JP2777471B2 - Absorption chiller / heater controller - Google Patents
Absorption chiller / heater controllerInfo
- Publication number
- JP2777471B2 JP2777471B2 JP2249489A JP24948990A JP2777471B2 JP 2777471 B2 JP2777471 B2 JP 2777471B2 JP 2249489 A JP2249489 A JP 2249489A JP 24948990 A JP24948990 A JP 24948990A JP 2777471 B2 JP2777471 B2 JP 2777471B2
- Authority
- JP
- Japan
- Prior art keywords
- hot water
- water pump
- heater
- temperature generator
- control valve
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B29/00—Combined heating and refrigeration systems, e.g. operating alternately or simultaneously
- F25B29/006—Combined heating and refrigeration systems, e.g. operating alternately or simultaneously of the sorption type system
Landscapes
- Sorption Type Refrigeration Machines (AREA)
Description
【発明の詳細な説明】 (イ)産業上の利用分野 本発明は冷水と温水とを同時に供給する吸収冷温水機
の制御装置に関する。The present invention relates to a control device for an absorption chiller / heater that supplies cold water and hot water simultaneously.
(ロ)従来の技術 例えば特開昭63−38868号公報には、二重効用吸収冷
温水機の制御装置が開示されている。そして、蒸発器の
冷水出口温度が下限設定値以下であって温水器の温水出
口温度が上限設定値以下である場合には、温水出口温度
により高温発生器の加熱量を調節すると共に冷水出口温
度により高温発生器から凝縮器に至る冷媒の流路に設け
られた制御弁の開度を調節する温水主制御の運転が行わ
れる。又、冷水出口温度及び温水出口温度が上記の場合
以外のときには、冷水出口温度により高温発生器の加熱
量を調節すると共に、温水出口温度により温水器から高
温発生器へ至る冷媒ドレンの流路に設けられた制御弁の
開度を調節する冷水主制御の運転が行われる。(B) Prior art For example, JP-A-63-38868 discloses a control device for a double-effect absorption chiller / heater. When the cold water outlet temperature of the evaporator is equal to or lower than the lower limit set value and the hot water outlet temperature of the water heater is equal to or lower than the upper limit set value, the heating amount of the high temperature generator is adjusted by the hot water outlet temperature and the cold water outlet temperature is adjusted. Thereby, the operation of the hot water main control for adjusting the opening degree of the control valve provided in the refrigerant flow path from the high temperature generator to the condenser is performed. In addition, when the cold water outlet temperature and the hot water outlet temperature are other than the cases described above, the heating amount of the high-temperature generator is adjusted by the cold water outlet temperature, and the flow of the refrigerant drain from the water heater to the high-temperature generator is controlled by the hot water outlet temperature. The operation of the chilled water main control for adjusting the opening of the provided control valve is performed.
(ハ)発明が解決しようとする課題 上記従来の技術において、高温発生器の加熱量から負
荷の大きさを読み取り、燃料消費量が少ない場合、即ち
負荷が少ない場合に、冷水ポンプ又は温水ポンプの台数
制御、或いは極数変換などによって冷水循環量或いは温
水循環量を変化させる。ここで、冷水ポンプ、及び温水
ポンプの容量は一般に大きく、それぞれのポンプの能力
を制御することにより消費電力を低減することができ
る。しかしながら、冷水温水同時供給型の吸収冷温水機
の場合、冷水負荷の温水負荷との比率が一定でなく、燃
料消費量、即ち高温発生器の加熱量から上記比率はわか
らない。このため、燃料消費量、即ち燃料制御弁の開度
で冷水ポンプ及び温水ポンプの例えば回転数を制御した
場合、低負荷側、即ち冷水主制御の場合は温水ポンプ、
温水主制御の場合は冷水ポンプの制御を適切に行うこと
ができないという問題が発生する。(C) Problems to be Solved by the Invention In the above-mentioned conventional technology, the magnitude of the load is read from the heating amount of the high-temperature generator, and when the fuel consumption is small, that is, when the load is small, the cold water pump or the hot water pump is used. The cooling water circulation amount or the hot water circulation amount is changed by controlling the number of units or converting the number of poles. Here, the capacities of the cold water pump and the hot water pump are generally large, and power consumption can be reduced by controlling the capacity of each pump. However, in the case of the absorption chiller / heater of the simultaneous supply of chilled water and hot water, the ratio of the chilled water load to the hot water load is not constant, and the above ratio cannot be determined from the fuel consumption, that is, the heating amount of the high temperature generator. Therefore, when the fuel consumption, that is, for example, the rotation speed of the cold water pump and the hot water pump is controlled by the opening degree of the fuel control valve, the low load side, that is, the hot water pump in the case of the cold water main control,
In the case of the hot water main control, there is a problem that the control of the cold water pump cannot be appropriately performed.
本発明は、冷水主制御、温水主制御のときの温水ポン
プの制御及び冷水ポンプの制御を適切に行い、冷水ポン
プ、及び温水ポンプの運転コストを低減することを目的
とする。An object of the present invention is to appropriately perform control of a hot water pump and control of a cold water pump in the main control of the cold water and the main control of the hot water to reduce the operating costs of the cold water pump and the hot water pump.
