JP2708539B2 - Resin composition and molded product thereof - Google Patents
Resin composition and molded product thereofInfo
- Publication number
- JP2708539B2 JP2708539B2 JP8545389A JP8545389A JP2708539B2 JP 2708539 B2 JP2708539 B2 JP 2708539B2 JP 8545389 A JP8545389 A JP 8545389A JP 8545389 A JP8545389 A JP 8545389A JP 2708539 B2 JP2708539 B2 JP 2708539B2
- Authority
- JP
- Japan
- Prior art keywords
- weight
- film
- less
- stretch
- resin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000011342 resin composition Substances 0.000 title claims description 19
- 229920006122 polyamide resin Polymers 0.000 claims description 39
- 239000002245 particle Substances 0.000 claims description 30
- 238000002844 melting Methods 0.000 claims description 23
- 230000008018 melting Effects 0.000 claims description 22
- 229920005989 resin Polymers 0.000 claims description 21
- 239000011347 resin Substances 0.000 claims description 21
- OEPOKWHJYJXUGD-UHFFFAOYSA-N 2-(3-phenylmethoxyphenyl)-1,3-thiazole-4-carbaldehyde Chemical compound O=CC1=CSC(C=2C=C(OCC=3C=CC=CC=3)C=CC=2)=N1 OEPOKWHJYJXUGD-UHFFFAOYSA-N 0.000 claims description 20
- 230000035699 permeability Effects 0.000 claims description 19
- 239000001301 oxygen Substances 0.000 claims description 15
- 229910052760 oxygen Inorganic materials 0.000 claims description 15
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 14
- 239000006185 dispersion Substances 0.000 claims 4
- 229920001328 Polyvinylidene chloride Polymers 0.000 description 28
- 239000005033 polyvinylidene chloride Substances 0.000 description 28
- 230000004888 barrier function Effects 0.000 description 27
- 239000007789 gas Substances 0.000 description 15
- 229920001577 copolymer Polymers 0.000 description 14
- 239000010410 layer Substances 0.000 description 10
- 238000005259 measurement Methods 0.000 description 10
- 239000000203 mixture Substances 0.000 description 10
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 9
- 239000004952 Polyamide Substances 0.000 description 9
- 229910001882 dioxygen Inorganic materials 0.000 description 9
- 229920002647 polyamide Polymers 0.000 description 9
- 238000002156 mixing Methods 0.000 description 8
- 239000013078 crystal Substances 0.000 description 7
- 239000004677 Nylon Substances 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 238000001125 extrusion Methods 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- 229920001778 nylon Polymers 0.000 description 6
- 230000005540 biological transmission Effects 0.000 description 5
- 238000007334 copolymerization reaction Methods 0.000 description 5
- 229920000642 polymer Polymers 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- JHWNWJKBPDFINM-UHFFFAOYSA-N Laurolactam Chemical compound O=C1CCCCCCCCCCCN1 JHWNWJKBPDFINM-UHFFFAOYSA-N 0.000 description 3
- 229920000299 Nylon 12 Polymers 0.000 description 3
- 229920002292 Nylon 6 Polymers 0.000 description 3
- BAPJBEWLBFYGME-UHFFFAOYSA-N acrylic acid methyl ester Natural products COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 description 3
- -1 alkyl methacrylate Chemical compound 0.000 description 3
- 125000004432 carbon atom Chemical group C* 0.000 description 3
- 230000006378 damage Effects 0.000 description 3
- 238000000354 decomposition reaction Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000000178 monomer Substances 0.000 description 3
- 229920000572 Nylon 6/12 Polymers 0.000 description 2
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 2
- 125000000217 alkyl group Chemical group 0.000 description 2
- 235000013361 beverage Nutrition 0.000 description 2
- 238000000071 blow moulding Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 239000005038 ethylene vinyl acetate Substances 0.000 description 2
- 235000013305 food Nutrition 0.000 description 2
- 230000009477 glass transition Effects 0.000 description 2
- NAQMVNRVTILPCV-UHFFFAOYSA-N hexane-1,6-diamine Chemical compound NCCCCCCN NAQMVNRVTILPCV-UHFFFAOYSA-N 0.000 description 2
- QQVIHTHCMHWDBS-UHFFFAOYSA-N isophthalic acid Chemical compound OC(=O)C1=CC=CC(C(O)=O)=C1 QQVIHTHCMHWDBS-UHFFFAOYSA-N 0.000 description 2
- 238000004898 kneading Methods 0.000 description 2
- 238000010030 laminating Methods 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 239000005022 packaging material Substances 0.000 description 2
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- CXMXRPHRNRROMY-UHFFFAOYSA-N sebacic acid Chemical compound OC(=O)CCCCCCCCC(O)=O CXMXRPHRNRROMY-UHFFFAOYSA-N 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- DTGGJUIFYJXAJI-OBGWFSINSA-N (e)-2-cyano-3-[4-(n-phenylanilino)phenyl]prop-2-enoic acid Chemical compound C1=CC(/C=C(C(=O)O)\C#N)=CC=C1N(C=1C=CC=CC=1)C1=CC=CC=C1 DTGGJUIFYJXAJI-OBGWFSINSA-N 0.000 description 1
- JCUZDQXWVYNXHD-UHFFFAOYSA-N 2,2,4-trimethylhexane-1,6-diamine Chemical compound NCCC(C)CC(C)(C)CN JCUZDQXWVYNXHD-UHFFFAOYSA-N 0.000 description 1
- DPQHRXRAZHNGRU-UHFFFAOYSA-N 2,4,4-trimethylhexane-1,6-diamine Chemical compound NCC(C)CC(C)(C)CCN DPQHRXRAZHNGRU-UHFFFAOYSA-N 0.000 description 1
- MVDKKZZVTWHVMC-UHFFFAOYSA-N 2-hexadecylpropanedioic acid Chemical compound CCCCCCCCCCCCCCCCC(C(O)=O)C(O)=O MVDKKZZVTWHVMC-UHFFFAOYSA-N 0.000 description 1
- WMRCTEPOPAZMMN-UHFFFAOYSA-N 2-undecylpropanedioic acid Chemical compound CCCCCCCCCCCC(C(O)=O)C(O)=O WMRCTEPOPAZMMN-UHFFFAOYSA-N 0.000 description 1
- RNLHGQLZWXBQNY-UHFFFAOYSA-N 3-(aminomethyl)-3,5,5-trimethylcyclohexan-1-amine Chemical compound CC1(C)CC(N)CC(C)(CN)C1 RNLHGQLZWXBQNY-UHFFFAOYSA-N 0.000 description 1
- DZIHTWJGPDVSGE-UHFFFAOYSA-N 4-[(4-aminocyclohexyl)methyl]cyclohexan-1-amine Chemical compound C1CC(N)CCC1CC1CCC(N)CC1 DZIHTWJGPDVSGE-UHFFFAOYSA-N 0.000 description 1
- BDBZTOMUANOKRT-UHFFFAOYSA-N 4-[2-(4-aminocyclohexyl)propan-2-yl]cyclohexan-1-amine Chemical compound C1CC(N)CCC1C(C)(C)C1CCC(N)CC1 BDBZTOMUANOKRT-UHFFFAOYSA-N 0.000 description 1
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 1
- 101100160821 Bacillus subtilis (strain 168) yxdJ gene Proteins 0.000 description 1
- 101100510326 Caenorhabditis elegans tpa-1 gene Proteins 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- 229920003620 Grilon® Polymers 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 1
- 229920000571 Nylon 11 Polymers 0.000 description 1
- 239000004687 Nylon copolymer Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 1
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 235000011037 adipic acid Nutrition 0.000 description 1
- 239000001361 adipic acid Substances 0.000 description 1
- 125000002723 alicyclic group Chemical group 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 125000005250 alkyl acrylate group Chemical group 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 239000004760 aramid Substances 0.000 description 1
- 229920003235 aromatic polyamide Polymers 0.000 description 1
- 238000009529 body temperature measurement Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 235000019987 cider Nutrition 0.000 description 1
- 238000000748 compression moulding Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000000806 elastomer Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- JBKVHLHDHHXQEQ-UHFFFAOYSA-N epsilon-caprolactam Chemical compound O=C1CCCCCN1 JBKVHLHDHHXQEQ-UHFFFAOYSA-N 0.000 description 1
- 229920006242 ethylene acrylic acid copolymer Polymers 0.000 description 1
- 229920006244 ethylene-ethyl acrylate Polymers 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 235000011389 fruit/vegetable juice Nutrition 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 239000011256 inorganic filler Substances 0.000 description 1
- 229910003475 inorganic filler Inorganic materials 0.000 description 1
- 239000001023 inorganic pigment Substances 0.000 description 1
- 229920000554 ionomer Polymers 0.000 description 1
- 238000010409 ironing Methods 0.000 description 1
- 239000012948 isocyanate Substances 0.000 description 1
- 150000002513 isocyanates Chemical class 0.000 description 1
- 150000003951 lactams Chemical class 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 244000144972 livestock Species 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 235000013372 meat Nutrition 0.000 description 1
- OJURWUUOVGOHJZ-UHFFFAOYSA-N methyl 2-[(2-acetyloxyphenyl)methyl-[2-[(2-acetyloxyphenyl)methyl-(2-methoxy-2-oxoethyl)amino]ethyl]amino]acetate Chemical compound C=1C=CC=C(OC(C)=O)C=1CN(CC(=O)OC)CCN(CC(=O)OC)CC1=CC=CC=C1OC(C)=O OJURWUUOVGOHJZ-UHFFFAOYSA-N 0.000 description 1
- 239000006259 organic additive Substances 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920002959 polymer blend Polymers 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 238000005057 refrigeration Methods 0.000 description 1
- 235000013580 sausages Nutrition 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229920002725 thermoplastic elastomer Polymers 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 1
- 238000007666 vacuum forming Methods 0.000 description 1
Landscapes
- Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Containers Having Bodies Formed In One Piece (AREA)
- Processes Of Treating Macromolecular Substances (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
- Laminated Bodies (AREA)
Description
【発明の詳細な説明】 産業上の利用分野 本発明は低融点ポリアミド樹脂40重量%を超え、95重
量%以下と塩化ビニリデン樹脂60重量%未満、5重量%
以上とからなるポリアミド樹脂組成物に関する。更に機
械的性質にすぐれ、高湿度下におけるガスバリヤー性の
改良された該樹脂組成物からなるフィルム、シートもし
くは容器等の成形物、特にガスバリヤー性、透明性の改
善された延伸成形物に関するものである。Description: FIELD OF THE INVENTION The present invention relates to a low melting polyamide resin of more than 40% by weight and less than 95% by weight and a vinylidene chloride resin of less than 60% by weight and 5% by weight.
The present invention relates to a polyamide resin composition comprising the above. Further, a molded product such as a film, a sheet or a container comprising the resin composition having improved mechanical properties and improved gas barrier properties under high humidity, particularly a stretch molded product having improved gas barrier properties and transparency. It is.
従来の技術 従来、ポリアミド樹脂は強靱性、耐熱性、耐寒性、耐
油性、透明性等のすぐれた性質を有していると言うこと
から、単独のフィルム、シートあるいは積層物の層構成
用の樹脂として溶融押出し成形品の分野に工業的に利用
されている。(特開昭60−105448,特公昭59−37931)。
ところが、ポリアミド樹脂は高湿度下の酸素透過係数が
大きく、その利用範囲が限られていた。Conventional technology Conventionally, polyamide resins have excellent properties such as toughness, heat resistance, cold resistance, oil resistance, and transparency. It is industrially used as a resin in the field of melt extrusion moldings. (JP-A-60-105448, JP-B-59-37931).
However, the polyamide resin has a large oxygen permeability coefficient under high humidity, and its use range is limited.
ポリアミド樹脂はその構造上、親水性樹脂であるため
高湿度雰囲気下では雰囲気中の水分を吸収し、吸収した
水分子によって可塑化され、酸素や水などのバリヤー性
が悪くなる。バリヤー性の湿度依存性がある場合は外気
の湿度だけではなく内容物自体の水分量も考えなければ
ならないため、特に水分量の多い内容物を包装するとき
はポリアミド樹脂ではガスバリヤー性が不十分となる。Since the polyamide resin is a hydrophilic resin in its structure, it absorbs moisture in the atmosphere under a high humidity atmosphere, is plasticized by the absorbed water molecules, and has a poor barrier property against oxygen and water. If the barrier property has humidity dependency, not only the humidity of the outside air but also the moisture content of the content itself must be considered, so the polyamide resin has insufficient gas barrier properties especially when packaging content with a high moisture content. Becomes
一般にポリアミド樹脂の酸素透過係数を小さくする方
法としてはエチレン−酢酸ビニル共重合体けん化物を混
合する方法(特開昭62−7761)があるが、尚高湿度下の
酸素透過度が大きく、また溶融押出し加工時に架橋グル
の発生等の問題点がある。In general, as a method for reducing the oxygen permeability coefficient of a polyamide resin, there is a method of mixing a saponified product of ethylene-vinyl acetate copolymer (Japanese Patent Laid-Open No. 62-7776). There are problems such as generation of cross-linking glue during melt extrusion.
従来から知られるポリアミド樹脂の欠点、即ち、高湿
度雰囲気下での酸素ガスバリヤー性が悪いという問題
点、高湿度雰囲気下での透湿度が大きいという問題点、
これらを他の樹脂との混合によって解決しようとすると
成形性、酸素ガスバリヤー性、低温衝撃強度が維持でき
なくなるという問題点を同時に実用上満足する水準に達
するように改良することが望まれている。Disadvantages of conventionally known polyamide resins, namely, a problem that oxygen gas barrier property under high humidity atmosphere is poor, a problem that moisture permeability under high humidity atmosphere is large,
In order to solve these problems by mixing with other resins, it is desired to improve the moldability, the oxygen gas barrier property, and the problem that the low-temperature impact strength cannot be maintained at the same time to reach a practically satisfactory level. .
ポリアミド樹脂層に他の樹脂層を積層することによ
り、この問題を解決しようとする試みもあるが(米国特
許4,112,182、特開昭62−273849)複数の押出機を必要
とし、その操作も非常に複雑になる欠点を有している。Attempts have been made to solve this problem by laminating another resin layer on the polyamide resin layer (U.S. Pat. No. 4,112,182, JP-A-62-273849). It has the disadvantage of becoming complicated.
本発明者等は高湿度下におけるガスバリヤー性の改善
されたポリアミド樹脂組成物を得るべく鋭意研究を重ね
た結果、ポリアミド樹脂と塩化ビニリデンの特定の割合
の樹脂組成物は新規なものであり、且実用上満足すべき
特性を有することを見出し、更に、この樹脂組成物から
得られる成形物、特に塩化ビニリデン樹脂が扁平な分散
粒子としてポリアミド樹脂中に分散する延伸成形物がガ
スバリヤー性にすぐれ改良された透明性をもつことを見
出し、この知見に基づいて本発明に到達した。The present inventors have intensively studied to obtain a polyamide resin composition having improved gas barrier properties under high humidity, and as a result, a resin composition having a specific ratio of a polyamide resin and vinylidene chloride is a novel one, Further, they have found that they have properties that are practically satisfactory, and furthermore, molded articles obtained from this resin composition, particularly stretch molded articles in which vinylidene chloride resin is dispersed as flat dispersed particles in polyamide resin, have excellent gas barrier properties. The inventors have found that they have improved transparency, and have arrived at the present invention based on this finding.
問題点を解決するための手段 本発明の延伸成形物を構成する樹脂組成物は結晶融点
210℃以下の低融点ポリアミド樹脂と塩化ビニリデン樹
脂(以下PVDCと略称する)からなる。Means for Solving the Problems The resin composition constituting the stretch molded product of the present invention has a crystalline melting point.
It is composed of a polyamide resin having a low melting point of 210 ° C. or less and a vinylidene chloride resin (hereinafter abbreviated as PVDC).
ポリアミド樹脂としては結晶融点210℃以下好ましく
は200℃以下更に好ましくは190℃以下の低融点ポリアミ
ド樹脂が用いられる。本発明においてポリアミド樹脂の
結晶融点は差動走査熱量計(メトラー社製TA−3000)を
用いサンプル8〜10mgを昇温速度20℃/分で昇温して得
られた溶融曲線の最大値を示す温度で示される。低融点
ポリアミド樹脂として、例えば、脂肪族(C4〜C12)ポ
リアミド、脂環族ポリアミド、芳香族ポリアミドのいず
れかもしくはそれらの混合物が用いられる。ポリアミド
樹脂を構成する単量体としては、例えば、炭素数C6〜C
12の直鎖ω−アミノカルボン酸及びそのラクタム、アジ
ピン酸、セバチン酸、ドデカンジカルボン酸、ヘプタデ
カンジカルボン酸、ヘキサメチレン・ジアミン、イソフ
タール酸、ビス−(4−アミノシクロヘキシル)−メタ
ン、2,2−ビス−(4′−アミノシクロヘキシル)−プ
ロパン、テレフタール酸もしくはそのジメチルエステ
ル、1,6−ジアミノ−2,2,4−トリメチルヘキサン、1,6
−ジアミノ−2,4,4−トリメチル−ヘキサン、1−アミ
ノ−3−アミノメチル−3,5,5−トリメチル−シクロヘ
キサン等が好ましく、これらから形成される重合体及び
共重合体が用いられる。これらの内ナイロン6−66、ナ
イロン6−69、ナイロン6−11、ナイロン11、ナイロン
12、ナイロン6−12、ナイロン6−66−610、ナイロン
6−66−610−612等が好適である。As the polyamide resin, a low melting point polyamide resin having a crystal melting point of 210 ° C. or lower, preferably 200 ° C. or lower, more preferably 190 ° C. or lower is used. In the present invention, the crystal melting point of the polyamide resin is the maximum value of the melting curve obtained by heating a sample of 8 to 10 mg at a heating rate of 20 ° C./min using a differential scanning calorimeter (TA-3000 manufactured by Mettler). Shown at the indicated temperature. As the low-melting polyamide resin, for example, any one of an aliphatic (C 4 to C 12 ) polyamide, an alicyclic polyamide, and an aromatic polyamide or a mixture thereof is used. Examples of a monomer constituting the polyamide resin, for example, the number of carbon atoms C 6 -C
12 linear ω-aminocarboxylic acids and their lactams, adipic acid, sebacic acid, dodecanedicarboxylic acid, heptadecanedicarboxylic acid, hexamethylene diamine, isophthalic acid, bis- (4-aminocyclohexyl) -methane, 2,2 -Bis- (4'-aminocyclohexyl) -propane, terephthalic acid or its dimethyl ester, 1,6-diamino-2,2,4-trimethylhexane, 1,6
-Diamino-2,4,4-trimethyl-hexane, 1-amino-3-aminomethyl-3,5,5-trimethyl-cyclohexane and the like are preferable, and polymers and copolymers formed therefrom are used. Of these, nylon 6-66, nylon 6-69, nylon 6-11, nylon 11, nylon
12, nylon 6-12, nylon 6-66-610, nylon 6-66-610-612 and the like are preferred.
結晶融点が210℃以上のポリアミド樹脂はPVDCと混合
された樹脂組成物の溶融押出時に加工温度が高くなりPV
DCが分解し易く、良好な加工が困難となる。Polyamide resin with a crystalline melting point of 210 ° C or higher has a higher processing temperature during melt extrusion of the resin composition mixed with PVDC and PV
DC is easily decomposed, and good processing becomes difficult.
又、ポリアミド樹脂はガラス転移温度(Tg)55℃以
下、好ましくは47℃以下が望ましい。ガラス転移温度は
DIN53445に従い、レスカ(株)社製粘弾性測定機TPA−1
0型を用い測定した。サンプルはポリアミド樹脂のプレ
スシートを徐冷し結晶化させたものを用いた。The glass transition temperature (Tg) of the polyamide resin is preferably 55 ° C. or lower, more preferably 47 ° C. or lower. The glass transition temperature is
According to DIN53445, a viscoelasticity measuring instrument TPA-1 manufactured by Resca Corporation
It was measured using type 0. The sample used was a polyamide resin press sheet that was slowly cooled and crystallized.
本発明で使用するPVDCとしては塩化ビニリデンと主と
する共重合体であり、好ましくは65〜98重量%の塩化ビ
ニリデン及びこれと共重合可能な少くとも1種の単量体
2〜35重量%との共重合体が用いられる。共重合可能な
単量体としては、例えば、塩化ビニル、アクリロニトリ
ル、アクリル酸アルキルエステル(アルキル基の炭素数
1〜18個)、メタクリル酸アルキルエステル(アルキル
基の炭素数1〜18個)、アクリル酸、メタクリル酸等か
ら選ばれたものが好ましい。塩化ビニリデンが65重量%
より少量では、常温でゴム状となり、ガスバリヤー性が
劣る。また98重量%以上では融点が高くなり熱分解し易
く安定な溶融押出加工が困難となる。The PVDC used in the present invention is a copolymer mainly containing vinylidene chloride, preferably 65 to 98% by weight of vinylidene chloride and at least one monomer copolymerizable therewith with 2 to 35% by weight. Is used. Examples of copolymerizable monomers include vinyl chloride, acrylonitrile, alkyl acrylate (1 to 18 carbon atoms of alkyl group), alkyl methacrylate (1 to 18 carbon atoms of alkyl group), acrylic Those selected from acids, methacrylic acid and the like are preferred. 65% by weight of vinylidene chloride
If the amount is smaller, it becomes rubbery at room temperature and the gas barrier property is inferior. On the other hand, if the content is more than 98% by weight, the melting point becomes high and the composition is easily thermally decomposed, so that stable melt extrusion processing becomes difficult.
本発明の延伸成形物を構成する樹脂組成物では通常単
独では溶融押出し、延伸が困難なガスバリヤー性にすぐ
れた塩化ビニリデンを90〜98重量%含有するPVDCも多量
のポリアミド樹脂と混合することにより容易に溶融押出
し、延伸して延伸成形物を得ることができる。低融点ポ
リアミド樹脂とPVDCとの混合割合はポリアミド樹脂が40
重量%を超え、95重量%以下、好ましくは45〜90重量
%、更に好ましくは50〜85重量%であり、PVDCが60重量
%未満、5重量%以上、好ましくは10〜55重量%更に好
ましくは15〜50重量%である。ポリアミド樹脂が40重量
%以下では低温衝撃強度がやゝ低下し、極めて低い温度
で使用する場合には、不適当な場合を生じる。PVDCが5
重量%未満となるとガスバリヤー性が劣り内容物の長期
保存が困難になる。In the resin composition constituting the stretch molded product of the present invention, melt extrusion is usually performed alone, and PVDC containing 90 to 98% by weight of vinylidene chloride having excellent gas barrier properties, which is difficult to stretch, is also mixed with a large amount of polyamide resin. It can be easily melt-extruded and stretched to obtain a stretch molded product. Mixing ratio of low melting polyamide resin and PVDC is 40 for polyamide resin.
More than 95% by weight, preferably 45 to 90% by weight, more preferably 50 to 85% by weight, and PVDC is less than 60% by weight, 5% by weight or more, preferably 10 to 55% by weight. Is 15 to 50% by weight. When the amount of the polyamide resin is less than 40% by weight, the low-temperature impact strength is slightly lowered, and when the polyamide resin is used at an extremely low temperature, an inappropriate case occurs. PVDC is 5
If the content is less than 10% by weight, the gas barrier property is inferior, and it becomes difficult to store the contents for a long time.
本発明に用いられるポリアミド樹脂が40重量%を超
え、95重量%以下とPVDC60重量%未満、5重量%以上の
樹脂組成物に本発明の目的及び効果を阻害しない範囲内
で、ポリエチレン、ポリプロピレン、エチレン−プロピ
レン共重合体、エチレン−アクリル酸共重合体、エチレ
ン−酢酸ビニル共重合体、エチレン−アクリル酸エチル
共重合体等のポリオレフィン及びそれらのマレイン酸グ
ラフト物のような変性ポリオレフィン、アイオノマー等
の熱可塑性樹脂、エラストマー及び無機フィラー、顔料
等の無機及び有機添加物を添加することができる。The polyamide resin used in the present invention is more than 40% by weight, and 95% by weight or less, PVDC less than 60% by weight, and a resin composition of 5% by weight or more as long as the objects and effects of the present invention are not impaired, polyethylene, polypropylene, Modified polyolefins such as ethylene-propylene copolymer, ethylene-acrylic acid copolymer, ethylene-vinyl acetate copolymer, ethylene-ethyl acrylate copolymer and their maleic acid grafts, ionomers and the like Inorganic and organic additives such as thermoplastic resins, elastomers and inorganic fillers and pigments can be added.
また、必要に応じて少量の可塑剤、安定剤、滑剤、抗
酸化剤等を添加することもできる。このようにして得ら
れた樹脂組成物は成形物、好ましくはシート、フィルム
又は容器に使用される。上記成形物はポリアミド樹脂40
重量%を超え、95重量%以下とPVDC60重量%未満、5重
量%以上の樹脂組成物からなる層を少くとも1層含むも
のであり、本発明の目的を阻害しない範囲内で他の樹脂
層との積層も可能である。In addition, a small amount of a plasticizer, a stabilizer, a lubricant, an antioxidant, and the like can be added as needed. The resin composition thus obtained is used for a molded product, preferably a sheet, a film or a container. The molded product is polyamide resin 40
More than 95% by weight, less than 95% by weight, less than 60% by weight of PVDC, and at least one layer composed of the resin composition of 5% by weight or more, and other resin layers within a range not hindering the object of the present invention. Is also possible.
単一層の場合にはポリアミド樹脂とPVDCをブレンドし
た組成物を常法に従って押出機で溶融押出し、T−ダイ
成形、あるいはブロー成形、インフレーション成形等に
よりシート、フィルムあるいは容器の形に成形すること
ができる。多層の場合には複数の押出機を用いて溶融押
出し、多層用のダイを使用して成形される。In the case of a single layer, a composition obtained by blending a polyamide resin and PVDC is melt-extruded by an extruder according to a conventional method, and is formed into a sheet, film or container by T-die molding, blow molding, inflation molding, or the like. it can. In the case of a multilayer, it is melt-extruded using a plurality of extruders and molded using a die for the multilayer.
また、ポリアミド樹脂とPVDCの組成物からなる層を有
するシート、フィルムもしくは容器に他樹脂からなるシ
ートないしフィルムを張り合わせてもよい。Further, a sheet or film made of another resin may be bonded to a sheet, film or container having a layer made of a composition of a polyamide resin and PVDC.
本発明の延伸成形物を構成する樹脂組成物から得られ
た成形物はすぐれた低温衝撃性、高湿度下における実用
的な酸素ガスバリヤー性及び透湿性を有する。The molded product obtained from the resin composition constituting the stretch molded product of the present invention has excellent low-temperature impact properties, practical oxygen gas barrier properties under high humidity, and moisture permeability.
上記成形物は好ましくは30℃,100%RHにおける酸素透
過係数が2.0×10-11cc・cm/cm2・sec・cmHg以下であ
り、また40℃,90%RHにおける厚さ30μの成形物の透湿
度が好ましくは150g/m2・day以下であり、脆化温度がTb
値として好ましくは10℃以下である。The molded article preferably has an oxygen permeability coefficient of 2.0 × 10 −11 cc · cm / cm 2 · sec · cmHg at 30 ° C. and 100% RH and a thickness of 30 μm at 40 ° C. and 90% RH. moisture permeability of preferably not more than 150g / m 2 · day, brittle temperature Tb of
The value is preferably 10 ° C. or less.
更に、得られたフィルム,シートもしくは容器等の延
伸成形物は、ポリアミド樹脂とPVDCからなる層中でPVDC
の分散粒子が少くとも一つの延伸方向に長い扁平状を呈
し分散粒子の断面の扁平度(分散粒子の断面の長軸/分
散粒子の断面の短軸)が2以上である層を有するように
延伸される。延伸倍率はこのような条件が満足されるよ
うな延伸倍率であればよいが好ましくは面積延伸倍率で
4倍以上更に好ましくは6倍以上に延伸される。また、
延伸倍率の縦方向と横方向の比率には特に限定はなく、
一軸延伸であっても二軸延伸であってもよい。Further, the obtained stretched product such as a film, sheet or container is subjected to PVDC in a layer composed of polyamide resin and PVDC.
So that the dispersed particles have a flat shape that is long in at least one stretching direction and the flatness of the cross section of the dispersed particles (long axis of the cross section of the dispersed particles / short axis of the cross section of the dispersed particles) is 2 or more. It is stretched. The stretch ratio may be any stretch ratio that satisfies these conditions, but is preferably 4 times or more, more preferably 6 times or more in area stretch ratio. Also,
There is no particular limitation on the ratio of the stretching ratio in the vertical direction and the horizontal direction,
It may be uniaxial stretching or biaxial stretching.
面積延伸倍率は縦延伸倍率×横延伸倍率を意味する。
このような延伸処理を行うことにより、成形物の諸性質
は更に向上し、30℃、100%RHにおける酸素透過係数が
未延伸の場合に比し3/4以下となり、同一厚みで比較し
た場合の曇り度が未延伸の場合にくらべ3/4以下とな
る。面積延伸倍率が4以上であれば、よい結果が得られ
るが、縦・横の延伸倍率は同じ程度であることが好まし
い。The area stretching ratio means a longitudinal stretching ratio × a transverse stretching ratio.
By performing such a stretching treatment, the properties of the molded product are further improved, and the oxygen permeability coefficient at 30 ° C. and 100% RH is 3/4 or less as compared with the case where the film is not stretched. Has a cloudiness of 3/4 or less as compared with the case where it is not stretched. If the area stretching ratio is 4 or more, good results can be obtained, but it is preferable that the vertical and horizontal stretching ratios are the same.
本発明の延伸成形物を構成する樹脂組成物層に上記の
ような延伸処理を行うことによって酸素透過係数が非常
に小となる理由はまだ十分には明らかではないが、分散
粒子の形状が大きく関わっていることが考えられる。一
般に、ポリマーブレンドの物性は分散粒子の大きさや、
形状、配列の仕方等に大きく依存する。例えば、気体の
透過係数は、バリヤー材となるポリマーが他の樹脂の中
に円盤や薄片等のような扁平な形状で分散しており、且
つ、その長軸がフィルムやシート、容器等の表面方向に
平行に配列している場合の方がバリヤー材となるポリマ
ーが他の樹脂の中に球状分散している場合より小さい。
この場合重要なのは、分散粒子の扁平度である。分散粒
子の断面の扁平度を分散粒子の断面の長軸/分散粒子の
断面の短軸と定義すると、扁平度が小さい場合は透過係
数を小さくする効果は小さいが、扁平度が大きい場合は
透過係数を小さくする効果は非常に大きい。The reason why the oxygen permeability coefficient becomes very small by performing the above-described stretching treatment on the resin composition layer constituting the stretch-formed product of the present invention is not yet sufficiently clear, but the shape of the dispersed particles is large. You may be involved. In general, the physical properties of polymer blends depend on the size of the dispersed particles,
It greatly depends on the shape and the arrangement. For example, the gas permeability coefficient is such that the polymer serving as the barrier material is dispersed in another resin in a flat shape such as a disk or a flake, and the major axis thereof is the surface of a film, sheet, container, or the like. In the case where the polymers are arranged in parallel to the direction, the size of the polymer serving as the barrier material is smaller than the case where the polymers are spherically dispersed in another resin.
What is important in this case is the flatness of the dispersed particles. When the flatness of the cross section of the dispersed particles is defined as the long axis of the cross section of the dispersed particles / the short axis of the cross section of the dispersed particles, the effect of reducing the transmission coefficient is small when the flatness is small, but the transmission is small when the flatness is large. The effect of reducing the coefficient is very large.
本発明のPVDCとポリアミドの混合物からなる層におい
てはPVDCがバリヤー材としての機能を有しており、PVDC
分散粒子の断面の扁平度を大とするように延伸すること
により、酸素ガスバリヤー性が向上する。特に断面の扁
平度を2以上とするように延伸することにより、PVDC量
が少い場合においても酸素ガスバリヤー性が顕著に向上
する。本発明の延伸フィルムはは30℃、100%RHにおけ
る酸素透過係数が2.0×10-11cc・cm/cm2・sec・cmHg以
下好ましくは1.5×10-11cc・cm/cm2・sec・cmHg以下で
ある。In the layer comprising a mixture of PVDC and polyamide of the present invention, PVDC has a function as a barrier material,
By stretching the cross section of the dispersed particles so as to increase the flatness, the oxygen gas barrier property is improved. In particular, by stretching so that the flatness of the cross section is 2 or more, the oxygen gas barrier property is significantly improved even when the amount of PVDC is small. The stretched film of the present invention has an oxygen transmission coefficient at 30 ° C. and 100% RH of 2.0 × 10 −11 cc · cm / cm 2 · sec · cmHg or less, preferably 1.5 × 10 −11 cc · cm / cm 2 · sec · cmHg or less.
また、本発明の混合物層を延伸加工することによって
透明性が非常に改善されることの理由はまだ十分には明
らかではないが、これにも分散粒子の形状が大きく関わ
っていることが考えられる。即ち、分散粒子の形状が変
わることによって光の散乱の仕方が変化するためである
と考えられる。特に分散粒子の扁平度が2以上の場合に
は顕著な効果を生じ、成形物の厚みが30μmでの曇り度
が40%以下のものを容易に得ることができる。Further, the reason why the transparency is greatly improved by stretching the mixture layer of the present invention is not sufficiently clear yet, but it is considered that the shape of the dispersed particles is greatly involved in this as well. . That is, it is considered that this is because the manner of scattering light changes as the shape of the dispersed particles changes. In particular, when the flatness of the dispersed particles is 2 or more, a remarkable effect is produced, and a molded product having a thickness of 30 μm and a haze of 40% or less can be easily obtained.
曇り度が40%を越えるものは透明性の要求される分
野、特に包装品の内容物が見易いことが要求される分野
では好ましくない。Those having a haze of more than 40% are not preferred in the field where transparency is required, especially in the field where the contents of the package are required to be easily seen.
本発明によれば、低温衝撃強度のすぐれた成形物が得
られる。低温衝撃強度の評価は脆化温度(Tb)の測定に
よって行なった。Tb値としては10℃以下が実用上好まし
く更に好ましくは5℃以下最も好ましくは0℃以下であ
るが、本発明の組成物においては非常にTb値の低いシー
トないしフィルム及び容器が得られる。According to the present invention, a molded article having excellent low-temperature impact strength can be obtained. The low-temperature impact strength was evaluated by measuring the brittle temperature (Tb). The Tb value is practically preferably 10 ° C. or less, more preferably 5 ° C. or less, and most preferably 0 ° C. or less. In the composition of the present invention, sheets, films and containers having extremely low Tb value can be obtained.
このことは、PVDCとポリアミドの混合物からなる成形
物は、従来のポリアミドの常識、即ち、高湿度下でのガ
スバリヤー性が不十分であると言う欠点及びPVDCの常
識、即ち、低温衝撃強度が不十分であると言う欠点を補
うためには他の樹脂との積層によって対処しなければな
らないと言う従来の常識を打開し、単層の成形物でもこ
れらの欠点を十分に補うことができることを示してい
る。本発明において、延伸加工には樹脂の塑性変形を利
用して冷間または温間で行う公知の任意の方法が用いら
れ、通常の伸張による延伸のほか絞り成形、しごき成
形、真空成形、圧空成形、シートブロー成形、圧縮成形
等を含んでいる。更に流動状態の延伸でも分散粒子を扁
平にし得る延伸では同様の効果を得ることができる。This means that molded articles composed of a mixture of PVDC and polyamide have the common sense of conventional polyamides, that is, the disadvantage that the gas barrier properties under high humidity are insufficient, and the common sense of PVDC, that is, low-temperature impact strength. Breaking down the conventional wisdom that it must be dealt with by lamination with other resins in order to compensate for the insufficiency of insufficiency, and that a single-layer molded product can sufficiently compensate for these insufficiencies. Is shown. In the present invention, a known arbitrary method of performing cold or warm by utilizing plastic deformation of a resin is used for stretching, and in addition to stretching by ordinary stretching, drawing, ironing, vacuum forming, and pressure forming. , Sheet blow molding, compression molding and the like. Further, the same effect can be obtained in the stretching that can flatten the dispersed particles even in the stretching in the fluid state.
更に、本発明のシートないしフィルムはその対向する
端縁部分を貼り合わせてパウチ(袋)状の容器とするこ
とができる。貼り合わせるためには、エポキシ系、イソ
シアネート系の接着剤を使用してもよく、また、ヒート
シール、高周波シールによって貼り合わせることもでき
る。Further, the sheet or film of the present invention can be formed into a pouch-shaped (bag) -shaped container by laminating the opposite edges. For bonding, an epoxy-based or isocyanate-based adhesive may be used, or bonding may be performed by heat sealing or high-frequency sealing.
発明の効果 本発明の延伸成形物を構成する樹脂組成物は結晶融点
210℃以下の低融点ポリアミド樹脂40重量%を超え、95
重量%以下とPVDC60重量%未満、5重量%以上からなる
ポリアミド樹脂組成物であるため、高湿度下におけるガ
スバリヤー性及び低温衝撃強度にすぐれた成形物、特に
フィルム、シート又は容器を得ることができる。Effect of the Invention The resin composition constituting the stretch molded product of the present invention has a crystalline melting point.
Exceeding 40% by weight of low melting polyamide resin of 210 ° C or less, 95%
Since the polyamide resin composition comprises less than 5% by weight and less than 60% by weight of PVDC and less than 5% by weight of PVDC, it is possible to obtain a molded product excellent in gas barrier properties and high-temperature impact strength under high humidity, particularly a film, sheet or container. it can.
更にこの樹脂組成物を主成分とする層を少くとも1層
有し、分散粒子であるPVDCの断面の扁平度が2以上にな
るように延伸することにより、更にすぐれたガスバリヤ
ー性、改良された透明性を有するフィルム、シート、容
器等を得ることができる。Further, by having at least one layer containing the resin composition as a main component and stretching the cross-sectional flatness of PVDC as dispersed particles to be 2 or more, further improved gas barrier property and improved. A transparent film, sheet, container or the like.
このため、酸素ガスにより変性しやすい食品、例え
ば、ハム、ソーセージ、畜肉あるいはジュース、サイダ
ー等の飲料などの包装材料に適している。これらの食
品、飲料は製造、流通、保存時に冷蔵あるいは冷凍状態
になることが多いため低温衝撃強度が必要であるが本発
明の成形物は低温衝撃強度にすぐれているため、商品が
破袋する割合が非常に小さくなり、収率や作業性が非常
に向上する。更に、面積延伸倍率で4倍以上に延伸した
成形物では透明性が改良され、商品の内容物が見え、商
品価値が非常に高くなる。Therefore, it is suitable for packaging materials such as foods that are easily denatured by oxygen gas, for example, beverages such as ham, sausage, livestock meat, juice, and cider. These foods and beverages often require refrigeration or freezing during production, distribution, and storage, and therefore require low-temperature impact strength. However, the molded article of the present invention has excellent low-temperature impact strength, so that the product breaks. The ratio becomes very small, and the yield and workability are greatly improved. Further, in a molded product stretched to 4 times or more in area stretching ratio, transparency is improved, the contents of the product can be seen, and the commercial value is extremely high.
以下実施例により詳細に説明する。 Hereinafter, the present invention will be described in detail with reference to examples.
成形物の各性状の測定方法は次の通りである。 The measuring method of each property of the molded product is as follows.
・酸素透過係数 酸素透過係数はASTM D3985−81に従って、モダンコン
トロール社製MOCON OXTRAN−100型を用い、30℃、100%
RHの条件で測定した。-Oxygen permeability coefficient According to ASTM D3985-81, use MOCON OXTRAN-100 manufactured by Modern Control Co., at 30 ° C, 100%
It was measured under the condition of RH.
・透湿度 厚さ30μmのフィルムの透湿度をJIS z0208に記載の
方法で40℃,90%RHの条件で測定した。Moisture Permeability The moisture permeability of a 30 μm-thick film was measured at 40 ° C. and 90% RH according to the method described in JIS z0208.
・結晶融点 ポリアミドの結晶融点は、ASTM D3418に従ってメトラ
ー社製DSC TA3000で測定した。-Crystal melting point The crystal melting point of the polyamide was measured with a Mettler DSC TA3000 according to ASTM D3418.
・曇り度(HAZE) 成形物の曇り度(HAZE)はASTM 1003にしたがって日
本電色工業(株)製Σ80 COLOR MEASURING SYSTEMで測
定し、厚さ30μmに換算した値を示した。Haze (HAZE) The haze (HAZE) of the molded product was measured with a # 80 COLOR MEASURING SYSTEM manufactured by Nippon Denshoku Industries Co., Ltd. according to ASTM 1003, and the value converted to a thickness of 30 μm was shown.
・分散粒子の扁平度の測定方法 シートあるいはフィルム、容器の断面が観察できるよ
うに超薄切片を作成し、日本電子(株)透過型電子顕微
鏡100CXで写真撮影を行ない、次式に従って分散粒子の
扁平度を求めた。・ Measurement method of flatness of dispersed particles Ultra-thin sections were prepared so that the cross section of a sheet, film, or container could be observed, photographed with a transmission electron microscope 100CX of JEOL Ltd. Flatness was determined.
ここで分散粒子の断面の長軸とはシートないしフィル
ム及び容器の延伸倍率の最も大きい方向の延伸方向の長
さである。分散粒子の断面の短軸とは分散粒子の最も厚
い部分の厚みである。分散粒子断面の長軸及び分散粒子
の断面の短軸は20個の分散粒子の平均値である。 Here, the major axis of the cross section of the dispersed particles is the length of the sheet or film and the container in the stretching direction in the direction of the largest stretching ratio. The minor axis of the cross section of the dispersed particles is the thickness of the thickest part of the dispersed particles. The major axis of the cross section of the dispersed particles and the minor axis of the cross section of the dispersed particles are the average values of the 20 dispersed particles.
・フィルム脆化温度の測定 呉羽化学法により測定を行なった。測定温度(室温〜
−30℃)で半球状の先端(半径1.5mm)を有する直径3mm
の円柱状ポンチ(punch)により1m/secの速度で測定フ
ィルムに衝撃を与え、その衝撃により破壊が生じたか、
否かを観察した。・ Measurement of film embrittlement temperature Measurement was performed by the Kureha Chemical Method. Measurement temperature (room temperature ~
-30 ° C), 3mm diameter with hemispherical tip (1.5mm radius)
A shock was applied to the measurement film at a speed of 1 m / sec by a cylindrical punch (punch).
No was observed.
一般に、破壊を伴う現象は統計的なバラツキが大きい
ので、脆化温度をより精密に求めるために、一温度条件
での測定数をn=20とし、20個が全く破壊しない温度と
20個全部破壊してしまう最高温度(Th(℃))との間に
おいて、5℃間隔で測定を行いその間の各温度における
破壊率(%)の総和をSとするとき、フィルム脆化温度
は次式により計算した。Generally, phenomena involving destruction have a large statistical variation, so in order to determine the embrittlement temperature more precisely, the number of measurements under one temperature condition is set to n = 20, and the temperature at which 20 do not break at all is determined.
When the total of the destruction rate (%) at each temperature during the measurement at intervals of 5 ° C between the maximum temperature (Th (° C)) at which all 20 pieces break and S is the film embrittlement temperature, It was calculated by the following equation.
Tb=Th+ΔT{(S/100)−(1/2)} Tb ;フィルム脆化温度(℃) Th ;20個の測定サンプル全部が破壊してしまう最高
温度(℃) ΔT;測定温度間隔(5(℃)) S ;20個の測定サンプル全部が破壊しない最低の
温度からThまでの各温度における破壊率の総和 実施例1(参考例)及び実施例2〜4 結晶融点が130℃のナイロン6−12(ナイロン6とナ
イロン12の共重合体、共重合比50/50重量比)であるEMS
CHEMI AG社製グリロンCF 6S(Tg=30℃)と塩化ビニリ
デン/塩化ビニル共重合体(共重合比80/20重量%)を
重量比で80/20の比でドライブレンドした後、押出機で
溶融混練した。この混練物を卓上プレス((株)神藤金
属工業所,AYSR 5型)を用いて常法により温度175℃で溶
融プレスしたのち5℃の冷却板で急冷し、プレスシート
を得た。このプレスシートを2軸延伸機で第1表に示し
たような面積延伸倍率で延伸した。延伸倍率は縦方向と
横方向を同一にした。得られた未延伸及び延伸フィルム
の酸素透過係数、透湿度、曇り度、脆化温度、分散粒子
の扁平度を第1表に示した。未延伸、延伸フィルム共に
優れたガスバリヤー性と低温衝撃強度を有することが判
る。面積延伸倍率が4倍以上になると分散粒子の扁平度
は2以上になり、30℃、100%RHにおける酸素透過係数
は未延伸フィルム(実施例1[参考例])により更に向
上し未延伸フィルムの場合に比し3/4以下となる。また
曇り度も向上し未延伸フィルムの場合に比し3/4以下と
なる。Tb = Th + ΔT {(S / 100) − (1/2)} Tb; Film embrittlement temperature (° C) Th; Maximum temperature (° C) at which all 20 measurement samples are destroyed ΔT; Measurement temperature interval (5 (° C.)) S: Sum of destruction rates at each temperature from the lowest temperature to Th at which all 20 measurement samples do not break down Example 1 (Reference Example) and Examples 2 to 4 Nylon 6 having a crystal melting point of 130 ° C. -12 (copolymer of nylon 6 and nylon 12, copolymer ratio 50/50 by weight)
After dry-blending Grilon CF 6S (Tg = 30 ° C) and vinylidene chloride / vinyl chloride copolymer (copolymerization ratio 80/20% by weight) in a weight ratio of 80/20 by CHEMI AG, extruder It was melt-kneaded. This kneaded product was melt-pressed at a temperature of 175 ° C. by a conventional method using a tabletop press (Shinto Kinzoku Kogyosho Co., Ltd., Model AYSR 5) and then rapidly cooled with a 5 ° C. cooling plate to obtain a press sheet. This press sheet was stretched by a biaxial stretching machine at an area stretching ratio as shown in Table 1. The stretching ratio was the same in the longitudinal and transverse directions. Table 1 shows the oxygen permeability coefficient, moisture permeability, haze, embrittlement temperature, and flatness of the dispersed particles of the obtained unstretched and stretched films. It can be seen that both unstretched and stretched films have excellent gas barrier properties and low-temperature impact strength. When the area stretching ratio is 4 times or more, the flatness of the dispersed particles becomes 2 or more, and the oxygen transmission coefficient at 30 ° C. and 100% RH is further improved by the unstretched film (Example 1 [Reference Example]). It is 3/4 or less compared to the case of. Also, the degree of haze is improved and becomes 3/4 or less as compared with the case of an unstretched film.
実施例5(参考例)及び実施例6〜7 ポリアミド樹脂として実施例2〜4と同じグリロンCF
6S,PVDCとして塩化ビニリデン/塩化ビニリデン共重合
体(共重合比80/20重量%)を60/40(重量比)でドライ
ブレンドした後、実施例2〜4と同様にプレスシートを
製造した。このプレスシートを2軸延伸機で第1表に示
したような面積倍率で延伸した。延伸倍率は縦方向と横
方向で同一にした。得られた未延伸及び延伸フィルムの
性状を第1表に示す。Example 5 (Reference Example) and Examples 6 and 7 The same Gyllon CF as in Examples 2 to 4 as a polyamide resin
After dry-blending vinylidene chloride / vinylidene chloride copolymer (copolymerization ratio 80/20% by weight) at 60/40 (weight ratio) as 6S, PVDC, press sheets were produced in the same manner as in Examples 2 to 4. The press sheet was stretched by a biaxial stretching machine at an area ratio as shown in Table 1. The stretching ratio was the same in the longitudinal and transverse directions. Table 1 shows the properties of the obtained unstretched and stretched films.
実施例8 実施例2〜4及び6〜7に使用したポリアミド樹脂と
PVDCを用い、たゞその混合割合を41/59(重量比)に変
え、その他は同様の操作によりプレスシートを得た。こ
のプレスシートを2軸延伸機で面積倍率で14.8倍に延伸
した。延伸倍率は縦方向と横方向で同一にした。得られ
た延伸フィルムの性状を第1表に示す。 Example 8 Polyamide resin used in Examples 2 to 4 and 6 to 7
Using PVDC, the mixing ratio was changed to 41/59 (weight ratio), and otherwise the same operation was performed to obtain a press sheet. This press sheet was stretched by an area magnification of 14.8 times with a biaxial stretching machine. The stretching ratio was the same in the longitudinal and transverse directions. Table 1 shows the properties of the obtained stretched film.
実施例9(参考例)及び実施例10〜13 ポリアミドとして実施例2〜4と同じグリロンCF 6
S、PVDCとして塩化ビニリデン/アクリル酸メチル共重
合体(共重合比95/5重量%)を用い、混合割合を90/10
(重量比)とし、実施例2〜4と同様の方法でプレスシ
ートを得た。このプレスシートを2軸延伸機により第2
表に示すような面積倍率で縦・横同じ割合で延伸した。
得られた未延伸フィルム及び延伸フィルムの性状を第2
表に示す。Example 9 (Reference Example) and Examples 10 to 13 As the polyamide, the same glilon CF 6 as in Examples 2 to 4 was used.
S, PVDC using vinylidene chloride / methyl acrylate copolymer (copolymerization ratio 95/5 wt%), mixing ratio 90/10
(Weight ratio), and a press sheet was obtained in the same manner as in Examples 2 to 4. This press sheet is subjected to a second stretching by a biaxial stretching machine.
The film was stretched at the same ratio in the vertical and horizontal directions at the area magnification as shown in the table.
The properties of the obtained unstretched film and stretched film are changed to the second
It is shown in the table.
比較例1〜5 ポリアミド樹脂として実施例2〜4と同じグリロンCF
6S及び塩化ビニリデン/塩化ビニル共重合体(共重合
比80/20重量%)をそれぞれ単独に実施例2〜4と同様
の方法でプレスシートを作製した。このプレスシートを
2軸延伸機で第3表に示すような面積倍率で縦・横同じ
割合で延伸した。得られた未延伸フィルム及び延伸フィ
ルムの性状を第3表に示す。 Comparative Examples 1 to 5 The same Gyllon CF as in Examples 2 to 4 as a polyamide resin
Press sheets were prepared in the same manner as in Examples 2 to 4, using 6S and a vinylidene chloride / vinyl chloride copolymer (copolymerization ratio: 80/20% by weight) alone. This press sheet was stretched by a biaxial stretching machine at an area ratio as shown in Table 3 at the same ratio vertically and horizontally. The properties of the obtained unstretched film and stretched film are shown in Table 3.
6−12ナイロンは脆化温度は非常にすぐれているが、
酸素ガスバリヤー性が不十分である。一方、VD/VC共重
合体は酸素ガスバリヤー性はすぐれているが脆化温度が
高く低温衝撃強度が不十分である。即ち、いずれのフィ
ルムも包装材料としては非常にアンバランスであること
が分かる。更に、いずれのフィルムも延伸によって酸素
ガスバリヤー性は殆んど改善されなかった。 6-12 nylon has a very good embrittlement temperature,
Insufficient oxygen gas barrier properties. On the other hand, the VD / VC copolymer has excellent oxygen gas barrier properties, but has a high embrittlement temperature and insufficient low-temperature impact strength. That is, it is understood that all films are very unbalanced as a packaging material. Further, in any of the films, the oxygen gas barrier property was hardly improved by stretching.
実施例14 結晶融点が130℃のナイロン6−12(ナイロン6とナ
イロン12の共重合体、共重合比50/50重量比)であるEMS
CHEMI AG社製グリロンCA6(Tg=30℃)と塩化ビニリデ
ン/アクリル酸メチル共重合体(塩化ビニリデン含有
量:95重量%)とを重量比で80/20の比で混合し、この混
合物を環状ダイ付き混練押出機(40φ,L/D=24)にて、
樹脂温度175℃で溶融押出し、15℃の水で急冷して円筒
状パリソンを得た。本円筒状パリソンを、50℃の湯水中
で加熱後、直ちにパリソン内に空気を注入し、空気圧力
により、縦軸方向に3倍、横軸方向に4倍インフレーシ
ョン延伸し、折幅100mm、厚さ30μmの延伸フィルムを
得た。本延伸フィルム製造時におけるインフレーション
延伸安定性と大きさ0.25mm2以上の茶〜黒色分解物の発
生状況を調べた結果を第4表に示す。更に、フィルムの
酸素透過係数とフィルム脆化温度の測定結果を同時に第
4表に示す。Example 14 EMS having a crystal melting point of nylon 6-12 having a melting point of 130 ° C. (copolymer of nylon 6 and nylon 12, copolymerization ratio of 50/50 by weight)
CHEMI AG Grillon CA6 (Tg = 30 ° C) and vinylidene chloride / methyl acrylate copolymer (vinylidene chloride content: 95% by weight) are mixed at a weight ratio of 80/20, and this mixture is cyclically mixed. In a kneading extruder with a die (40φ, L / D = 24)
The resin was melt-extruded at a resin temperature of 175 ° C and quenched with water at 15 ° C to obtain a cylindrical parison. Immediately after heating this cylindrical parison in hot water at 50 ° C, air is injected into the parison, and inflation is performed three times in the vertical axis direction and four times in the horizontal axis direction by air pressure. A stretched film having a thickness of 30 μm was obtained. Table 4 shows the results of examining the inflation stretching stability and the occurrence of brown to black decomposition products having a size of 0.25 mm 2 or more during the production of the stretched film. Further, Table 4 also shows the measurement results of the oxygen permeability coefficient and the film embrittlement temperature of the film.
本発明の延伸成形物を構成するポリアミド樹脂とPVDC
混合物は、安定なインフレーション延伸性とPVDCの分解
物発生が抑制されると共に、酸素透過係数と低温衝撃強
度を同時に満足するものであった。Polyamide resin and PVDC constituting the stretch molded product of the present invention
The mixture had stable inflation stretchability and suppressed generation of PVDC decomposition products, and simultaneously satisfied the oxygen permeability coefficient and the low-temperature impact strength.
比較例6,7 ポリアミドとして実施例14と同じグリロンCA6、PVDC
として塩化ビニリデン/アクリル酸メチル共重合体(塩
化ビニリデン含有量:95重量%)をそれぞれ単独に使用
し、実施例14と同じ方法で延伸フィルムを得た。これら
のフィルムの製造時におけるインフレーション延伸安定
性と大きさ0.25mm2以上の茶〜黒色分解物の発生状況を
調べた結果を第4表に示す。更に、フィルムの酸素透過
係数とフィルム脆化温度の測定結果を同時に第4表に示
す。Comparative Examples 6, 7 The same glilon CA6 as in Example 14 as a polyamide, PVDC
, A vinylidene chloride / methyl acrylate copolymer (vinylidene chloride content: 95% by weight) was used alone, and a stretched film was obtained in the same manner as in Example 14. Table 4 shows the results of examining the inflation stretching stability and the state of occurrence of brown to black decomposition products having a size of 0.25 mm 2 or more during the production of these films. Further, Table 4 also shows the measurement results of the oxygen permeability coefficient and the film embrittlement temperature of the film.
比較例6のポリアミドフィルムは、酸素透過係数が高
値であり、比較例7のPVDCフィルムは、押出加工性が悪
く、低温衝撃強度が劣る。The polyamide film of Comparative Example 6 has a high oxygen permeability coefficient, and the PVDC film of Comparative Example 7 has poor extrusion processability and poor low-temperature impact strength.
実施例15,16 低融点ポリアミド樹脂として結晶融点153℃の6−66
−610ナイロン共重合体(東レ製アミランCM4000,Tg=32
℃)と塩化ビニリデン/塩化ビニル共重合体(塩化ビニ
リデン含有量;80重量%)樹脂を夫々重量比で80/20,60/
40の割合に混合し、混合した樹脂を、環状ダイ付混練押
出機にて樹脂温度170℃で溶融押出し、15℃の水で急冷
して得られた円筒状。バリソンを、50℃の加熱ロールで
接触加熱した後、直ちにパリソン内に空気を注入し空気
圧力により、縦軸方向(MD)/横軸方向(TD)=2.5/2.
5倍にインフレーション延伸し、厚さ30μmの延伸フィ
ルムを得た。本フィルムのガスバリヤー性とフィルム脆
化温度を測定し、結果を第5表に示した。これより、本
発明の樹脂組成物より成る延伸フィルムは、優れたガス
バリヤー性と低値のフィルム脆化温度を同時に兼ね備え
ていることがわかる。 Examples 15 and 16 6-66 having a crystal melting point of 153 ° C. as a low melting point polyamide resin
-610 nylon copolymer (Toray Amilan CM4000, Tg = 32
° C) and a vinylidene chloride / vinyl chloride copolymer (vinylidene chloride content; 80% by weight) resin in a weight ratio of 80/20, 60 /
The resin was mixed at a ratio of 40, and the mixed resin was melt-extruded at a resin temperature of 170 ° C. by a kneading extruder equipped with an annular die, and rapidly cooled with water at 15 ° C. to obtain a cylindrical shape. After contacting the barison with a heating roll at 50 ° C., air was immediately injected into the parison and the air pressure was applied to determine the vertical axis (MD) / horizontal axis (TD) = 2.5 / 2.
The film was blown and stretched 5 times to obtain a stretched film having a thickness of 30 µm. The gas barrier property and the film embrittlement temperature of this film were measured, and the results are shown in Table 5. This shows that the stretched film made of the resin composition of the present invention has both excellent gas barrier properties and a low film embrittlement temperature.
フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C08J 5/18 CEU C08J 5/18 CFG CFG C08L 27/08 C08L 27/08 77/00 77/00 B65D 1/00 A //(C08L 27/08 77:00) (C08L 77/00 27:08) B29K 27:00 77:00 B29L 7:00 Continuation of the front page (51) Int.Cl. 6 Identification code Agency reference number FI Technical indication location C08J 5/18 CEU C08J 5/18 CFG CFG C08L 27/08 C08L 27/08 77/00 77/00 B65D 1 / 00 A // (C08L 27/08 77:00) (C08L 77/00 27:08) B29K 27:00 77:00 B29L 7:00
Claims (6)
脂40重量%を超え、95重量%以下と塩化ビニリデン樹脂
60重量%未満、5重量%以上とからなる樹脂組成物層を
少なくとも1層有する延伸成形物。1. A vinylidene chloride resin having a crystalline melting point of not more than 40% by weight and not more than 95% by weight of a low melting point polyamide resin having a melting point of 210 ° C. or less.
A stretch molded article having at least one resin composition layer consisting of less than 60% by weight and 5% by weight or more.
ある請求項(1)記載の延伸成形物。2. The stretch molded article according to claim 1, wherein the stretch molded article is a film, a sheet or a container.
も一つの延伸方向に長い扁平状を呈し、分散粒子の断面
の扁平度(分散粒子の断面の長軸/分散粒子の断面の短
軸)が2以上である請求項(1)記載の延伸成形物。3. The dispersion particles of the vinylidene chloride resin exhibit a flat shape that is long in at least one stretching direction, and the flatness of the cross section of the dispersion particles (the long axis of the cross section of the dispersion particles / the short axis of the cross section of the dispersion particles). Is 2 or more.
×10-11cc・cm/cm2・sec・cmHg以下である請求項(3)
記載の延伸成形物。4. An oxygen permeability coefficient at 30 ° C. and 100% RH of 1.5
× 10 -11 cc · cm / cm 2 · sec · cmHg or less (3)
The stretch molded article as described above.
請求項(3)記載の延伸成形物。5. The stretch molded product according to claim 3, wherein the molded product having a thickness of 30 μm has a haze of 40% or less.
ある請求項(3)乃至(5)のいずれかに記載の延伸成
形物。6. The stretch-formed product according to claim 3, wherein the stretch-formed product is a film, a sheet or a container.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8545389A JP2708539B2 (en) | 1988-04-08 | 1989-04-04 | Resin composition and molded product thereof |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63-86673 | 1988-04-08 | ||
JP8667388 | 1988-04-08 | ||
JP8545389A JP2708539B2 (en) | 1988-04-08 | 1989-04-04 | Resin composition and molded product thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0228252A JPH0228252A (en) | 1990-01-30 |
JP2708539B2 true JP2708539B2 (en) | 1998-02-04 |
Family
ID=26426456
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8545389A Expired - Lifetime JP2708539B2 (en) | 1988-04-08 | 1989-04-04 | Resin composition and molded product thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2708539B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5285368A (en) * | 1991-02-28 | 1994-02-08 | Canon Kabushiki Kaisha | Power source device responsive to supplemental plural output voltages |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5360954A (en) * | 1976-11-12 | 1978-05-31 | Toray Ind Inc | Heat-sensitive element |
-
1989
- 1989-04-04 JP JP8545389A patent/JP2708539B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH0228252A (en) | 1990-01-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0380123B1 (en) | Blends of ethylene vinyl alcohol copolymer and amorphous polyamide, and multilayer containers made therefrom | |
US5258230A (en) | High gas barrier co-extruded multiplayer films | |
JPH0419014B2 (en) | ||
JPH04226553A (en) | Blend of ethylene/vinyl alcohol copolymer and polyamide, and multi-layer container made therefrom | |
CA2056975A1 (en) | Polymeric blends | |
US4696857A (en) | Annealed thin walled polymer articles and method to anneal | |
EP0274748A2 (en) | Resin compositions and their use for preparing shaped articles | |
US5209958A (en) | Multilayer laminates from blow moldable thermoplastic polyamide and polyvinyl alcohol resins | |
KR910008787B1 (en) | Composition composed with pvde & poly amide resin and its molding products | |
TWI492963B (en) | Heat-shrinkable film | |
JPH02225551A (en) | Polymer blend having improved characteristics | |
JPH03227339A (en) | Polyolefinic resin composition and use thereof | |
JP2708539B2 (en) | Resin composition and molded product thereof | |
JP2000212369A (en) | Resin composition and use thereof | |
JP2860127B2 (en) | Resin composition and its use | |
EP0780431A1 (en) | Resin composition and shaped article having a layer comprising the same | |
EP0390113B1 (en) | Multilayered structure | |
JP2003342426A (en) | the film | |
CA1338847C (en) | Resin composition and molded products thereof | |
JPH09302159A (en) | Resin composition and film, sheet comprising the composition | |
EP0278695A1 (en) | Shrinkable film | |
US20240301204A1 (en) | Polyamide composition useful for the manufacture of film for food packaging | |
JP2693102B2 (en) | Styrene-based biaxially oriented multilayer sheet | |
JP2644091B2 (en) | Stretch molded product composed of polyester resin composition | |
JP3534141B2 (en) | Thermoplastic resin composition |