JP2765740B2 - Separation and recovery of rare earth elements from raw materials containing rare earth elements and iron - Google Patents
Separation and recovery of rare earth elements from raw materials containing rare earth elements and ironInfo
- Publication number
- JP2765740B2 JP2765740B2 JP146090A JP146090A JP2765740B2 JP 2765740 B2 JP2765740 B2 JP 2765740B2 JP 146090 A JP146090 A JP 146090A JP 146090 A JP146090 A JP 146090A JP 2765740 B2 JP2765740 B2 JP 2765740B2
- Authority
- JP
- Japan
- Prior art keywords
- rare earth
- solution
- iron
- earth elements
- separation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Manufacture And Refinement Of Metals (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は稀土類元素(以下、単に希土類と記す)−鉄
系合金材料のスクラップ、希土類−鉄製錬屑など、希土
類と鉄を含有する原料から希土類を分離回収する方法に
関する。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a raw material containing a rare earth and iron, such as a scrap of a rare earth element (hereinafter, simply referred to as a rare earth) -iron alloy material and a rare earth-iron smelting waste. And a method for separating and recovering rare earth from water.
〔従来の技術〕 以下、ネオジウム(Nd)を希土類の例として説明す
る。[Related Art] Hereinafter, neodymium (Nd) will be described as an example of a rare earth.
近年、Nd−Fe−Bで代表される希土類−鉄−硼素系磁
石合金が開発され、現在最も高い磁気性能を有する永久
磁石として各方面の関心を集め、この工業化生産が急激
に進められている。In recent years, rare-earth-iron-boron-based magnet alloys represented by Nd-Fe-B have been developed, and are now attracting attention in various fields as permanent magnets having the highest magnetic performance, and this industrial production is rapidly advancing. .
このような磁石は30重量%程度の希少で高価な希土類
を含有するため、希土類原料の供給は重要な課題となっ
ている。Since such a magnet contains rare and expensive rare earth elements of about 30% by weight, supply of rare earth material is an important issue.
特に最近では磁石生産の急増にともない、ネオジウム
の価格が高騰する傾向にあり、その供給動向は磁石市場
に大きな影響を与える見通しである。In particular, the price of neodymium has tended to soar in recent years with the rapid increase in magnet production, and its supply trend is expected to have a significant impact on the magnet market.
一方、磁石の製造加工に当たっては、最終製品重量の
約20〜40重量%の加工屑が発生し、また磁石製品が使用
期間中に性能の低下や装置の解体などによりスクラップ
となることも十分予想される。On the other hand, in the manufacturing process of magnets, it is expected that about 20 to 40% by weight of the final product weight will be generated, and that the magnet product will be scrapped due to performance degradation or dismantling of the equipment during use. Is done.
一般にこのようなスクラップでは、希土類の含有率は
鉱石原料に比べはるかに高く、スクラップから希土類を
分離回収して再利用することは、省資源、省エネギ等の
観点から極めて重要な意義がある。Generally, in such scrap, the content of rare earth elements is much higher than that of ore raw materials, and the separation and recovery of rare earth elements from scrap for reuse is extremely important from the viewpoint of resource saving and energy saving.
従来の希土類と他の元素、例えば鉄との分離には、弗
化希土、蓚酸希土の溶解度が小さい特性を利用する、い
わゆる弗化物沈殿法、蓚酸塩沈殿法がよく知られてい
る。しかしながらこれらの方法を前記のようなスクラッ
プの処理に適用する場合、弗化物沈殿法では、濃厚な弗
素イオンを含有する溶液を使用するため装置材質が制約
され、また有害な排水の処理も大きな問題となる。ま
た、蓚酸塩沈殿法では希土類と鉄の分離が不完全であっ
て、さらに工業的には使用する蓚酸は高価である。For the conventional separation of rare earths from other elements, for example, iron, the so-called fluoride precipitation method and oxalate precipitation method utilizing the low solubility of rare earth fluoride and rare earth oxalate are well known. However, when these methods are applied to the scrap treatment as described above, the fluoride precipitation method uses a solution containing concentrated fluoride ions, so the material of the apparatus is limited, and the treatment of harmful wastewater is also a major problem. Becomes In the oxalate precipitation method, separation of rare earth and iron is incomplete, and oxalic acid used industrially is expensive.
一方、他の分離法として溶媒抽出法が考えられるが、
公知の希土類のすぐれた抽出剤であるD2EHPA(Di−2−
Ethyl Phosphoric Acid)を用いる場合、希土類と鉄と
ほぼ同様な条件で抽出されるため分離は必ずしも容易で
はない。仮に分離性の良好な抽出剤が開発されても、ス
クラップ中に多量な鉄が含まれるので、抽出剤の使用に
より処理コストは高くなると考えられる。On the other hand, a solvent extraction method can be considered as another separation method,
D2EHPA (Di-2-), a known excellent rare earth extractant
When using Ethyl Phosphoric Acid), separation is not always easy because it is extracted under almost the same conditions as rare earth and iron. Even if an extractant having good separability is developed, a large amount of iron is contained in the scrap, so that the use of the extractant is considered to increase the processing cost.
このように、希土類と鉄を含有する原料から希土類を
工業的に分離回収する経済的かつ合理的な方法はまだ確
立されていない。Thus, an economical and rational method for industrially separating and recovering rare earths from a raw material containing rare earths and iron has not been established yet.
本発明は、上記従来技術の問題点を解決し希土類と鉄
を含有する原料から、希土類を効率的、経済的に回収す
る処理法の開発、すなわち、安価な試薬を使用して操作
性の良好なプロセスで、希土類を収率良く、かつ再利用
可能な純度で分離回収する方法を提供しようとするもの
である。The present invention solves the above-mentioned problems of the prior art and develops a processing method for efficiently and economically recovering rare earth from a raw material containing rare earth and iron, that is, good operability using an inexpensive reagent. It is an object of the present invention to provide a method for separating and recovering rare earths with a high yield and a reusable purity by a simple process.
本発明は上記課題を解決するために、希土類元素と鉄
を含有する原料を硫酸水溶液中に溶解しこの溶解した液
に硝酸もしくは硝酸水溶液を添加するか、又は前記原料
を硫酸水溶液に硝酸を添加した水溶液中に溶解し、次い
で得られた溶液にアルコールを添加して希土類元素の硫
酸塩を選択的に晶析させ、該晶析物を前記溶液から分離
することを特徴とする希土類元素の分離回収方法を提供
するものである。In order to solve the above-mentioned problem, the present invention dissolves a raw material containing a rare earth element and iron in an aqueous sulfuric acid solution and adds nitric acid or an aqueous nitric acid solution to the dissolved solution, or adds nitric acid to an aqueous sulfuric acid solution of the raw material. The rare earth element sulfate by adding alcohol to the resulting solution to selectively crystallize the sulfate of the rare earth element, and separating the crystallized product from the solution. It provides a collection method.
本発明では、まずNd−Fe−B磁石スクラップ等の原料
を硫酸水溶液に溶解する。使用する硫酸の量は試料中の
希土類と鉄が硫酸塩を生成するのに必要な化学量論量の
1.0〜1.5倍で良い。硫酸濃度は4〜6規定程度が適当で
ある。これより高い濃度の硫酸水溶液を用いると、硫酸
はのちほど添加するエタノールと作用して硫酸エステル
を生成する恐れがある。硫酸エステルは不揮発性の油状
液体であり、晶析物に付着してその濾別と乾燥を困難に
させる。In the present invention, a raw material such as Nd-Fe-B magnet scrap is first dissolved in a sulfuric acid aqueous solution. The amount of sulfuric acid used should be the stoichiometric amount required for the rare earth and iron in the sample to form sulfate.
1.0 to 1.5 times is good. An appropriate sulfuric acid concentration is about 4 to 6 normal. If a sulfuric acid aqueous solution having a higher concentration is used, sulfuric acid may react with ethanol to be added later to form a sulfate ester. Sulfate esters are non-volatile oily liquids that adhere to the crystallization and make it difficult to filter and dry.
硫酸を添加後の試料を100〜120℃の温度に加熱しなが
ら硫酸水溶液を添加する。硝酸は市販の濃度60%程度の
ものをそのまま使用しても良い。なお、硝酸は硫酸水溶
液に混合してもよい。硝酸は試料の溶解性を向上させる
と同時に、酸化剤としてFe2+をFe3+に酸化する役割をす
る。硫酸第一鉄を硫酸第二鉄に酸化することが必要であ
る理由は、上述の方法により得られた溶液に対するエタ
ノールの添加量(重量%)とFe2(SO4)3,FeSO4,Nd2(S
O4)3の溶解度(g/100ml溶液)の1例を第1図に示す
ように、アルコールを添加した溶液中においては硫酸第
二鉄の溶解度が硫酸第一鉄の溶解度より遥かに高く、希
土類硫酸塩との晶析分離が容易に進行するからである。
なお、使用する硝酸の量は第一鉄の酸化に必要な化学量
論量の1.0〜1.2倍程度が適当である。過剰の硝酸が存在
すると硝酸希土としての溶解度が高くなるため、アルコ
ールによる晶析は困難となる。The aqueous solution of sulfuric acid is added while heating the sample after adding sulfuric acid to a temperature of 100 to 120 ° C. As nitric acid, a commercially available nitric acid having a concentration of about 60% may be used as it is. Note that nitric acid may be mixed with a sulfuric acid aqueous solution. Nitric acid improves the solubility of the sample and simultaneously oxidizes Fe 2+ to Fe 3+ as an oxidizing agent. The reason why it is necessary to oxidize ferrous sulfate to ferric sulfate is that the amount of ethanol added (% by weight) to the solution obtained by the above method and the amount of Fe 2 (SO 4 ) 3 , FeSO 4 , Nd 2 (S
As shown in FIG. 1 as an example of the solubility of O 4 ) 3 (g / 100 ml solution), in the solution to which alcohol was added, the solubility of ferric sulfate was much higher than that of ferrous sulfate. This is because the crystallization separation from the rare earth sulfate easily proceeds.
The amount of nitric acid used is suitably about 1.0 to 1.2 times the stoichiometric amount required for the oxidation of ferrous iron. If there is an excess of nitric acid, the solubility as a rare earth nitrate increases, so that crystallization with alcohol becomes difficult.
上述した方法により得られた溶液中にエタノール,メ
タノール,ブタノールなどの比較的沸点の低いアルコー
ルを添加して希土類の硫酸塩を沈殿物として析出させ
る。アルコールの添加量は、実験結果によれば溶液重量
の25〜40重量%が適当である。これにより少ないアルコ
ールの添加では、硫酸希土の沈殿が不十分である。また
これ以上多量のアルコールを添加すると、生成する硫酸
希土の結晶粒が大きくなり、鉄分が混入して晶析物の純
度を低下させることになる。なお、晶析温度は容易に実
施し得る20〜60℃の温度範囲で良い。An alcohol having a relatively low boiling point, such as ethanol, methanol, or butanol, is added to the solution obtained by the above-described method to precipitate a rare earth sulfate as a precipitate. According to the experimental results, the amount of alcohol to be added is suitably 25 to 40% by weight of the solution weight. Thus, the addition of a small amount of alcohol causes insufficient precipitation of the rare earth sulfate. Further, when an alcohol in a larger amount is added, the crystal grains of the generated rare earth sulfate become large, and iron is mixed in, thereby lowering the purity of the crystallized product. The crystallization temperature may be in the range of 20 to 60 ° C., which can be easily implemented.
アルコールの添加による硫酸希土の晶析は極めて迅速
に進行し、例えば恒温水槽中に容器を設置して数時間振
蕩させると、濾過性の良好な結晶性沈殿物が沈降してく
る。完全に沈降した後、晶析物を分離する。分離は、例
えば濾紙を用い真空濾過器で簡単に濾別することができ
る。Crystallization of the rare earth sulfate by the addition of alcohol proceeds very quickly. For example, when a container is placed in a thermostatic water bath and shaken for several hours, a crystalline precipitate having good filterability precipitates. After complete settling, the crystallization is separated. Separation can be easily performed by filtration with a vacuum filter using, for example, filter paper.
硫酸第二鉄のアルコール溶液中への溶解度は極めて高
く、鉄は溶液中に残留して除去される。また、硼素は溶
解工程において硼酸(H3BO3)として溶解されるが、硼
酸のアルコール溶液への溶解度は高く(25℃のエタノー
ルには11.8g/100gの割合で溶ける)、晶析物中に硼素が
ほとんど混入せず、容易に分離される。濾別された晶析
物はFe等を含有している付着溶液を洗浄して除去しても
よい。The solubility of ferric sulfate in the alcohol solution is extremely high, and the iron remains in the solution and is removed. Boron is dissolved as boric acid (H 3 BO 3 ) in the dissolving step, but boric acid has a high solubility in an alcohol solution (dissolves in ethanol at 25 ° C at a rate of 11.8 g / 100 g). Hardly contains boron and is easily separated. The crystallized substance separated by filtration may be removed by washing the adhesion solution containing Fe or the like.
得られた晶析物は、空気中において約1400℃で焼成す
れば酸化ネオジウムが得られる。この酸化ネオジウムは
ネオジウム金属の原料として使用でき、あるいは直接に
還元拡散法によるNd−Fe−B系磁石製造の原料としても
利用できる。The obtained crystallized product is calcined in air at about 1400 ° C. to obtain neodymium oxide. This neodymium oxide can be used as a raw material for neodymium metal or directly as a raw material for producing Nd-Fe-B-based magnets by a reduction diffusion method.
なお、晶析分離に使用したアルコールは安価な工業原
料であると共に、低沸点であるから周知の蒸留分離法に
より容易に回収され、回収後のアルコールを再利用する
ことで処理コストの低減化が可能である。The alcohol used in the crystallization separation is an inexpensive industrial material and has a low boiling point, so that it can be easily recovered by a well-known distillation separation method, and the processing cost can be reduced by reusing the recovered alcohol. It is possible.
〔実施例〕 第1表に示す組成のNd−Fe−B磁石合金粉末30gを、
5規定の硫酸水溶液390mlを入れたガラス製三角フラス
コに少量ずつ加入し、撹拌して溶解させた、次いで100
〜120℃に加熱しながら濃度61%の硝酸水溶液20mlを添
加した。約1時間で試料は完全に溶解した。得られた溶
液を450mlに定容量し、この溶液はネオジウム22g/、
鉄45g/、pH1程度であった。[Example] 30 g of Nd-Fe-B magnet alloy powder having the composition shown in Table 1 was used.
The mixture was added little by little to a glass Erlenmeyer flask containing 390 ml of a 5N aqueous sulfuric acid solution, and stirred to dissolve.
While heating to 120120 ° C., 20 ml of a 61% aqueous nitric acid solution was added. The sample dissolved completely in about 1 hour. The resulting solution was made up to a constant volume of 450 ml, this solution was neodymium 22 g /,
The iron content was about 45 g / pH1.
この溶液に99.5%のエタノール360ml(溶液重量の35
%相当)を添加し、50℃にて5時間振蕩して晶析させ
た。沈降してきた晶析物を母液から濾別した後、そのま
ま電気マッフル炉中に入れ、空気雰囲気において1400℃
で30分間焼成した。360 ml of 99.5% ethanol (35% of solution weight)
%), And the mixture was shaken at 50 ° C. for 5 hours for crystallization. After the sedimented crystallized product is separated from the mother liquor by filtration, it is put into an electric muffle furnace as it is, and 1400 ° C. in an air atmosphere.
For 30 minutes.
得られた酸化ネオジウムの重量は10.71gで、その化学
分析値を第1表に示す。ネオジウムの回収率は94.1%、
酸化ネオジウムとしての品位は97.2%で、ネオジウムを
高品質の酸化物として高い回収率で分離回収することが
できた。The weight of the obtained neodymium oxide was 10.71 g, and its chemical analysis values are shown in Table 1. The recovery rate of neodymium is 94.1%,
The grade of neodymium oxide was 97.2%, and neodymium could be separated and recovered as a high-quality oxide at a high recovery rate.
〔発明の効果〕 本発明によれば、希土類と鉄を含有する原料から希土
類を良好な収率かつ高い純度で分離回収することができ
るだけでなく、従来の処理法に比べ、全く知られていな
かった画期的に安価な試薬を使用し、したがって経済的
で、また、工程が短く、簡単な装置により確実かつ容易
に実施できる。 [Effects of the Invention] According to the present invention, not only can rare earths be separated and recovered with good yield and high purity from raw materials containing rare earths and iron, but they are not known at all in comparison with conventional treatment methods. Inexpensive reagents are used, which is economical, and the process is short, and can be carried out reliably and easily with a simple apparatus.
なお、本発明は磁石合金に限らず、希土類と鉄を含有
する原料であれば何れにも適用できることは言うまでも
なく、例示したネオジウムのみでなく、他の希土類につ
いても実施可能である。It is needless to say that the present invention can be applied not only to the magnet alloy but also to any raw material containing a rare earth element and iron, and can be applied not only to neodymium as exemplified but also to other rare earth elements.
第1図は硫酸ネオジウム、硫酸第一鉄および硫酸第二鉄
の溶解度とエタノールの添加量との関係の1例を示すグ
ラフである。FIG. 1 is a graph showing an example of the relationship between the solubility of neodymium sulfate, ferrous sulfate and ferric sulfate and the amount of ethanol added.
───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) C22B 59/00 C22B 3/00 - 3/46──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int. Cl. 6 , DB name) C22B 59/00 C22B 3/00-3/46
Claims (1)
液中に溶解しこの溶解した液に硝酸もしくは硝酸水溶液
を添加するか、又は前記原料を硫酸水溶液に硝酸を添加
した水溶液中に溶解し、次いで得られた溶液にアルコー
ルを添加して希土類元素の硫酸塩を選択的に晶析させ、
該晶析物を前記溶液から分離することを特徴とする希土
類元素の分離回収方法。A raw material containing a rare earth element and iron is dissolved in an aqueous sulfuric acid solution, and a nitric acid or nitric acid aqueous solution is added to the dissolved solution, or the raw material is dissolved in an aqueous solution obtained by adding nitric acid to an aqueous sulfuric acid solution. Then, alcohol was added to the resulting solution to selectively crystallize rare earth sulfates,
A method for separating and recovering a rare earth element, wherein the crystallized product is separated from the solution.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP146090A JP2765740B2 (en) | 1990-01-10 | 1990-01-10 | Separation and recovery of rare earth elements from raw materials containing rare earth elements and iron |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP146090A JP2765740B2 (en) | 1990-01-10 | 1990-01-10 | Separation and recovery of rare earth elements from raw materials containing rare earth elements and iron |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH03207825A JPH03207825A (en) | 1991-09-11 |
JP2765740B2 true JP2765740B2 (en) | 1998-06-18 |
Family
ID=11502071
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP146090A Expired - Lifetime JP2765740B2 (en) | 1990-01-10 | 1990-01-10 | Separation and recovery of rare earth elements from raw materials containing rare earth elements and iron |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2765740B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6960240B2 (en) | 2001-07-10 | 2005-11-01 | Shin-Etsu Chemical Co., Ltd. | Remelting of rare earth magnet scrap and/or sludge, magnet-forming alloy, and sintered rare earth magnet |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4356869B2 (en) * | 2002-03-27 | 2009-11-04 | 株式会社神戸製鋼所 | Extraction and separation method for crystals and precipitates in copper alloy and extraction and separation liquid used therefor |
WO2013022020A1 (en) | 2011-08-10 | 2013-02-14 | 住友電気工業株式会社 | Method for recovering element and apparatus for recovering element |
JP6281261B2 (en) * | 2012-11-28 | 2018-02-21 | 日立金属株式会社 | Method for reducing boron content of rare earth oxides containing boron |
WO2014144463A1 (en) * | 2013-03-15 | 2014-09-18 | The University Of Houston System | Methods and systems for recovering rare earth elements |
US20140356259A1 (en) * | 2013-05-30 | 2014-12-04 | Nano And Advanced Materials Institute Limited | Selective Separation of Rare Earth Metals by Integrated Extraction and Crystallization |
JP6187768B2 (en) * | 2014-03-26 | 2017-08-30 | 三菱マテリアル株式会社 | Recovery method of rare earth elements |
JP6460973B2 (en) * | 2015-12-21 | 2019-01-30 | トヨタ自動車株式会社 | Method for recovering rare earth elements from rare earth magnets |
JP7006156B2 (en) * | 2017-11-13 | 2022-02-10 | 住友金属鉱山株式会社 | Rare earth-iron-nitrogen magnet powder manufacturing method |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5129326A (en) * | 1974-09-06 | 1976-03-12 | Nihon Kagaku Kizai Kk | |
JPS6283433A (en) * | 1985-10-08 | 1987-04-16 | Santoku Kinzoku Kogyo Kk | Method for separating rare earth element from alloy containing rare earth element |
JPS634028A (en) * | 1986-06-23 | 1988-01-09 | Sumitomo Metal Mining Co Ltd | Treatment for scrap containing rare earth element and iron |
-
1990
- 1990-01-10 JP JP146090A patent/JP2765740B2/en not_active Expired - Lifetime
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6960240B2 (en) | 2001-07-10 | 2005-11-01 | Shin-Etsu Chemical Co., Ltd. | Remelting of rare earth magnet scrap and/or sludge, magnet-forming alloy, and sintered rare earth magnet |
US7204891B2 (en) | 2001-07-10 | 2007-04-17 | Shin-Etsu Chemical Co., Ltd. | Remelting of rare earth magnet scrap and/or sludge, magnet-forming alloy, and sintered rare earth magnet |
Also Published As
Publication number | Publication date |
---|---|
JPH03207825A (en) | 1991-09-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2781623B1 (en) | Method for recovering rare earth from rare earth element-containing alloy | |
CN106498169B (en) | A kind of neodymium iron boron waste material recovery process | |
JP2765740B2 (en) | Separation and recovery of rare earth elements from raw materials containing rare earth elements and iron | |
KR100578712B1 (en) | Recovery of Neodymium from NdFeB Oxidation-Roasted Scrap by Acetic Acid Leaching | |
JP5596590B2 (en) | Method for separating and recovering metal elements from rare earth magnet alloy materials | |
JPH0514777B2 (en) | ||
JPS634028A (en) | Treatment for scrap containing rare earth element and iron | |
CN111020196A (en) | Method for separating thorium and enriching rare earth from radioactive waste residue leachate based on POAA | |
CN113652538A (en) | Method for separating and recycling rare earth and iron from neodymium iron boron oil sludge | |
US3145081A (en) | Process for concentration and purification of beryllium values | |
CN111575493B (en) | Method for removing impurities in high-purity scandium product | |
CN112063862A (en) | Extractant for rare earth enrichment and application thereof | |
JPS63182216A (en) | Method for separation and recovery of rare earth element | |
CN111961849B (en) | Method for extracting and separating scandium | |
KR20010056961A (en) | Method for isolating and recovering of iron and nickel | |
US4964997A (en) | Liquid/liquid extraction of rare earth/cobalt values | |
WO2012042525A1 (en) | A tributyl phosphate-nitrate solvent extraction process for producing high purity nuclear grade rare earth metal oxides | |
JPH0357052B2 (en) | ||
JPS59110740A (en) | Recovery of metal from organic phase by oxalic acid in solvent extraction method | |
EP0046973B1 (en) | Process for the production of high-purity iron oxide | |
JP3479677B2 (en) | Method for selectively recovering copper ions from alkaline solution | |
JPH07224334A (en) | Separating and recovering method of copper | |
JPH0665656A (en) | Method for separating and recovering nickel | |
CN114737056B (en) | Organic extractant, and method and application thereof for recovering metal elements | |
CN115216640B (en) | Environment-friendly process for extracting and separating platinum |