(ニ)課題を解決するための手段 本発明は上記課題を解決するために、吸収冷温水機の
冷水主制御の運転時に温水ドレン制御弁(37)の開度に
基づいて温水ポンプ(38P)の回転数を制御すると共
に、高温発生器(1)の加熱量に基づいて冷水ポンプ
(22P)の回転数を制御し、かつ、温水主制御の運転時
に、高温発生器(1)の加熱量に基づいて温水ポンプ
(38P)の回転数を制御すると共に、冷媒ドレン制御弁
(30)の開度に基づいて冷水ポンプ(22P)の回転数を
制御する機構を備えた吸収冷温水機の制御装置を提供す
るものである。(D) Means for Solving the Problems In order to solve the above problems, the present invention provides a hot water pump (38P) based on the opening degree of the hot water drain control valve (37) during the operation of the cold water main control of the absorption chiller / heater. The number of rotations of the high-temperature generator (1) is controlled based on the amount of heating of the high-temperature generator (1), and the amount of heating of the high-temperature generator (1) is controlled during operation of the hot water main control. Control of the absorption chiller / heater equipped with a mechanism for controlling the rotation speed of the hot water pump (38P) based on the temperature and controlling the rotation speed of the chilled water pump (22P) based on the opening of the refrigerant drain control valve (30) An apparatus is provided.
又、冷水主制御の運転時に温水負荷に応じて温水ポン
プ(38P)の能力を制御し、かつ温水主制御の運転時に
冷水負荷に応じて冷水ポンプ(22P)の能力を制御する
機構を備えた吸収冷温水機の制御装置を提供するもので
ある。In addition, a mechanism is provided for controlling the capacity of the hot water pump (38P) according to the hot water load during operation of the cold water main control, and controlling the capacity of the cold water pump (22P) according to the cold water load during operation of the hot water main control. A control device for an absorption chiller / heater is provided.
さらに、冷水主制御の運転時に温水ドレン制御弁(3
7)の開度に基づいて温水ポンプ(38P)の回転数を制御
し、温水主制御の運転時に冷媒ドレン制御弁(30)の開
度に基づいて冷水ポンプ(22P)の回転数を制御する機
構を備えた吸収冷温水機の制御装置を提供するものであ
る。In addition, the hot water drain control valve (3
7) The rotation speed of the hot water pump (38P) is controlled based on the opening degree, and the rotation speed of the cold water pump (22P) is controlled based on the opening degree of the refrigerant drain control valve (30) during operation of the hot water main control. An object of the present invention is to provide a control device for an absorption chiller / heater provided with a mechanism.
(ホ)作 用 冷水主制御の運転時に温水負荷が小さくなり温水出口
温度が上昇して温水ドレン制御弁(37)の開度が小さく
なったときには、それに伴い温水ポンプ(38P)の回転
数が大幅に小さくなり、温水ポンプ(38P)の消費電力
を大幅に低減することができ、かつ、冷水負荷が小さく
なり、冷水出口温度が低下して高温発生器(1)の加熱
量が小さくなったときにはそれに伴い冷水ポンプ(22
P)の回転数が小さくなり、冷水ポンプ(22P)の消費電
力を低減することができ、又、温水主制御の運転時に冷
水負荷が小さくなり冷水出口温度が低下して冷媒ドレン
制御弁(30)の開度が小さくなったときには、それに伴
い冷水ポンプ(22P)の回転数が大幅に小さくなり、冷
水ポンプ(22P)の消費電力を大幅に低減することがで
き、かつ、温水負荷が小さくなり温水出口温度が上昇し
て高温発生器(1)の加熱量が小さくなったときにはそ
れに伴い温水ポンプ(38P)の回転数が小さくなり、温
水ポンプ(38P)の消費電力を低減することができ、吸
収冷温水機の運転コストの低減を図ることが可能にな
る。(E) Operation When the hot water load decreases and the hot water outlet temperature rises during operation of the cold water main control and the opening of the hot water drain control valve (37) decreases, the rotation speed of the hot water pump (38P) increases accordingly. The power consumption of the hot water pump (38P) can be greatly reduced, and the load of the chilled water has been reduced, the temperature of the chilled water outlet has decreased, and the heating amount of the high temperature generator (1) has decreased. Sometimes a chilled water pump (22
P), the power consumption of the chilled water pump (22P) can be reduced, and the chilled water load decreases during the operation of the hot water main control, the chilled water outlet temperature decreases, and the refrigerant drain control valve (30 When the opening of () decreases, the rotation speed of the chilled water pump (22P) decreases drastically, the power consumption of the chilled water pump (22P) can be greatly reduced, and the load of hot water decreases. When the hot water outlet temperature rises and the heating amount of the high temperature generator (1) decreases, the rotation speed of the hot water pump (38P) decreases accordingly, and the power consumption of the hot water pump (38P) can be reduced. It is possible to reduce the operating cost of the absorption chiller / heater.
又、冷水主制御の運転時に温水負荷が定格値より大幅
に小さいとき(温水ドレン制御弁の開度が小さいと
き)、それに伴い温水ポンプ(38P)の能力(回転数)
も大幅に低下し、温水ポンプ(38P)の消費電力を大幅
に低減することが可能になり、又、温水主制御の運転
時、冷水負荷が定格値より大幅に小さいとき(冷媒ドレ
ン制御弁の開度が小さいとき)、それに伴い冷水ポンプ
(22P)の能力(回転数)も大幅に低下し、冷水ポンプ
(22P)の消費電力を大幅に低減することが可能にな
る。Also, when the hot water load is significantly smaller than the rated value (when the opening of the hot water drain control valve is small) during operation of the cold water main control, the capacity (rotational speed) of the hot water pump (38P)
And the power consumption of the hot water pump (38P) can be significantly reduced. Also, when the hot water main control is in operation and the chilled water load is significantly smaller than the rated value (when the refrigerant drain control valve is When the degree of opening is small), the capacity (rotational speed) of the chilled water pump (22P) is also greatly reduced, and the power consumption of the chilled water pump (22P) can be significantly reduced.
(ヘ)実施例 以下、本発明の一実施例を図面に基づいて詳細に説明
する。(F) Example Hereinafter, an example of the present invention will be described in detail with reference to the drawings.
第1図に示したものは吸収冷温水機であり、冷媒に水
(H2O)、吸収剤(吸収液)に臭化リチウム(LiBr)水
溶液を使用したものである。FIG. 1 shows an absorption chiller / heater, which uses water (H 2 O) as a refrigerant and an aqueous solution of lithium bromide (LiBr) as an absorbent (absorbing liquid).
第1図において(1)はバーナ(1B)を備えた高温発
生器、(2)は低温発生器、(3)は凝縮器、(3A)は
冷媒液溜め、(4)は蒸発器、(5)は吸収器、(6)
は低温熱交換器、(7)は高温熱交換器、(8)ないし
(14)は吸収液管、(15)は吸収液ポンプ、(16)及び
(17)は冷媒管、(18)は冷媒液流下管、(19)は冷媒
液循環管、(19P)は冷媒ポンプ、(2A)はオーバーフ
ロー管、(20)はバーナ(1B)に接続された燃料供給
管、(21)は加熱量制御弁、(22)は冷水配管、(22
P)は冷水ポンプ、(23)は蒸発器熱交換器であり、そ
れぞれは第1図に示したように配管接続されている。
又、(A)は上胴、(B)は下胴である。さらに、(2
5)は冷却水配管であり、この冷却水配管(25)の途中
には吸収器熱交換器(26)及び凝縮器熱交換器(27)が
設けられている。又、(30)は冷媒管(17)に設けられ
た冷媒ドレン制御弁である。In FIG. 1, (1) is a high-temperature generator provided with a burner (1B), (2) is a low-temperature generator, (3) is a condenser, (3A) is a refrigerant reservoir, (4) is an evaporator, 5) is an absorber, (6)
Is a low-temperature heat exchanger, (7) is a high-temperature heat exchanger, (8) to (14) are absorbent pipes, (15) is an absorbent pump, (16) and (17) are refrigerant pipes, and (18) Refrigerant liquid down pipe, (19) is a refrigerant liquid circulation pipe, (19P) is a refrigerant pump, (2A) is an overflow pipe, (20) is a fuel supply pipe connected to a burner (1B), and (21) is a heating amount. Control valve, (22) is cold water piping, (22)
P) is a chilled water pump, and (23) is an evaporator heat exchanger, each of which is connected with piping as shown in FIG.
(A) is an upper trunk, and (B) is a lower trunk. In addition, (2
5) is a cooling water pipe, and an absorber heat exchanger (26) and a condenser heat exchanger (27) are provided in the middle of the cooling water pipe (25). Further, (30) is a refrigerant drain control valve provided in the refrigerant pipe (17).
(35)は高温発生器(1)に付設された温水器、(3
6)は温水器(35)の下部と高温発生器(1)との間に
接続された温水ドレン管であり、この温水ドレン管(3
6)の途中に温水ドレン制御弁(37)が設けられてい
る。又、(38)は温水配管であり、この温水配管(38)
の途中に温水ポンプ(38P)温水器熱交換器(40)が設
けられている。さらに、(39)は温水器(35)の気相部
と凝縮器(3)の気相部とを接続した均圧管であり、
(39a)は開閉弁である。(35) is a water heater attached to the high-temperature generator (1), (3)
6) is a hot water drain pipe connected between the lower part of the water heater (35) and the high temperature generator (1).
A hot water drain control valve (37) is provided in the middle of 6). (38) is a hot water pipe, and this hot water pipe (38)
A hot water pump (38P) water heater heat exchanger (40) is provided in the middle of the process. Further, (39) is a pressure equalizing pipe connecting the gas phase of the water heater (35) and the gas phase of the condenser (3),
(39a) is an on-off valve.
(41)は吸収冷温水機のマイコン制御盤(制御装
置)、(42)は制御盤(41)に設けられた冷主温主切換
装置である。又、(43)及び(44)はそれぞれ蒸発器
(4)の入口側及び出口側に設けられた冷水入口温度検
出器及び冷水出口温度検出器であり、各温度検出器(4
3),(44)はマイコン制御盤(41)に接続されてい
る。さらに(45)及び(46)はそれぞれ温水器(35)の
入口側及び出口側に設けられた温水入口温度検出器及び
温水出口温度検出器であり、各温度検出器(45),(4
6)はマイコン制御盤(41)に接続されている。又、加
熱量制御弁(21)、冷媒ドレン制御弁(30)及び温水ド
レン制御弁(37)がマイコン制御盤(41)に接続されて
いる。又、(47),(48)はそれぞれ冷水ポンプインバ
ータ装置及び温水ポンプインバータ装置であり、マイコ
ン制御盤(41)に接続され、又、マイコン制御盤(41)
からの信号に基づいて冷水ポンプ(22P)、及び温水ポ
ンプ(38P)へ電力を供給する。(41) is a microcomputer control panel (control device) of the absorption chiller / heater, and (42) is a cooling main / main switching device provided in the control panel (41). Also, (43) and (44) are a chilled water inlet temperature detector and a chilled water outlet temperature detector provided on the inlet side and the outlet side of the evaporator (4), respectively.
3) and (44) are connected to the microcomputer control panel (41). Further, (45) and (46) are a hot water inlet temperature detector and a hot water outlet temperature detector provided on the inlet side and the outlet side of the water heater (35), respectively.
6) is connected to the microcomputer control panel (41). The heating amount control valve (21), the refrigerant drain control valve (30), and the hot water drain control valve (37) are connected to the microcomputer control panel (41). Reference numerals (47) and (48) denote a cold water pump inverter and a hot water pump inverter, respectively, which are connected to the microcomputer control panel (41).
The electric power is supplied to the cold water pump (22P) and the hot water pump (38P) based on the signal from.
又、冷主温主の切換装置(42)は冷水入口温度と温水
入口温度とに応じて動作し、第2図に示したように、各
入口温度に応じた冷水主制御の領域と温水主制御の領域
とが制御盤(41)で計算される。ここで、冷水主制御と
温水主制御との領域の境界ライン(50)上は冷水主制御
である。In addition, the switching device (42) for the main cold main temperature operates according to the cold water inlet temperature and the hot water inlet temperature, and as shown in FIG. The control area is calculated by the control panel (41). Here, the cold water main control is on the boundary line (50) between the cold water main control and the hot water main control.
以下、上記のように構成された吸収冷温水機の動作に
ついて説明する。吸収冷温水機の運転時、冷水入口温度
及び温水入口温度がそれぞれ10.0℃及び57.0℃で第2図
の冷水主制御の領域にあるときには、冷主温主切換装置
(42)は冷主側に切換っている。このため、従来の吸収
冷温水機と同様に吸収液ポンプ(15)及び冷媒ポンプ
(19P)が運転され、吸収液及び冷媒が循環するととも
に冷水出口温度により加熱量制御弁(21)の開度(操作
量)が例えばPID制御される。ここで、冷媒ドレン制御
弁(30)は全開している。又、温水入口温度と温水出口
温度との差、即ち温水負荷に応じて温水ドレン制御弁
(37)の開度が調節される。そして、高温発生器(1)
の冷媒蒸気の発生量及び温水器(35)の温水(冷媒液)
の液面が変化して、蒸発器(4)及び温水器(35)での
熱交換量が変化して冷水出口温度及び温水出口温度はほ
ぼ設定温度に保たれる。又、マイコン制御盤(41)は冷
水入口温度と冷水出口温度との差、即ち冷水負荷に応じ
て冷水ポンプインバータ装置(47)へ周波数信号を出力
し、冷水負荷の減少に伴い冷水ポンプインバータ装置
(47)から冷水ポンプ(22P)へ供給される電力の周波
数は減少して冷水ポンプ(22P)の回転数は少なくな
る。又、冷水負荷の増加に伴い冷水ポンプ(22P)の回
転数は大きくなる。さらにマイコン制御盤(41)は温水
負荷に応じて温水ポンプインバータ装置(48)へ周波数
信号を出力し、温水負荷の減少に伴い温水ポンプインバ
ータ装置(48)から温水ポンプ(38P)へ供給される電
力の周波数は減少して温水ポンプ(38P)の回転数は少
なくなる。又、温水負荷の増加に伴い温水ポンプ(38
P)の回転数は大きくなる。Hereinafter, the operation of the absorption chiller / heater configured as described above will be described. During operation of the absorption chiller / heater, when the chilled water inlet temperature and the hot water inlet temperature are 10.0 ° C and 57.0 ° C, respectively, and are in the chilled water main control area of FIG. Switching. Therefore, the absorption liquid pump (15) and the refrigerant pump (19P) are operated in the same manner as the conventional absorption chiller / heater, and the absorption liquid and the refrigerant circulate, and the opening of the heating amount control valve (21) is controlled by the chilled water outlet temperature. (Operation amount) is controlled by, for example, PID. Here, the refrigerant drain control valve (30) is fully opened. Also, the opening of the hot water drain control valve (37) is adjusted according to the difference between the hot water inlet temperature and the hot water outlet temperature, that is, the hot water load. And the high temperature generator (1)
Amount of refrigerant vapor generated and hot water (refrigerant liquid) from the water heater (35)
Of the evaporator (4) and the amount of heat exchange in the water heater (35), so that the cold water outlet temperature and the hot water outlet temperature are kept substantially at the set temperatures. Also, the microcomputer control panel (41) outputs a frequency signal to the chilled water pump inverter (47) according to the difference between the chilled water inlet temperature and the chilled water outlet temperature, that is, the chilled water load. The frequency of the electric power supplied from (47) to the chilled water pump (22P) decreases, and the rotation speed of the chilled water pump (22P) decreases. In addition, the rotation speed of the chilled water pump (22P) increases as the chilled water load increases. Further, the microcomputer control panel (41) outputs a frequency signal to the hot water pump inverter (48) according to the hot water load, and is supplied from the hot water pump inverter (48) to the hot water pump (38P) as the hot water load decreases. The frequency of the electric power decreases and the number of revolutions of the hot water pump (38P) decreases. In addition, the hot water pump (38
The rotation speed of P) increases.
その後、温水入口温度が低下し、冷水入口温度及び温
水入口温度がそれぞれ10.0℃及び55℃で、第2図の温水
主制御の領域にあるときには、冷主温主切換装置(42)
は温主側に切換っている。このため、冷水負荷に応じて
冷媒ドレン制御弁(30)の開度が調節され、温水負荷に
応じて加熱量制御弁(21)の開度が調節される。ここ
で、温水ドレン制御弁(37)は全開している。そして、
高温発生器(1)から凝縮器(3)への冷媒の流量及び
高温発生器(1)の冷媒蒸気の発生量が変化して蒸発器
(4)及び温水器(35)での熱交換量が変化して冷水出
口温度及び温水出口温度はほぼ設定温度に保たれる。
又、マイコン制御盤(41)は冷水負荷に応じて冷水ポン
プインバータ装置(47)へ周波数信号を出力し、冷水負
荷の減少に伴い冷水ポンプインバータ装置(47)から冷
水ポンプ(22P)へ供給される電力の周波数は減少して
冷水ポンプ(22P)の回転数は少なくなる。又、冷水負
荷の増加に伴い冷水ポンプ(22P)の回転数は大きくな
る。さらにマイコン制御盤(41)は温水負荷に応じて温
水ポンプインバータ装置(48)へ周波数信号を出力し、
温水負荷の減少に伴い温水ポンプインバータ装置(48)
から温水ポンプ(38P)へ供給される電力の周波数は減
少して温水ポンプ(38P)の回転数は少なくなる。又、
温水負荷の増加に伴い温水ポンプ(38P)の回転数は大
きくなる。Thereafter, when the hot water inlet temperature decreases, the cold water inlet temperature and the hot water inlet temperature are 10.0 ° C. and 55 ° C., respectively, and the temperature is in the hot water main control region of FIG.
Is switched to the warm main side. For this reason, the opening of the refrigerant drain control valve (30) is adjusted according to the cold water load, and the opening of the heating amount control valve (21) is adjusted according to the hot water load. Here, the hot water drain control valve (37) is fully opened. And
The flow rate of the refrigerant from the high-temperature generator (1) to the condenser (3) and the amount of refrigerant vapor generated by the high-temperature generator (1) change, and the amount of heat exchange in the evaporator (4) and the water heater (35) Is changed, and the cold water outlet temperature and the hot water outlet temperature are kept substantially at the set temperatures.
The microcomputer control panel (41) outputs a frequency signal to the chilled water pump inverter (47) according to the chilled water load, and is supplied from the chilled water pump inverter (47) to the chilled water pump (22P) as the chilled water load decreases. The frequency of the electric power decreases, and the rotation speed of the chilled water pump (22P) decreases. In addition, the rotation speed of the chilled water pump (22P) increases as the chilled water load increases. Further, the microcomputer control panel (41) outputs a frequency signal to the hot water pump inverter device (48) according to the hot water load,
Hot water pump inverter unit (48) as hot water load decreases
The frequency of the electric power supplied from the to the hot water pump (38P) decreases, and the rotation speed of the hot water pump (38P) decreases. or,
The rotation speed of the hot water pump (38P) increases as the hot water load increases.
以後、冷水主制御時、或いは温水主制御時に、上記と
同様に冷水の負荷に応じて冷水ポンプ(22P)の回転数
を制御するとともに温水の負荷に応じて温水ポンプ(38
P)の回転数を制御する。Thereafter, during the cold water main control or the hot water main control, the rotation speed of the cold water pump (22P) is controlled according to the load of the cold water and the hot water pump (38
Control the rotation speed of P).
上記実施例によれば、例えば夏期で冷水負荷より温水
の負荷が小さい(50%以下になることが多い)冷水主制
御の運転時に、温水負荷に応じて温水ポンプ(38P)の
回転数を制御し、温水負荷の減少に伴い温水ポンプ(38
P)の回転数を小さくするので、容量が大きい温水ポン
プ(38P)の消費電力を大幅に低減することができる。
又、冷水負荷に応じて容量が大きい冷水ポンプ(22P)
の回転数を制御するので、冷水ポンプ(22P)の消費電
力は低減することができる。According to the above-described embodiment, for example, during the operation of the cold water main control in which the load of the hot water is smaller than the load of the cold water in summer (often 50% or less), the rotation speed of the hot water pump (38P) is controlled according to the load of the hot water. And the hot water pump (38
Since the rotation speed of P) is reduced, the power consumption of the hot water pump (38P) having a large capacity can be significantly reduced.
Also, a chilled water pump with a large capacity according to the chilled water load (22P)
, The power consumption of the chilled water pump (22P) can be reduced.
さらに、例えば冬期で冷水負荷より温水負荷が大きい
温水主制御の運転時、冷水の負荷(50%以下になること
が多い)に応じて冷水ポンプ(22P)の回転数を制御
し、冷水負荷の減少に伴い冷水ポンプ(22P)の回転数
を小さくするので、冷水ポンプ(22P)の消費電力を大
幅に低減することができる。又、温水負荷に応じて温水
ポンプ(38P)の回転数を制御するので、温水ポンプの
消費電力を低減することができる。Further, for example, during the operation of the hot water main control in which the hot water load is larger than the cold water load in winter, the rotation speed of the cold water pump (22P) is controlled in accordance with the cold water load (often 50% or less), and the cold water load is reduced. Since the rotation speed of the chilled water pump (22P) is reduced with the decrease, the power consumption of the chilled water pump (22P) can be significantly reduced. Further, since the rotation speed of the hot water pump (38P) is controlled according to the hot water load, the power consumption of the hot water pump can be reduced.
尚、上記実施例において、冷水負荷に応じて冷水ポン
プ(22P)の回転数を制御するとともに、温水負荷に応
じて温水ポンプ(38P)の回転数を制御したが、加熱量
制御弁(21)、温水ドレン制御弁(37)、及び冷媒ドレ
ン制御弁(30)の開度を例えばカムスイッチを用いて読
取り、冷水主制御時に、冷水負荷に応じて変化する加熱
量制御弁(21)の開度に基づいて冷水ポンプ(22P)の
回転数を制御し、温水負荷に応じて変化する温水ドレン
制御弁(37)の開度に基づいて温水ポンプ(38P)の回
転数を制御することにより、上記実施例と同様の作用効
果を得ることができる。又、温水主制御時に、温水負荷
に応じて変化する加熱量制御弁(21)の開度に基づいて
温水ポンプ(38P)の回転数を制御し、冷水負荷に応じ
て変化する冷媒ドレン制御弁(30)の開度に基づいて冷
水ポンプ(22P)の回転数を制御することにより、上記
実施例と同様の作用効果を得ることができる。In the above embodiment, the rotation speed of the cold water pump (22P) is controlled according to the cold water load, and the rotation speed of the hot water pump (38P) is controlled according to the hot water load. The opening of the hot water drain control valve (37) and the refrigerant drain control valve (30) is read using, for example, a cam switch, and the opening of the heating amount control valve (21) that changes according to the cold water load during the cold water main control. By controlling the number of rotations of the cold water pump (22P) based on the degree, and controlling the number of rotations of the hot water pump (38P) based on the degree of opening of the hot water drain control valve (37) that changes according to the hot water load, The same operation and effect as the above embodiment can be obtained. Also, during the hot water main control, the number of rotations of the hot water pump (38P) is controlled based on the opening of the heating amount control valve (21) that changes according to the hot water load, and the refrigerant drain control valve changes according to the cold water load. By controlling the rotation speed of the chilled water pump (22P) based on the opening of (30), the same operation and effect as in the above embodiment can be obtained.
さらに、冷水主制御時に冷水ポンプ(22P)の回転数
は制御せずに温水ポンプ(38P)の回転数を温水負荷、
或いは温水ドレン制御弁(37)の開度に基づいて制御
し、温水主制御時に、温水ポンプ(38P)の回転数は制
御せずに冷水ポンプ(22P)の回転数を冷水負荷或いは
冷媒ドレン制御弁(30)の開度に基づいて制御すること
により、例えば夏期の冷水主制御時で温水負荷が小さい
ときの温水ポンプ(38P)の消費電力を大幅に低減する
ことができ、かつ、例えば冬期の温水主制御時で冷水負
荷が小さいときの冷水ポンプ(22P)の消費電力を大幅
に低減することができる。In addition, during the cold water main control, the rotation speed of the cold water pump (22P) is not controlled, and the rotation speed of the hot water pump (38P) is set to the hot water load,
Alternatively, control is performed based on the opening degree of the hot water drain control valve (37), and during hot water main control, the rotation speed of the cold water pump (22P) is not controlled but the rotation speed of the cold water pump (22P) is controlled by the cold water load or refrigerant drain control. By controlling based on the opening of the valve (30), the power consumption of the hot water pump (38P) can be greatly reduced when the hot water load is small, for example, during the cold water main control in summer, and for example, in winter. The power consumption of the chilled water pump (22P) when the chilled water load is small during the hot water main control can be greatly reduced.
又、上記実施例において冷水ポンプ(22P)及び温水
ポンプ(38P)の回転数を制御して冷水、及び温水の変
流量制御を行ったが、冷水ポンプ(22P)、及び温水ポ
ンプ(38P)の極数変換によって変流量制御を行った場
合にも、同様の作用効果を得ることができる。又、冷水
ポンプ(22P)、或いは温水ポンプ(38P)が複数台数設
けられている場合には、台数制御によって変流量制御を
行い同様の作用効果を得ることができる。In the above embodiment, the rotation speed of the cold water pump (22P) and the hot water pump (38P) is controlled to perform the variable flow rate control of the cold water and the hot water, but the cooling water pump (22P) and the hot water pump (38P) are controlled. Similar effects can be obtained even when the variable flow rate control is performed by pole number conversion. When a plurality of cold water pumps (22P) or hot water pumps (38P) are provided, a variable flow rate control is performed by controlling the number of pumps, and the same operation and effect can be obtained.
(ト)発明の効果 本発明は以上のように構成された吸収冷温水機の制御
装置であり、冷水主制御と温水主制御とを切換える吸収
冷温水機の制御装置において、冷水主制御の運転時に、
温水ドレン制御弁の開度に基づいて温水ポンプの回転数
を制御すると共に、高温発生器の加熱量に基づいて冷水
ポンプの回転数を制御し、かつ温水主制御の運転時に、
冷媒ドレン制御弁の開度に基づいて冷水ポンプの回転数
を制御すると共に、高温発生器の加熱量に基づいて温水
ポンプの回転数を制御するので、冷水主制御時及び温水
主制御時に温水ポンプ及び冷水ポンプの消費電力を大幅
に低減することができ、この結果、吸収冷温水機の運転
コストの低減を図ることができる。(G) Effects of the Invention The present invention is a control device for an absorption chiller / heater configured as described above. In the control device for an absorption chiller / heater switching between main control of chilled water and main control of hot water, the operation of the main control of chilled water is performed. Sometimes
While controlling the rotation speed of the hot water pump based on the opening degree of the hot water drain control valve, and controlling the rotation speed of the cold water pump based on the heating amount of the high temperature generator, and during operation of the hot water main control,
The number of rotations of the chilled water pump is controlled based on the opening degree of the refrigerant drain control valve, and the number of rotations of the hot water pump is controlled based on the amount of heating of the high-temperature generator. In addition, the power consumption of the chilled water pump can be significantly reduced, and as a result, the operating cost of the absorption chiller / heater can be reduced.
又、冷水主制御の運転時に温水負荷に応じて温水ポン
プの能力を制御し、温水主制御の運転時に冷水負荷に応
じて冷水ポンプの能力を制御することにより、冷水主制
御時には温水ポンプの又、温水主制御時には冷水ポンプ
の消費電力を大幅に低減することができる。In addition, by controlling the capacity of the hot water pump according to the hot water load during the operation of the cold water main control, and controlling the capacity of the cold water pump according to the cold water load during the operation of the hot water main control, the capacity of the hot water pump can be controlled during the cold water main control. At the time of hot water main control, the power consumption of the cold water pump can be greatly reduced.
さらに冷水主制御の運転時に温水ドレン制御弁の開度
に基づいて温水ポンプの回転数を制御し、温水主制御の
運転時冷媒ドレン制御弁の開度に基づいて冷水ポンプの
回転数を制御することにより、冷水主制御時の温水ポン
プの消費電力を大幅に低減することができると共に、温
水主制御時の冷水ポンプの消費電力を大幅に低減するこ
とができる。Further, the number of rotations of the hot water pump is controlled based on the opening degree of the hot water drain control valve during operation of the cold water main control, and the number of rotations of the cold water pump is controlled based on the opening degree of the refrigerant drain control valve during operation of the hot water main control. Thus, the power consumption of the hot water pump during the cold water main control can be significantly reduced, and the power consumption of the cold water pump during the hot water main control can be significantly reduced.
第1図は本発明の一実施例を示す吸収冷温水機の回路構
成図、第2図は温水入口温度と冷水入口温度とに基づく
冷水主制御の領域と温水主制御の領域との説明図であ
る。 (1)……高温発生器、(2)……低温発生器、(3)
……凝縮器、(4)……蒸発器、(5)……吸収器、
(21)……加熱量制御弁、(22)……冷水配管、(22
P)……冷水ポンプ、(30)……冷媒ドレン制御弁、(3
5)……温水器、(37)……温水ドレン制御弁、(38)
……温水配管、(38P)……温水ポンプ、(41)……マ
イコン制御盤。FIG. 1 is a circuit configuration diagram of an absorption chiller / heater showing an embodiment of the present invention, and FIG. 2 is an explanatory diagram of a cold water main control region and a hot water main control region based on a hot water inlet temperature and a cold water inlet temperature. It is. (1) High temperature generator, (2) Low temperature generator, (3)
... condenser, (4) ... evaporator, (5) ... absorber,
(21)… heating amount control valve, (22)… cold water piping, (22
P) Cold water pump (30) Refrigerant drain control valve (3
5) Water heater, (37) Hot water drain control valve, (38)
… Hot water piping, (38P)… hot water pump, (41)… microcomputer control panel.
───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) F25B 15/00 306──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int.Cl. 6 , DB name) F25B 15/00 306
Claims (3)
温水器、低温発生器、凝縮器、蒸発器、及び吸収器をそ
れぞれ配管接続して冷凍サイクルを形成するとともに、
温水器から高温発生器へ至る温水ドレン管に設けられた
温水ドレン制御弁と、高温発生器から凝縮器へ至る冷媒
管に設けられた冷媒ドレン制御弁と、蒸発器に接続され
て冷水ポンプを有した冷水循環回路と、温水器に接続さ
れて温水ポンプを有した温水循環回路とを備え、冷水主
制御の運転時に、蒸発器の冷水出口温度によって高温発
生器の加熱量を制御すると共に温水器の温水出口温度に
よって温水ドレン制御弁の開度を調節し、温水主制御の
運転時に、上記温水出口温度によって高温発生器の加熱
量を制御すると共に、上記冷水出口温度によって冷媒ド
レン制御弁の開度を調節する吸収冷温水機の制御装置に
おいて、冷水主制御の運転時に温水ドレン制御弁の開度
に基づいて温水ポンプの回転数を制御すると共に、高温
発生器の加熱量に基づいて冷水ポンプの回転数を制御
し、かつ温水主制御の運転時に高温発生器の加熱量に基
づいて温水ポンプの回転数を制御すると共に、冷媒ドレ
ン制御弁の開度に基づいて冷水ポンプの回転数を制御す
る機構を備えたことを特徴とする吸収冷温水機の制御装
置。1. A refrigeration cycle by connecting a high-temperature generator, a water heater, a low-temperature generator, a condenser, an evaporator, and an absorber attached to the high-temperature generator, respectively, to form a refrigeration cycle.
A hot water drain control valve provided on the hot water drain pipe from the water heater to the high temperature generator, a refrigerant drain control valve provided on the refrigerant pipe from the high temperature generator to the condenser, and a cold water pump connected to the evaporator And a hot water circulation circuit having a hot water pump connected to the water heater.In the operation of the main control of the cold water, the heating amount of the high temperature generator is controlled by the cold water outlet temperature of the evaporator and the hot water is controlled. The opening degree of the hot water drain control valve is adjusted by the hot water outlet temperature of the heater, and during the operation of the hot water main control, the heating amount of the high temperature generator is controlled by the hot water outlet temperature, and the refrigerant drain control valve is controlled by the cold water outlet temperature. In the control device of the absorption chiller / heater that adjusts the opening, the rotation speed of the hot water pump is controlled based on the opening of the hot water drain control valve during the operation of the chilled water main control, and the heating amount of the high temperature generator is controlled. Control the rotation speed of the chilled water pump based on the heating amount of the high-temperature generator during the operation of the hot water main control, and control the rotation speed of the chilled water pump based on the opening of the refrigerant drain control valve. A control device for an absorption chiller / heater, comprising a mechanism for controlling a rotation speed.
温水器、低温発生器、凝縮器、蒸発器、及び吸収器をそ
れぞれ配管接続して冷凍サイクルを形成すると共に、蒸
発器に接続されて冷水ポンプを有した冷水循環回路と、
温水器に接続されて温水ポンプを有した温水循環回路と
を備え、冷水主制御の運転時に蒸発器の冷水出口温度に
よって高温発生器の加熱量を制御し、温水主制御の運転
時に温水器の温水出口温度によって高温発生器の加熱量
を制御する吸収冷温水機の制御装置において、冷水主制
御の運転時に上記温水負荷に応じて温水ポンプの能力を
制御し、かつ、温水主制御の運転時に冷水負荷に応じて
冷水ポンプの能力を制御する機構を備えたことを特徴と
する吸収冷温水機の制御装置。2. A high-temperature generator, and a water heater, a low-temperature generator, a condenser, an evaporator, and an absorber attached to the high-temperature generator are connected by pipes to form a refrigeration cycle and connected to the evaporator. A chilled water circulation circuit having a chilled water pump;
A hot water circulation circuit having a hot water pump connected to the water heater, wherein the heating amount of the high temperature generator is controlled by the cold water outlet temperature of the evaporator during the operation of the main cold water control, and the heating water is controlled during the operation of the main hot water control. In the control device of the absorption chiller / heater that controls the heating amount of the high temperature generator by the hot water outlet temperature, the operation of the hot water pump is controlled according to the above hot water load during the operation of the main cold water control, and the operation of the hot water main control is performed. A control device for an absorption chiller / heater, comprising a mechanism for controlling the capacity of a chilled water pump according to a chilled water load.
温水器、低温発生器、凝縮器、蒸発器、及び吸収器をそ
れぞれ配管接続して冷凍サイクルを形成するとともに、
温水器から高温発生器へ至る温水ドレン管に設けられた
温水ドレン制御弁と、高温発生器から凝縮器へ至る冷媒
管に設けられた冷媒ドレン制御弁と、蒸発器に接続され
て冷水ポンプを有した冷水循環回路と、温水器に接続さ
れて温水ポンプを有した温水循環回路とを備え、冷水主
制御の運転時に蒸発器の冷水出口温度によって高温発生
器の加熱量を制御するとともに、温水器の温水出口温度
によって温水ドレン制御弁の開度を制御し、温水主制御
の運転時に上記温水出口温度によって発生器の加熱量を
制御するとともに、上記冷水出口温度によって冷水ドレ
ン制御弁の開度を制御する吸収冷温水機の制御装置にお
いて、冷水主制御の運転時に温水ドレン制御弁の開度に
基づいて温水ポンプの回転数を制御し、温水主制御の運
転時に冷水ドレン制御弁の開度に基づいて冷水ポンプの
回転数を制御することを特徴とする吸収冷温水機の制御
装置。3. A refrigeration cycle by connecting a high-temperature generator, a water heater, a low-temperature generator, a condenser, an evaporator, and an absorber attached to the high-temperature generator, respectively, to form a refrigeration cycle.
A hot water drain control valve provided on the hot water drain pipe from the water heater to the high temperature generator, a refrigerant drain control valve provided on the refrigerant pipe from the high temperature generator to the condenser, and a cold water pump connected to the evaporator A hot water circulation circuit having a hot water pump connected to the water heater, and controlling the heating amount of the high temperature generator by the cold water outlet temperature of the evaporator during operation of the cold water main control. The opening degree of the hot water drain control valve is controlled by the hot water outlet temperature of the heater, and the amount of heating of the generator is controlled by the hot water outlet temperature during the operation of the hot water main control, and the opening degree of the cold water drain control valve by the cold water outlet temperature. The control device of the absorption chiller / heater controls the rotation speed of the hot water pump based on the opening of the hot water drain control valve during the operation of the main control of the chilled water, and the drainage of the chilled water during the operation of the main control of the hot water. Controller of the absorption chiller which is characterized by controlling the rotation speed of the chilled water pump based on the opening degree of the valve.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2249489A JP2777471B2 (en) | 1990-09-18 | 1990-09-18 | Absorption chiller / heater controller |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2249489A JP2777471B2 (en) | 1990-09-18 | 1990-09-18 | Absorption chiller / heater controller |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04126960A JPH04126960A (en) | 1992-04-27 |
JP2777471B2 true JP2777471B2 (en) | 1998-07-16 |
Family
ID=17193736
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2249489A Expired - Fee Related JP2777471B2 (en) | 1990-09-18 | 1990-09-18 | Absorption chiller / heater controller |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2777471B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102346787B1 (en) * | 2021-05-10 | 2022-01-04 | (주)씨엔에이치엔지니어링 | Absorption chiller with integrated pulse control inverter |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4721783B2 (en) * | 2005-06-24 | 2011-07-13 | 三洋電機株式会社 | Operation control method of absorption chiller / heater |
-
1990
- 1990-09-18 JP JP2249489A patent/JP2777471B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102346787B1 (en) * | 2021-05-10 | 2022-01-04 | (주)씨엔에이치엔지니어링 | Absorption chiller with integrated pulse control inverter |
Also Published As
Publication number | Publication date |
---|---|
JPH04126960A (en) | 1992-04-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2777471B2 (en) | Absorption chiller / heater controller | |
JP2858922B2 (en) | Absorption chiller / heater controller | |
JP3363518B2 (en) | Operation control method of single double effect absorption refrigerator | |
JP3630775B2 (en) | Heat input control method of absorption refrigerator | |
JPH0586543B2 (en) | ||
JP2858921B2 (en) | Control device for absorption refrigerator | |
JP2523044B2 (en) | Absorption chiller / heater controller | |
JPS6021719Y2 (en) | Number control device for small absorption chiller/heater | |
JPH0471142B2 (en) | ||
JPH05223390A (en) | Controlling method for solution flow rate of absorption cold/warm water device | |
JPH07324839A (en) | Single and double effect absorption hot and chilled water generator | |
JP3138164B2 (en) | Absorption refrigerator | |
JP2744036B2 (en) | Absorption refrigerator | |
JP3086594B2 (en) | Single double effect absorption refrigerator | |
JPH04313652A (en) | Absorption refrigerating machine | |
JP2858931B2 (en) | Control device for absorption refrigerator | |
JP3308795B2 (en) | Absorption air conditioner | |
JP2858938B2 (en) | Absorption chiller / heater | |
JP2977999B2 (en) | Absorption refrigerator | |
JPH0447567Y2 (en) | ||
JPH08233391A (en) | Absorption refrigerating machine | |
JPH0719646A (en) | Chilled water supplying device using direct burning absorption refrigerating machine | |
JPS5834733B2 (en) | How to control absorption chiller operation | |
JPH04161766A (en) | Control device for absorption type freezer | |
JPS6222056B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |