of the study on the reduction band length, and FIG. 9 shows the results of the study on the roll pitch. From these figures, when the rolling band length is in the range of 2 m, the center segregation is improved with the increase of the rolling band length, and the rolling roll pitch also decreases as the roll pitch decreases up to the tested 500 mm. It tends to be improved.

第9図中には保温、加熱をしない場合について、上記
と同様な検討を行なった結果を示す。圧下ロールピッチ
が500mmの時はそれ程でもないが、1000mm、2000mmと大
きい場合は保温、加熱した方がしない場合に比べ、圧下
による偏析改善程度が低下している。これは保温、加熱
による凝固シェルの温度上昇に伴い、凝固シェルの剛性
が低下し、鋳片表面で加えた変形が、鋳片の厚み方向や
長手方向に及ぶ範囲が縮小し、溶鋼の流動を抑制する効
果が減少するためと考えられる。このことを考慮すると
圧下ロールピッチはある程度小さくする必要がある。
FIG. 9 shows the results of the same study as above when heat insulation and heating were not performed. When the rolling roll pitch is 500 mm, it is not so large. However, when the rolling roll pitch is as large as 1000 mm or 2000 mm, the degree of improvement of segregation by rolling is reduced as compared with the case where heat insulation and heating are not required. This is because the rigidity of the solidified shell decreases as the temperature of the solidified shell increases due to heat retention and heating, and the deformation applied on the slab surface reduces the range of the slab in the thickness and longitudinal directions, reducing the flow of molten steel. It is considered that the suppression effect is reduced. In consideration of this, it is necessary to reduce the rolling roll pitch to some extent.

以上説明した理由より請求項第2項に記載したように
「圧下帯長さを短くとも2m以上とし、ロールピッチ500m
m以下に設定」する必要がある。さらに本技術をスラブ
等の偏平比が大きい鋳片に適用する場合は、凝固シェル
の剛性の低下はバルジング現象を助長し、このバルジン
グによる溶鋼流動が偏析を悪化させる原因となるため、
それを避けるためにもロールピッチはより小さくするの
が望ましい。
For the reasons described above, as described in claim 2, "the length of the rolling band is at least 2 m or more, and the roll pitch is 500 m.
m or less. " Furthermore, when the present technology is applied to a slab or other cast slab having a large aspect ratio, a decrease in the rigidity of the solidified shell promotes the bulging phenomenon, and the molten steel flow due to the bulging causes deterioration of segregation.
To avoid this, it is desirable to make the roll pitch smaller.

先に述べたような保温、加熱することによる圧下時の
局部的変形を回避する方法として、鋳片と圧下端子の接
触する範囲を拡大し、形状比即ち(鋳片と圧下端子の接
触長)/(板厚)の比を確保しやすい、特許請求の範囲
第3項に記載した面状またはバー状の圧下端子で圧下す
る方法が有効である。
As a method of avoiding the local deformation at the time of rolling down due to the heat retention and heating as described above, the range of contact between the slab and the rolling down terminal is enlarged, and the shape ratio, that is, (the contact length of the slab and the rolling down terminal) The method of rolling down with a planar or bar-shaped rolling-down terminal described in claim 3 which is easy to secure the ratio of / (plate thickness) is effective.

塑性加工特に圧延や鋳造の分野で良く知られているよ
うに、形状比を大きくすることにより被加工材のより均
一な変形を実現できる。従って、第1項の記載の方法を
実施するに当り、面状またはバー状の圧下端子で凝固末
期の鋳片を圧下する方法を採用することによりロール等
で圧下する場合に比べより均一で効率的な圧下が可能と
なる。
As is well known in the field of plastic working, in particular, rolling and casting, more uniform deformation of a workpiece can be realized by increasing the shape ratio. Therefore, in carrying out the method described in item 1, the method of rolling down the slab at the end of solidification with a planar or bar-shaped rolling down terminal is adopted, whereby the method is more uniform and efficient than when rolling down with a roll or the like. It becomes possible to perform a specific reduction.

その場合にも鋳片を圧下する位置は、溶鋼流動を効果
的に抑制が可能な範囲とすべきであり、その位置はロー
ル圧下の場合と同様鋳片断面中心部の固相率で0.3〜0.8
の間にある。尚、面状またはバー状の圧下端子で圧下す
る場合には、圧下装置に鋳片搬送機構を付加することに
より連続的に引抜かれる鋳片を連続して圧下することが
可能となる。
In this case as well, the position where the slab is reduced should be in a range where the flow of molten steel can be effectively suppressed. 0.8
Between. In the case of rolling down with a planar or bar-shaped rolling down terminal, it is possible to continuously roll down a slab that is continuously drawn by adding a slab transport mechanism to the rolling down device.

次に特許請求の範囲第4項に記載した発明について説
明する。既に説明したように溶鋼流動を抑制し偏析改善
する方法と、緩冷却により偏析を改善する方法を組合せ
る場合においても、より良好な偏析レベルを達成するに
は極力凝固組織を等軸晶化、微細化しておく必要があ
る。
Next, the invention described in claim 4 will be described. As described above, even when combining the method of suppressing the flow of molten steel to improve segregation and the method of improving segregation by slow cooling, in order to achieve a better segregation level, the solidification structure is made as equiaxed as possible, It needs to be miniaturized.

そのために、また、介在物による品質の劣化等を防止
するために、第1項ではタンディッシュにおける溶鋼過
熱度に5〜50℃という制限を設けた。現実の操業では前
工程での溶鋼温度調整のバラツキや第10図に示すような
タンディッシュの溶鋼過熱度の推移(経時変化)によっ
ては、鋳造全般にわたって溶鋼過熱度を目標とする5〜
50℃に制御できない場合がある。
For that purpose, and in order to prevent the deterioration of quality due to inclusions, etc., the first paragraph sets a limit of 5 to 50 ° C. on the degree of superheat of molten steel in a tundish. In actual operation, depending on the variation of the molten steel temperature adjustment in the previous process and the transition (temporal change) of the molten steel superheat degree of the tundish as shown in FIG.
Control may not be possible at 50 ° C.

この問題を解決するには溶鋼過熱度を低下させる手段
や、溶鋼過熱度を上昇、維持する手段あるいは両方の手
段を有することが望ましい。タンディッシュに冷材を添
加する添加装置や誘導過熱装置あるいは両装置を付加す
ることにより、タンディッシュにおいて溶鋼の温度調整
が可能となり、鋳造全般にわたって溶鋼過熱度を目標と
する範囲に精度良く制御できるようになる。
In order to solve this problem, it is desirable to have means for reducing the degree of superheat of the molten steel, means for increasing and maintaining the degree of superheat of the molten steel, or both means. By adding an addition device or induction heating device or both devices that add cold material to the tundish, the temperature of the molten steel can be adjusted in the tundish, and the degree of superheat of the molten steel can be accurately controlled to the target range throughout casting. Become like

特許請求の範囲第5項、第6項および第7項に記載の
発明について以下に説明する。凝固末期の溶鋼流動を抑
制するには、鋳片断面中心部の固相率が0.3〜0.8の範囲
で、適正な圧下量を付加することが必要な条件となる。
この固相率が0.3〜0.8の範囲になるストランド内の位置
は、鋳造速度や2次冷却水量等の冷却条件、さらに鋳片
を保温、加熱する場合は保温帯の保温能力や加熱帯の加
熱条件に依存して変化する。
The invention described in claims 5, 6, and 7 will be described below. In order to suppress the flow of molten steel at the end of solidification, it is necessary to add an appropriate amount of reduction when the solid fraction at the center of the slab cross section is in the range of 0.3 to 0.8.
The position in the strand where the solid phase ratio is in the range of 0.3 to 0.8 depends on the cooling conditions such as the casting speed and the amount of secondary cooling water, and when the slab is heated and heated, the heat retaining capacity of the heat insulating zone and the heating of the heating zone It changes depending on conditions.

従って、第1項記載の方法を適用する場合に、第5項
に記載したように鋳造速度、鋳片の冷却に関わる条件お
よび保温、加熱に関わる条件を考慮して凝固計算を行な
い、圧下を加えるに適正な固相率範囲がストランド内の
どこに位置するかを常に把握し、圧下帯の固相率が適正
な範囲に来るよう、あるいは圧下帯がその適正範囲を含
むよう鋳造速度、冷却条件、加熱条件を調整することに
より、良好な偏析レベルを安定して達成することができ
る。
Therefore, when applying the method described in item 1, the solidification calculation is performed in consideration of the casting speed, the condition related to cooling of the slab, the heat retention, and the condition related to heating as described in item 5, and the reduction is reduced. In addition, always know where the appropriate solid phase ratio range is located within the strand, and set the casting speed and cooling conditions so that the solid phase ratio of the reduction zone falls within the appropriate range, or that the reduction zone includes the appropriate range. By adjusting the heating conditions, a good segregation level can be stably achieved.

しかし、実際の鋳造作業では、鋳造末期や鋳造初期に
は不可避的に鋳造速度を大幅に低下あるいは増加する場
合があり、鋳造中期においても鋳造速度を大幅に変化し
なければならない事態が発生する。そのような場合には
冷却条件や加熱条件を調整するだけでは圧下帯の固相率
を適正範囲に制御できない場合がある。そのような事態
に対する対策として創案されたのが特許請求の範囲第6
項に記載の発明である。
However, in the actual casting operation, the casting speed may inevitably decrease or increase inevitably in the last stage of casting or in the early stage of casting, and a situation in which the casting speed must be significantly changed even in the middle stage of casting occurs. In such a case, it may not be possible to control the solid phase ratio in the reduction zone to an appropriate range only by adjusting the cooling conditions and the heating conditions. Claim 6 was created as a countermeasure against such a situation.
The invention described in the paragraph.

予め鋳造速度の大幅な変化に対応できるよう圧下機構
を有するロールを配しておき、あるいは圧下装置にスト
ランド方向に移動できる機構を付加しておき、凝固計算
によって推定された適正固相率範囲にあるロールを圧下
ロールとして使用する、あるいはさらに広範囲にあるロ
ール群を圧下ロールと使用したり、またはその範囲へ圧
下装置を移動させることにより圧下帯位置を制御して溶
鋼流動を効果的に抑制し、偏析の改善を図ることが可能
となる。また、第5項と第6項記載の制御方法を組合せ
る第7項の方法においても同様な効果が期待できる。
A roll with a reduction mechanism is arranged in advance so that it can respond to a large change in casting speed, or a mechanism that can move in the strand direction is added to the reduction device, and the appropriate solid fraction ratio estimated by solidification calculation is added. Use a certain roll as a reduction roll, or use a wider group of rolls as a reduction roll, or move a reduction device to that range to control the position of the reduction band and effectively suppress molten steel flow. It is possible to improve segregation. A similar effect can also be expected in the method of the seventh item in which the control methods of the fifth and sixth items are combined.

発明の効果 以上説明したように、連続鋳造法により鋳片を製造す
るに際し、本発明を適用することにより、凝固組織の等
軸晶化、微細化による偏析の分散効果、凝固末期の溶鋼
流動抑制による濃化溶鋼の集積防止効果、さらに鋳片凝
固時の緩冷却による偏析拡散および分離効果をより効果
的に作用せしめ、鋳片内部に形成されるミクロ、セミマ
クロ、マクロ偏析を低減して、従来の偏析対策で得るこ
とが困難であった良好な偏析レベルの達成を可能とす
る。
Effect of the Invention As described above, in producing a slab by the continuous casting method, by applying the present invention, an equiaxed crystal of a solidified structure, a dispersing effect of segregation due to refining, and suppression of molten steel flow at the end of solidification. The effect of preventing the accumulation of concentrated molten steel due to slag and the effect of segregation diffusion and separation by slow cooling during solidification of the slab more effectively act to reduce the micro, semi-macro and macro segregation formed inside the slab. It is possible to achieve a good segregation level which has been difficult to obtain with the above segregation measures.

それにより従来対策で発生していた偏析起因の異常組
織の発生や、機械的特性の劣化が防止できると共に、従
来偏析が主因で達成できなかった高級鋼の連鋳化や、従
来材の高品質化および工程省略等を可能とする。
As a result, it is possible to prevent the occurrence of abnormal structure due to segregation and the deterioration of mechanical properties, which have been caused by conventional countermeasures, as well as to continuously cast high-grade steel, which could not be achieved mainly due to segregation, and to improve the quality of conventional materials. And the omission of steps can be achieved.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の実施態様を示す説明図、第2図は上面
側等軸晶率と中心偏析評点の関係と凝固末期の圧下によ
る偏析改善効果を示す図、第3図は鋳片中心部における
中心偏析評点とPの高濃度部の面積率の関係と鋳片を保
温、加熱し緩冷却することによるスポット状偏析の改善
効果を示す図、第4図は等軸晶が生成するタンディッシ
ュ溶鋼過熱度の範囲を示す図、第5図は第1項記載の発
明において鋳片を圧下する際の適正固相率範囲に関する
検討結果を示す図、第6図は同適正圧下量に関する検討
結果を示す図、第7図は第1項記載の方法を適用した場
合の緩冷却による鋳片デンドライト部のミクロ偏析改善
効果を示す図、第8図は第1項記載の発明において鋳片
を圧下する際の必要圧下帯長さに関する検討結果を示す
図、第9図は同適正圧下ロールピッチに関する検討結果
を示す図、第10図は冷材添加や誘導加熱で制御しない場
合のタンディッシュ溶鋼過熱度の推移の例(4例)を示
す図である。 1……誘導加熱装置、2……冷材添加装置、3……タン
ディッシュ、4、5……鋳型及び鋳型内電磁撹拌装置、
6……2次冷却帯、7……保温帯、8……加熱帯、9…
…圧下帯、10……圧下ロール、11、12……固相率線、13
……鋳片。
FIG. 1 is an explanatory view showing an embodiment of the present invention, FIG. 2 is a view showing the relationship between the upper surface side equiaxed crystallinity and the center segregation score, and the effect of improving segregation by rolling down at the end of solidification, and FIG. Fig. 4 shows the relationship between the center segregation score in the area and the area ratio of the high concentration part of P, and the effect of improving spot-like segregation by keeping, heating and slowly cooling the slab. Fig. 5 shows the range of the superheat degree of the dish molten steel, Fig. 5 shows the study results on the appropriate solid phase ratio range when rolling down the slab in the invention described in item 1, and Fig. 6 shows the study on the appropriate rolling reduction. FIG. 7 is a diagram showing the results, FIG. 7 is a diagram showing the effect of improving the micro-segregation of the slab dendrite portion by slow cooling when the method described in item 1 is applied, and FIG. Fig. 9 shows the results of the study on the length of the required rolling band when rolling down. Shows the study results on pressure roll pitch, FIG. 10 is a diagram showing an example of a tundish molten steel superheat transition when no control with cold material addition and induction heating (4 cases). DESCRIPTION OF SYMBOLS 1 ... Induction heating apparatus, 2 ... Cold material addition apparatus, 3 ... Tundish, 4,5 ... Mould and electromagnetic stirring apparatus in a mold,
6: secondary cooling zone, 7: warming zone, 8: heating zone, 9 ...
… Reduction band, 10… Reduction roll, 11, 12 …… Solidity ratio line, 13
…… a slab.

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】タンディッシュ、鋳型、2次冷却帯、加熱
帯または保温帯と加熱帯、および圧下帯を設けた連鋳機
を用いて連続鋳造法により鋳片を製造するに際し、タン
ディッシュにおける溶鋼過熱度を5〜50℃に制御し、鋳
型または鋳型とそれに引続く2次冷却帯から凝固完了位
置間に設けた電磁撹拌装置により溶鋼を撹拌しながら鋳
造を行ない、2次冷却帯以降の少なくとも2次冷却帯出
側から圧下帯入側の間に加熱帯または保温帯と加熱帯を
設けて鋳片を加熱あるいは保温、加熱すると共に、圧下
帯における鋳片断面中心部の固相率が0.3〜0.8の範囲に
おいて鋳片に4mm以上の圧下を加えることを特徴とする
連続鋳造鋳片の偏析改善方法。
(1) When producing a slab by a continuous casting method using a continuous casting machine provided with a tundish, a mold, a secondary cooling zone, a heating zone or a heating zone and a heating zone, and a reduction zone, a tundish is prepared. The superheat degree of the molten steel is controlled to 5 to 50 ° C., and the casting is performed while stirring the molten steel with the electromagnetic stirring device provided between the mold or the mold and the subsequent secondary cooling zone and the solidification completion position. A heating zone or a heat insulation zone and a heating zone are provided at least between the secondary cooling zone exit side and the reduction zone entrance side to heat or insulate and heat the slab, and the solid phase ratio at the center of the slab cross section in the reduction zone is 0.3. A method for improving segregation of a continuously cast slab, wherein a reduction of 4 mm or more is applied to the slab in the range of 0.8 to 0.8.
【請求項2】圧下帯長さを2m以上とし、ロールピッチ50
0mm以下に設定された複数対のロールにより鋳片を圧下
する請求項1記載の方法。
2. The roll belt length is 2 m or more and the roll pitch is 50
The method according to claim 1, wherein the slab is reduced by a plurality of pairs of rolls set to 0 mm or less.
【請求項3】鋳片搬送機構を有する圧下装置を設け、面
状またはバー状の圧下端子により鋳片を圧下する請求項
1記載の方法。
3. The method according to claim 1, further comprising the step of providing a pressing device having a slab conveying mechanism, and reducing the slab by a planar or bar-shaped pressing terminal.
【請求項4】タンディッシュの溶鋼過熱度を5〜50℃に
制御するために誘導加熱装置または冷材添加装置あるい
は両装置をタンディッシュに設けた請求項1記載の方
法。
4. The method according to claim 1, wherein an induction heating device and / or a cooling material adding device are provided in the tundish for controlling the superheat degree of the molten steel of the tundish to 5 to 50 ° C.
【請求項5】タンディッシュの溶鋼温度、鋳型冷却水量
および鋳型冷却水の温度変化等の1次冷却操業条件と2
次冷却水量等の2次冷却操業条件、保温帯の保温能力お
よび加熱帯の操業条件、雰囲気温度、鋳片サイズおよび
鋳造速度からなるプロセス情報に基づき凝固計算を行な
い、圧下帯における鋳片断面中心部の固相率が0.3〜0.8
の範囲になるよう、あるいは圧下帯が鋳片断面中心部の
固相率が0.3〜0.8の範囲を含むよう、2次冷却水量、加
熱帯操業条件および鋳造速度を制御する方法を組合せる
請求項1記載の方法。
5. Primary cooling operation conditions such as molten steel temperature of a tundish, mold cooling water amount and temperature change of mold cooling water;
The solidification calculation is performed based on the secondary cooling operation conditions such as the amount of secondary cooling water, the heat retention capacity of the heat insulation zone and the operation conditions of the heating zone, the ambient temperature, the slab size, and the process information including the casting speed. Part of solid phase ratio is 0.3 ~ 0.8
Combining a method for controlling the amount of secondary cooling water, operating conditions of the heating zone, and the casting speed such that the reduction zone is within the range or the solid phase ratio at the center of the slab cross section is in the range of 0.3 to 0.8. The method of claim 1.
【請求項6】タンディッシュの溶鋼温度は、鋳型冷却水
量および鋳型冷却水の温度変化等の1次冷却操業条件と
2次冷却水量等の2次冷却操業条件、保温帯の保温能力
および加熱帯の操業条件、雰囲気温度、鋳片サイズおよ
び鋳造速度からなるプロセス情報に基づき凝固計算を行
ない、圧下帯が鋳片断面中心部の固相率が0.3〜0.8の範
囲に来るよう、あるいは圧下帯が鋳片断面中心部の固相
率が0.3〜0.8の範囲を含むよう、圧下帯位置を制御する
方法を組合せる請求項1記載の方法。
6. The molten steel temperature of the tundish is determined by primary cooling operation conditions such as mold cooling water amount and temperature change of mold cooling water, secondary cooling operation conditions such as secondary cooling water amount, heat insulation capacity of heating zone and heating zone. Solidification calculation is performed based on process information consisting of operating conditions, ambient temperature, slab size and casting speed, and the reduction zone is adjusted so that the solid phase ratio at the center of the slab cross section is in the range of 0.3 to 0.8, or the reduction zone is 2. The method according to claim 1, wherein a method of controlling the position of the rolling band is combined so that the solid fraction at the center of the slab cross section includes a range of 0.3 to 0.8.
【請求項7】請求項5および6記載の両制御方法を組合
せる請求項1記載の方法。
7. The method according to claim 1, wherein both control methods according to claim 5 and 6 are combined.
JP30394288A 1988-12-02 1988-12-02 Method for improving segregation of continuous cast slab Expired - Lifetime JP2727205B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30394288A JP2727205B2 (en) 1988-12-02 1988-12-02 Method for improving segregation of continuous cast slab

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30394288A JP2727205B2 (en) 1988-12-02 1988-12-02 Method for improving segregation of continuous cast slab

Publications (2)

Publication Number Publication Date
JPH02151354A JPH02151354A (en) 1990-06-11
JP2727205B2 true JP2727205B2 (en) 1998-03-11

Family

ID=17927146

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30394288A Expired - Lifetime JP2727205B2 (en) 1988-12-02 1988-12-02 Method for improving segregation of continuous cast slab

Country Status (1)

Country Link
JP (1) JP2727205B2 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04231156A (en) * 1990-12-28 1992-08-20 Nippon Steel Corp Continuous casting
JP2561180B2 (en) * 1991-04-09 1996-12-04 新日本製鐵株式会社 Continuous casting method
CN1156979A (en) * 1995-06-21 1997-08-13 住友金属工业株式会社 Continuous casing of thin cast pieces
AU753777B2 (en) 1999-04-08 2002-10-31 Nippon Steel Corporation Cast steel piece and steel product excellent in forming characteristics and method for treatment of molted steel therefor and method for production thereof
KR100402020B1 (en) * 1999-12-09 2003-10-17 주식회사 포스코 Method for controlling equiaxed crystals in slab of the ferritic stainless steel
JP5009019B2 (en) * 2006-03-28 2012-08-22 株式会社神戸製鋼所 Steel manufacturing method
JP5020687B2 (en) * 2007-04-16 2012-09-05 株式会社神戸製鋼所 Continuous casting method of slab steel with little center segregation
JP6264524B1 (en) * 2017-03-29 2018-01-24 Jfeスチール株式会社 Steel continuous casting method
CN108672668A (en) * 2018-03-29 2018-10-19 马鞍山钢铁股份有限公司 The method and its control device of casting blank solidification institutional framework in a kind of control casting process
JP7139884B2 (en) * 2018-10-29 2022-09-21 日本製鉄株式会社 Continuous casting method and continuous casting machine
CN115138816B (en) * 2021-03-29 2024-08-02 上海梅山钢铁股份有限公司 Integral control method for superheat range of multi-heat continuous casting tundish
CN113857451B (en) * 2021-10-27 2023-04-11 江西理工大学 Continuous casting method for controlling distribution of manganese sulfide inclusions in medium carbon steel in thickness direction of continuous casting slab
CN114082913B (en) * 2021-11-15 2022-11-22 包头钢铁(集团)有限责任公司 Control method for improving center carbon segregation of hypereutectoid steel produced by small square billet section
CN114653912B (en) * 2022-02-14 2024-05-17 江阴兴澄特种钢铁有限公司 Production method of large-diameter high-purity compact special steel continuous casting round billet
CN115430812B (en) * 2022-08-15 2024-01-23 中天钢铁集团有限公司 Control method for uniform structure of medium-high carbon steel for automobile constant-speed transmission shaft
CN117548638B (en) * 2023-11-15 2024-06-25 北京科技大学 Method for improving bar banding defect and mechanical property and cam shaft

Also Published As

Publication number Publication date
JPH02151354A (en) 1990-06-11

Similar Documents

Publication Publication Date Title
JP2727205B2 (en) Method for improving segregation of continuous cast slab
US6905558B2 (en) Billet by continuous casting and manufacturing method for the same
JP3043075B2 (en) Method and apparatus for operating continuous casting apparatus
JP2809186B2 (en) Continuous casting method
EP0755737B2 (en) Continuous casting method for austenitic stainless steel
JP2995519B2 (en) Light reduction of continuous cast strand
EP3572163B1 (en) Continuous steel casting method
JPH038864B2 (en)
JPH0420696B2 (en)
JP3671872B2 (en) Continuous casting method of steel
JP4132653B2 (en) Steel
JP3374761B2 (en) Continuous cast slab, continuous casting method thereof, and method of manufacturing thick steel plate
JP2721382B2 (en) Method for refining organization of steel slab
JPH0362502B2 (en)
JPH0422664B2 (en)
JPH038863B2 (en)
JPH08252652A (en) Manufacture of thin slab of austenitic stainless steel containing small amount of residual delta ferrite
JP3615482B2 (en) Light reduction method in billet caster
JP3147803B2 (en) Continuous casting method
JP3101785B2 (en) Continuous casting method
JP2845706B2 (en) Molding equipment for continuous casting equipment
JPS63183758A (en) Continuous casting method
JPH08257714A (en) Continuous casting apparatus
JP2021030237A (en) Continuous casting method of steel
JPH0573507B2 (en)