JP2721406B2 - Load handling mechanism in heat pump air conditioner - Google Patents
Load handling mechanism in heat pump air conditionerInfo
- Publication number
- JP2721406B2 JP2721406B2 JP28073289A JP28073289A JP2721406B2 JP 2721406 B2 JP2721406 B2 JP 2721406B2 JP 28073289 A JP28073289 A JP 28073289A JP 28073289 A JP28073289 A JP 28073289A JP 2721406 B2 JP2721406 B2 JP 2721406B2
- Authority
- JP
- Japan
- Prior art keywords
- heat
- path
- heat exchanger
- hot water
- cooling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Other Air-Conditioning Systems (AREA)
Description
【発明の詳細な説明】 (産業上の利用分野) 本発明はヒートポンプ冷暖房装置に於ける負荷対応機
構に関するものである。Description: TECHNICAL FIELD The present invention relates to a load response mechanism in a heat pump cooling / heating device.
(従来の技術) 例えばホテルやコンピュータ室を備えたビル等では冷
房負荷と暖房負荷が共存する場合があり、冷房用の冷水
と暖房用の温水を同時に供給し得る冷暖房装置が必要と
なる。(Related Art) For example, in a hotel or a building having a computer room, a cooling load and a heating load may coexist, and a cooling and heating device capable of simultaneously supplying cooling water for cooling and hot water for heating is required.
従来、このような冷暖房装置は、例えば第6図に示す
ように複数の室内機a1,a2の夫々に、冷水熱源bに至る
冷水循環経路cの熱交換器d及び温水熱源eに至る温水
循環経路fの熱交換器gを設けている。そして該冷水熱
源bと温水熱源eは、夫々独立した熱源機により構成し
たり、またはヒートポンプの夫々の低温吸熱部、高温放
熱部により構成している。Conventionally, such a cooling and heating apparatus is connected to a heat exchanger d and a hot water heat source e of a cold water circulation path c leading to a cold water heat source b, for example, as shown in FIG. 6, for each of a plurality of indoor units a 1 and a 2. A heat exchanger g for the hot water circulation path f is provided. The cold water heat source b and the hot water heat source e are each constituted by an independent heat source device, or each is constituted by a low-temperature heat absorbing section and a high-temperature heat radiating section of a heat pump.
(発明が解決しようとする課題) 前者の熱源構成では、コスト及びスペースが大きくな
り、また後者の熱源構成では、冷房と暖房の負荷の比が
固定されてしまい、この負荷の比の変動に対応できない
という課題がある。(Problems to be Solved by the Invention) In the former heat source configuration, the cost and the space are increased, and in the latter heat source configuration, the ratio of the cooling and heating loads is fixed, and the variation of the load ratio is coped with. There is a problem that cannot be done.
本発明は、このような課題を解決することを目的とす
るものである。An object of the present invention is to solve such a problem.
(課題を解決するための手段) 上記の課題を解決するための本発明の構成を、実施例
に対応する第1図〜第5図を参照して説明すると、本発
明は、ヒートポンプ1の低温吸熱部2c及び高温吸熱部2h
の熱交換器3c,3hを通る冷水経路4c及び温水経路4hの夫
々に、流路切替手段5c,5hを介してバイパス経路6c,6hを
構成すると共に、該冷水経路4c及び温水経路4hに於い
て、夫々前記バイパス経路6c,6hの下流側と前記熱交換
器3c,3hに三方弁7c,7hを介して室外放熱経路8c,8hと直
通経路9c,9hを並列に構成し、これらの室外放熱経路8c,
8hは三方弁10を介して共通の室外熱交換器11に接続する
構成としたものである。(Means for Solving the Problems) The structure of the present invention for solving the above problems will be described with reference to FIGS. 1 to 5 corresponding to the embodiment. Heat absorbing part 2c and high temperature heat absorbing part 2h
In each of the cold water path 4c and the hot water path 4h passing through the heat exchangers 3c and 3h, bypass paths 6c and 6h are formed via flow path switching means 5c and 5h, respectively, and in the cold water path 4c and the hot water path 4h. The outdoor heat radiation paths 8c, 8h and the direct paths 9c, 9h are arranged in parallel with the downstream sides of the bypass paths 6c, 6h and the heat exchangers 3c, 3h via the three-way valves 7c, 7h, respectively. Heat dissipation path 8c,
8h is configured to be connected to the common outdoor heat exchanger 11 via the three-way valve 10.
上記の構成に於いて、流路切替手段5c,5hは熱交換器3
c,3hからの冷水、温水の流れを、負荷側の経路12c,12h
と前記バイパス経路6c,6h側に単に切り替える弁により
構成する他、該バイパス経路6c,6h側の流量を調節可能
に構成した弁により構成することができる。In the above configuration, the flow path switching means 5c and 5h are connected to the heat exchanger 3.
The flow of cold water and hot water from c and 3h is transferred to the load side paths 12c and 12h.
And a valve that simply switches to the bypass paths 6c and 6h, and a valve configured to adjust the flow rate on the bypass paths 6c and 6h.
(作用及び実施例) 上記の本発明の作用を実施例を表わした第1図〜第5
図を参照して説明する。(Operation and Example) FIGS. 1 to 5 showing the operation of the above-mentioned present invention in an embodiment.
This will be described with reference to the drawings.
まず冷房のみを行う場合には、第1図に示すように冷
水経路4cの流路切替手段5cを図中のハッチングで示すよ
うに冷水を負荷側の経路12cにのみ流すように切り替え
ると共に,三方弁7cは直通経路9c側に切り替える。一
方、温水経路4hの流路切替手段5hは図中のハッチングで
示すように温水をバイパス経路6h側に切り替えると共
に、三方弁7h,10を室外放熱経路8h側に切り替える。First, when only cooling is performed, the flow path switching means 5c of the chilled water path 4c is switched so as to flow chilled water only to the load side path 12c as shown by hatching in FIG. The valve 7c switches to the direct passage 9c. On the other hand, the flow path switching means 5h of the hot water path 4h switches the hot water to the bypass path 6h side and switches the three-way valves 7h and 10 to the outdoor heat radiation path 8h side as shown by hatching in the figure.
上記の状態に於いてヒートポンプ1を動作させると共
に、適所に設けた冷水及び温水循環用ポンプ13c,13hを
動作させると、まず低温吸熱部2cの熱交換器3cに於いて
冷却された冷水は冷水経路4cを流れ、流路切替手段5cか
ら経路12cを通り、冷房負荷側14の熱交換器15cを経て冷
房に供され、冷水経路4cに還流する。還流した冷水は、
三方弁7cから直通経路9cを経て熱交換器3cに還流し、再
び該熱交換器3cに於いて冷却されて循環に供される。When the heat pump 1 is operated in the above state and the cold water and hot water circulation pumps 13c and 13h provided in appropriate locations are operated, first, the cold water cooled in the heat exchanger 3c of the low temperature heat absorbing section 2c is cooled water. The air flows through the path 4c, passes through the path 12c from the flow path switching means 5c, passes through the heat exchanger 15c on the cooling load side 14, is provided for cooling, and is returned to the chilled water path 4c. The refluxed cold water is
The heat is returned from the three-way valve 7c to the heat exchanger 3c via the direct passage 9c, and is cooled again in the heat exchanger 3c and provided for circulation.
一方、高温放熱部2hの熱交換器3hに於いて加熱された
温水は、温水経路4hを流れ、流路切替手段5hからバイパ
ス経路6hを通り、三方弁7hを経て室外放熱経路8hに流入
する。こうして温水は室外放熱経路8hを流れ、室外熱交
換器11に於いて外気に放熱した後、三方弁10を経て室外
放熱経路8hから温水経路4hに還流して熱交換器3hに戻
り、再び該熱交換器3hに於いて高温放熱部2hの熱を奪っ
て循環に供される。以上の如くして、冷房負荷側14cの
熱交換器3hに於いて室内等から奪った熱を熱交換器3cに
於いて低温吸熱部2cに放熱すると共に、高温放熱部2hに
於いて発生する熱を室外熱交換器11に於いて外気に放熱
することにより、冷房を行うことができる。On the other hand, the hot water heated in the heat exchanger 3h of the high-temperature radiator 2h flows through the hot water path 4h, passes from the flow path switching unit 5h through the bypass path 6h, flows into the outdoor heat release path 8h via the three-way valve 7h. . In this way, the hot water flows through the outdoor heat radiating path 8h, radiates heat to the outside air in the outdoor heat exchanger 11, returns to the hot water path 4h from the outdoor heat radiating path 8h via the three-way valve 10, and returns to the heat exchanger 3h. In the heat exchanger 3h, the heat of the high-temperature radiating section 2h is taken out and used for circulation. As described above, the heat taken from the room or the like in the heat exchanger 3h on the cooling load side 14c is radiated to the low-temperature heat absorbing section 2c in the heat exchanger 3c and generated in the high-temperature heat radiating section 2h. By radiating heat to the outside air in the outdoor heat exchanger 11, cooling can be performed.
次に暖房のみを行う場合には、前述と逆に第2図に示
すように、温水経路4hの流路切替手段5hは図中のハッチ
ングで示すように温水を負荷側の経路12hにのみ流すよ
うに切り替えると共に、三方弁7hは直通経路9h側に切り
替える。一方、冷水経路4cの流路切替手段5cは図中のハ
ッチングで示すように温水をバイパス経路6c側に切り替
えると共に、三方弁7c,10を室外放熱経路8c側に切り替
える。Next, in the case where only heating is performed, as shown in FIG. 2, the flow path switching means 5h of the hot water path 4h flows hot water only to the load side path 12h as shown by hatching in the figure, as shown in FIG. And the three-way valve 7h is switched to the direct communication path 9h. On the other hand, the flow path switching means 5c of the cold water path 4c switches the hot water to the bypass path 6c side and switches the three-way valves 7c and 10 to the outdoor heat radiation path 8c side as shown by hatching in the figure.
上記の切り替え操作により、低温吸熱部2cに関して
は、熱交換器3cから冷水経路4c、流路切替手段5c、バイ
パス経路6c、冷水経路4cを経て三方弁7cに至り、該三方
弁7cから室外放熱経路8c、室外交換器11、三方弁10、室
外放熱経路8c、冷水経路4cを経て熱交換器3cに還流する
冷水循環経路が構成される。一方、高温放熱部2hに関し
ては熱交換器3hから温水経路4hを経て流路切替手段5hに
至り、該流路切替手段5hから経路12hを経て暖房負荷側1
4hの熱交換器15hに至り、該熱交換器15hから、経路12
h、温水経路4h、三方弁7h、直通経路9h、温水経路4hを
経て熱交換器3hに還流する温水循環経路が構成される。
こうして、室外熱交換器11に於いて外気から奪った熱を
ヒートポンプ1の低温放熱部2cに於いて放熱すると共
に、高温放熱部2hに於いて発生する熱を暖房負荷側14h
の熱交換器15hに於いて放熱することにより、室内等の
暖房を行うことができる。By the above switching operation, the low-temperature heat absorbing portion 2c reaches the three-way valve 7c from the heat exchanger 3c via the chilled water path 4c, the flow path switching means 5c, the bypass path 6c, and the chilled water path 4c, and radiates outdoor heat from the three-way valve 7c. A cold water circulation path that returns to the heat exchanger 3c via the path 8c, the outdoor exchanger 11, the three-way valve 10, the outdoor heat radiation path 8c, and the cold water path 4c is configured. On the other hand, with respect to the high-temperature radiating section 2h, the heat exchanger 3h passes through the hot water path 4h to reach the flow path switching means 5h, and from the flow path switching means 5h through the path 12h, the heating load side 1h.
4h of the heat exchanger 15h, and from the heat exchanger 15h, the route 12
h, a hot water circulation path that returns to the heat exchanger 3h through the hot water path 4h, the three-way valve 7h, the direct communication path 9h, and the hot water path 4h is configured.
Thus, the heat taken from the outside air in the outdoor heat exchanger 11 is radiated in the low-temperature radiating section 2c of the heat pump 1, and the heat generated in the high-temperature radiating section 2h is transferred to the heating load side 14h.
By radiating heat in the heat exchanger 15h, it is possible to heat a room or the like.
次に第3図に示すように、低温吸熱部2cに関しては第
1図に示すような冷水循環経路を構成すると共に、高温
放熱部2hに関しては第2図に示すような温水循環経路を
構成することにより、冷房負荷側14cの熱交換器15cに於
いて室内等から奪った熱を、ヒートポンプ1の低温吸熱
部2cに於いて放熱すると共に、高温放熱部2hに於いて発
生する熱を暖房負荷側14hの熱交換器15hに於いて放熱す
ることができ、こうして冷房負荷側14cに於いて冷房を
行うと同時に、暖房負荷側14hに於いて暖房を行うこと
ができる。Next, as shown in FIG. 3, the low-temperature heat absorbing section 2c forms a cold water circulation path as shown in FIG. 1, and the high-temperature heat radiation section 2h forms a hot water circulation path as shown in FIG. Thus, the heat taken from the room or the like in the heat exchanger 15c on the cooling load side 14c is radiated in the low-temperature heat absorbing section 2c of the heat pump 1, and the heat generated in the high-temperature heat radiating section 2h is transferred to the heating load. The heat can be dissipated in the heat exchanger 15h on the side 14h, so that cooling can be performed on the cooling load side 14c and heating can be performed on the heating load side 14h.
以上の動作は、暖房及び冷房の負荷がバランスしてい
る場合には問題はないが、バランスがくずれると相互に
悪影響を及ぼす。例えば暖房負荷が小さくバランスがく
ずれた場合には、高温放熱部2hに於いて発生する熱を十
分に放熱できないので、低温吸熱部2cにおける冷水から
の吸熱も効率的に行えなくなり、逆に冷房負荷が小さく
バランスがくずれた場合には、低温吸熱部2cに於いて冷
水から十分に吸熱できないので高温放熱部2hに於ける熱
の発生も効率的に行えなくなる。The above operation does not cause any problem when the heating and cooling loads are balanced, but when the balance is lost, they adversely affect each other. For example, when the heating load is small and the balance is lost, the heat generated in the high-temperature heat radiating section 2h cannot be sufficiently radiated, so that the low-temperature heat absorbing section 2c cannot efficiently absorb heat from the cold water. When the balance is small, the low-temperature heat-absorbing section 2c cannot absorb heat sufficiently from cold water, so that heat cannot be efficiently generated in the high-temperature radiating section 2h.
そこで、本発明に於いては、例えば第3図の状態に於
いて暖房負荷が小さくバランスがくずれた場合には、第
4図に示すように三方弁7h,10を室外放熱経路8hに切り
替える。かかる状態に於いては、暖房負荷側14hの熱交
換器15hを経て温水経路4hの下流側に還流した温水は、
三方弁7hから室外放熱経路8hに入って室外熱交換器11を
通り、三方弁10から室外放熱経路8h、温水経路4hを経て
熱交換器3hに還流する。このように前記熱交換器15hを
経た温水は、室外熱交換器11を経た後に熱交換器3hに還
流するので、暖房負荷が小さく、この暖房負荷側14hの
熱交換器15hに於ける放熱が不十分な場合にも、次いで
室外熱交換器11に於いて外気に放熱することができ、こ
うして低温吸熱部2cと高温放熱部2hに於ける熱のバラン
スを維持することができる。Therefore, in the present invention, for example, when the heating load is small and the balance is lost in the state shown in FIG. 3, the three-way valves 7h and 10 are switched to the outdoor heat dissipation path 8h as shown in FIG. In such a state, the hot water that has returned to the downstream side of the hot water path 4h via the heat exchanger 15h on the heating load side 14h is
From the three-way valve 7h, it enters the outdoor heat dissipation path 8h, passes through the outdoor heat exchanger 11, and returns from the three-way valve 10 to the heat exchanger 3h via the outdoor heat dissipation path 8h and the hot water path 4h. In this way, the hot water that has passed through the heat exchanger 15h returns to the heat exchanger 3h after passing through the outdoor heat exchanger 11, so that the heating load is small, and the heat radiation in the heat exchanger 15h on the heating load side 14h is reduced. Even in the case where the heat is insufficient, the heat can be radiated to the outside air in the outdoor heat exchanger 11, and the balance between the heat in the low-temperature heat absorbing section 2c and the high-temperature heat radiating section 2h can be maintained.
以上と逆に第3図の状態に於いて、冷房負荷が小さく
バランスがくずれた場合には、第5図に示すように三方
弁7cを室外放熱経路8c側に切り替えると共に、三方弁10
は該室外放熱経路8c側を維持する。かかる状態に於いて
は、冷房負荷側14cの熱交換器15cを経て冷水経路4cの下
流側に還流した冷水は、三方弁7cから室外放熱経路8cに
入って室外熱交換器11を通り、三方弁10から室外放熱経
路8c、冷水経路4cを経て熱交換器3cに還流する。このよ
うに冷房負荷側14cの熱交換器15cを経た冷水は、室外熱
交換器11を経た後に熱交換器2cに還流するので、前記熱
交換器15cに於ける吸熱が不十分な場合にも、次いで室
外熱交換器11に於いて外気の熱を奪うことができ、こう
して低温吸熱部2cと高温放熱部2hに於ける熱のバランス
を維持することができる。尚、以上の第4図,第5図に
示す動作に於いて、流路切替手段5c,5hとして、熱交換
器3c,3hからの冷水、温水の流れを、負荷側の経路12c,1
2hと前記バイパス経路6c,6h側に単に切り替える弁によ
り構成した場合には、冷水、温水は全て経路12c,12h側
に流して、負荷側14c,14hの熱交換器15c,15hに於ける流
量は温調機構等の適宜の機構により、該負荷側14c,14h
側に於いて調節するように構成することができるが、こ
の他、該流路切替手段5c,5hとして、バイパス経路6c,6h
側の流量を調節可能に構成した弁により構成した場合に
は、これらの弁を介してバイパス経路6c,6hを通る冷
水、温水の量を調節して、負荷側14c,14hの熱交換器15
c,15hを通る流量と、室外熱交換器11を流れる流量の割
合を調節することができる。尚、図に於いては、三方弁
7c,7hは室外放熱経路8c,8hの上流側に、そして三方弁10
はその下流側に構成しているが、これと逆流に構成する
こともできる。Contrary to the above, when the cooling load is small and the balance is lost in the state of FIG. 3, the three-way valve 7c is switched to the outdoor heat radiation path 8c side as shown in FIG.
Maintains the outdoor heat dissipation path 8c side. In this state, the cold water that has returned to the downstream side of the cold water path 4c through the heat exchanger 15c on the cooling load side 14c enters the outdoor heat radiation path 8c from the three-way valve 7c, passes through the outdoor heat exchanger 11, and passes through the outdoor heat exchanger 11. It returns from the valve 10 to the heat exchanger 3c via the outdoor heat radiation path 8c and the cold water path 4c. As described above, since the cold water that has passed through the heat exchanger 15c on the cooling load side 14c returns to the heat exchanger 2c after passing through the outdoor heat exchanger 11, even when the heat absorption in the heat exchanger 15c is insufficient. Then, the heat of the outside air can be removed in the outdoor heat exchanger 11, and thus the balance between the heat in the low-temperature heat absorbing section 2c and the high-temperature heat radiating section 2h can be maintained. In the operation shown in FIGS. 4 and 5, the flow path switching means 5c and 5h are used to transfer the flow of cold water and hot water from the heat exchangers 3c and 3h to the load paths 12c and 1h.
In the case of 2h and a valve that simply switches to the bypass paths 6c and 6h, cold water and hot water all flow to the paths 12c and 12h, and flow rates in the heat exchangers 15c and 15h on the load sides 14c and 14h. By a suitable mechanism such as a temperature control mechanism, the load side 14c, 14h
However, in addition to the above, as the flow path switching means 5c, 5h, the bypass paths 6c, 6h
If the flow rate of the side is adjustable, the amount of cold water and hot water passing through the bypass paths 6c and 6h is adjusted via these valves, and the heat exchanger 15 on the load side 14c and 14h is adjusted.
The ratio between the flow rate passing through c and 15h and the flow rate flowing through outdoor heat exchanger 11 can be adjusted. In the figure, the three-way valve
7c and 7h are upstream of the outdoor heat dissipation paths 8c and 8h, and the three-way valve 10
Is configured on the downstream side, but may be configured in a reverse flow.
本発明は上記したように、流路切替手段5c,5hと三方
弁7c,7h,10を操作することにより、冷房負荷側14cまた
は暖房負荷側14hのいずれか一方側に於いて冷房または
暖房を行えると共に、該冷房負荷側14c及び暖房を行う
ことができ、後者の運転に於いて冷房または暖房負荷の
バランスがくずれた場合にも室外熱交換器11により放熱
または吸熱を行うことにより、ヒートポンプ1の低温吸
熱部2cと高温放熱部2hに於ける熱のバランスを維持する
ことができる。従って冷房負荷側14c及び暖房負荷側14h
共に適数の熱交換器を構成することができる。As described above, the present invention operates the flow path switching means 5c, 5h and the three-way valves 7c, 7h, 10 to perform cooling or heating on either the cooling load side 14c or the heating load side 14h. In addition, the cooling pump 14c and the heating can be performed, and when the balance of the cooling or the heating load is lost in the latter operation, the heat pump 1 is radiated or absorbed by the outdoor heat exchanger 11. The balance of heat in the low-temperature heat-absorbing section 2c and the high-temperature heat-radiating section 2h can be maintained. Therefore, the cooling load side 14c and the heating load side 14h
Together, an appropriate number of heat exchangers can be configured.
尚、図示例に於いて、符号16c,16h,17はファンであ
る。In the illustrated example, reference numerals 16c, 16h, and 17 indicate fans.
(発明の効果) 本発明は以上の通り、冷房用の冷水と暖房用の温水を
同時に供給し得る冷暖房装置を、単一のヒートポンプに
より構成することができ、所用スペース及びコストを低
減し得ると共に、冷房と暖房の負荷の比の変動にも対応
して効率的な運転を行うことができるという効果があ
る。(Effects of the Invention) As described above, the present invention can configure a cooling and heating device capable of simultaneously supplying cooling water for cooling and hot water for heating with a single heat pump, and can reduce required space and cost. In addition, there is an effect that an efficient operation can be performed in response to a change in the ratio between the cooling and heating loads.
第1図〜第5図は本発明装置の実施例の全体構成及び動
作を表わした系統説明図、第6図は従来装置の一例を表
わした系統説明図である。 符号1……ヒートポンプ、2c……低温吸熱部、2h……高
温放熱部、3c,3h……熱交換器、4c……冷水経路、4h…
…温水経路、5c,5h……流路切替手段、6c,6h……バイパ
ス経路、7c,7h,10……三方弁、8c,8h……室外放熱経
路、9c,9h……直通経路、11……室外熱交換器、12c,12h
……経路、13c,13h……循環用ポンプ、14c……冷房負荷
側、14h……暖房負荷側、15c,15h……熱交換器、16c,16
h,17……ファン。1 to 5 are system explanatory diagrams showing the overall configuration and operation of an embodiment of the device of the present invention, and FIG. 6 is a system explanatory diagram showing an example of a conventional device. Symbol 1 ... heat pump, 2c ... low temperature heat absorbing section, 2h ... high temperature heat radiating section, 3c, 3h ... heat exchanger, 4c ... cold water path, 4h ...
... hot water path, 5c, 5h ... flow path switching means, 6c, 6h ... bypass path, 7c, 7h, 10 ... three-way valve, 8c, 8h ... outdoor radiation path, 9c, 9h ... direct path, 11 …… Outdoor heat exchanger, 12c, 12h
…… Route, 13c, 13h… Circulation pump, 14c… Cooling load side, 14h …… Heating load side, 15c, 15h …… Heat exchanger, 16c, 16
h, 17 …… Fan.
Claims (2)
の熱交換器を通る冷水経路及び温水経路の夫々に、流路
切替手段を介してバイパス経路を構成すると共に、該冷
水経路及び温水経路に於いて、夫々前記バイパス経路の
下流側と前記熱交換器間に三方弁を介して室外放熱経路
と直通経路を並列に構成し、これらの室外放熱経路は三
方弁を介して共通の室外熱交換器に接続する構成とした
ことを特徴とするヒートポンプ冷暖房装置に於ける負荷
対応機構。1. A cold water path and a hot water path passing through a heat exchanger of a low-temperature heat absorbing section and a high-temperature heat absorbing section of a heat pump. In this case, an outdoor heat radiation path and a direct path are configured in parallel between the downstream side of the bypass path and the heat exchanger via a three-way valve, and these outdoor heat radiation paths are shared by a common outdoor heat exchange through a three-way valve. A load response mechanism in a heat pump cooling / heating device, wherein the load response mechanism is configured to be connected to a heater.
側の流量を調節可能に構成したことを特徴とするヒート
ポンプ冷暖房装置に於ける負荷対応機構。2. A load handling mechanism in a heat pump cooling / heating apparatus, wherein the flow path switching means according to claim 1 is configured to adjust a flow rate on a bypass path side.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28073289A JP2721406B2 (en) | 1989-10-27 | 1989-10-27 | Load handling mechanism in heat pump air conditioner |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28073289A JP2721406B2 (en) | 1989-10-27 | 1989-10-27 | Load handling mechanism in heat pump air conditioner |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH03144264A JPH03144264A (en) | 1991-06-19 |
JP2721406B2 true JP2721406B2 (en) | 1998-03-04 |
Family
ID=17629178
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP28073289A Expired - Fee Related JP2721406B2 (en) | 1989-10-27 | 1989-10-27 | Load handling mechanism in heat pump air conditioner |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2721406B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2445970C (en) * | 2001-05-16 | 2010-04-13 | Uniflair International S.A. | Air-conditioning system |
-
1989
- 1989-10-27 JP JP28073289A patent/JP2721406B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH03144264A (en) | 1991-06-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3127929A (en) | Air conditioning system with one pipe heating and cooling | |
JPH09166346A (en) | Air conditioner, air conditioning system and controlling method thereof | |
EP1830136B1 (en) | Cooling unit for air conditioning systems | |
US3853172A (en) | Air conditioning system and method | |
JP2721406B2 (en) | Load handling mechanism in heat pump air conditioner | |
JP2721407B2 (en) | Heat pump air conditioner | |
JP2008020168A (en) | Air conditioning system | |
JP2696045B2 (en) | Duct heat pump air conditioner | |
ES330284A1 (en) | Installation of heating and refrigeration according to the four-way principle. (Machine-translation by Google Translate, not legally binding) | |
JPH10151631A (en) | Temperature controller of resin mold | |
JPS623608Y2 (en) | ||
JPH10246458A (en) | Personal air conditioner and method for using it | |
JP3678996B2 (en) | Cooling system | |
JPH0776628B2 (en) | Air-conditioning dehumidification system | |
JPH02308558A (en) | Semiconductor cooling device | |
JPH0720486Y2 (en) | air conditioner | |
KR200213996Y1 (en) | Regeneration-compound cycle cooling and heating system | |
JP2642474B2 (en) | Absorption heat pump air conditioner | |
JPH11304193A (en) | Humidity control ventilation unit | |
JPS6138045Y2 (en) | ||
JPH0531451Y2 (en) | ||
JPS60569Y2 (en) | Air conditioning equipment | |
JPH0744917Y2 (en) | Absorption chiller / heater device | |
JPH0422175Y2 (en) | ||
JPH09133423A (en) | Absorption type heat pump system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |