Nothing Special   »   [go: up one dir, main page]

JP2765002B2 - Radiometer - Google Patents

Radiometer

Info

Publication number
JP2765002B2
JP2765002B2 JP3650889A JP3650889A JP2765002B2 JP 2765002 B2 JP2765002 B2 JP 2765002B2 JP 3650889 A JP3650889 A JP 3650889A JP 3650889 A JP3650889 A JP 3650889A JP 2765002 B2 JP2765002 B2 JP 2765002B2
Authority
JP
Japan
Prior art keywords
line sensor
imaging
time
optical path
transparent plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3650889A
Other languages
Japanese (ja)
Other versions
JPH03188334A (en
Inventor
義人 成松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP3650889A priority Critical patent/JP2765002B2/en
Publication of JPH03188334A publication Critical patent/JPH03188334A/en
Application granted granted Critical
Publication of JP2765002B2 publication Critical patent/JP2765002B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Radiation Pyrometers (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は放射計に関し、特に人工衛星に搭載する放射
計に関する。
Description: TECHNICAL FIELD The present invention relates to a radiometer, and more particularly to a radiometer mounted on a satellite.

〔従来の技術〕[Conventional technology]

従来、この種の放射計は、その焦点位置に関しては、
温度等の環境に対し安定した焦点位置を保つ方式や、予
め取得した環境に対する焦点位置の移動量のデータによ
り焦点調整を行う方式か、又は、リアルタイムで画像を
観察しながら人為的に調整したり、異なるターゲットに
対する画像データの統計処理による焦点位置の確認を行
う方式を用ていた。
Conventionally, this type of radiometer has a focus position
A method of maintaining a stable focus position with respect to the environment such as temperature, a method of performing focus adjustment based on the data of the movement amount of the focus position with respect to the environment acquired in advance, or an artificial adjustment while observing an image in real time In this method, the focus position is confirmed by statistical processing of image data for different targets.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

上述した従来の放射計は、環境条件が厳しい時あるい
は環境に対し敏感に焦点位置が変動する場合には焦点位
置の安定性が得られないという欠点がある。又、環境特
性データの精度が十分でなかったり、他の要素により特
性値が変化し、かつ、安定して良い焦点位置が保持でき
ないという欠点がある。更に、焦点位置確認に長い時間
が必要であり、かつ、ずれが生じでいる場合、前後どち
らにずれているかが判断できないという欠点がある。
The conventional radiometer described above has a drawback that stability of the focal position cannot be obtained when the environmental conditions are severe or when the focal position fluctuates sensitively to the environment. In addition, there are disadvantages that the accuracy of the environmental characteristic data is not sufficient, the characteristic value changes due to other factors, and a stable good focus position cannot be maintained. Further, there is a disadvantage that it takes a long time to confirm the focal position and, when a shift has occurred, it is not possible to determine whether the shift is before or after.

〔課題を解決するための手段〕[Means for solving the problem]

本発明の放射計は、連続して移動する対象を撮像する
ラインセンサと、前記対象からの光を前記ラインセンサ
の受光面に結像する光学系とを備える放射計において、
前記ラインセンサと前記光学系との光路の中間に挿入及
び離脱可能な対向する2面が平行な第1の透明板と、前
記ラインセンサと前記光学系との光路の中間に挿入及び
離脱可能な対向する2面が前記ラインセンサの撮像方向
に沿って傾斜する第2の透明板と、撮像時に前記第1の
透明板を前記光路に挿入しかつ焦点位置検出時に前記第
2の透明板を前記光路に挿入する移動機構と、焦点位置
検出時に前記ラインセンサの撮像方向を90°変更する回
転機構とを含んで構成される。
The radiometer of the present invention is a radiometer including a line sensor that images a continuously moving target, and an optical system that forms light from the target on a light receiving surface of the line sensor.
A first transparent plate whose two opposing faces are parallel and can be inserted and removed in the middle of the optical path between the line sensor and the optical system, and can be inserted and removed in the middle of the optical path between the line sensor and the optical system A second transparent plate having two opposing surfaces inclined along the imaging direction of the line sensor, the first transparent plate being inserted into the optical path at the time of imaging, and the second transparent plate being inserted at the time of focus position detection. It comprises a moving mechanism inserted into the optical path, and a rotating mechanism for changing the imaging direction of the line sensor by 90 ° at the time of detecting the focal position.

〔実施例〕〔Example〕

次に、本発明について図面を参照して説明する。 Next, the present invention will be described with reference to the drawings.

第1図は本発明の一実施例のブロック図である。 FIG. 1 is a block diagram of one embodiment of the present invention.

第1図に示すように、連続して移動する対象を撮像す
るラインセンサ2と、対象からの光をラインセンサ2の
受光面に結像する光学系1と、ラインセンサ2と光学系
1との光路の中間に挿入及び離脱が可能な対向する2面
が平行な第1の透明板としてのガラス板6と、ラインセ
ンサ2と光学系1との光路の中間に挿入及び離脱が可能
な対向する2面がラインセンサ2の撮像方向に沿ってく
さび状に傾斜する第2の透明板としてのガラス板3と、
撮像時はガラス板6を光路に挿入し焦点位置検出時はガ
ラス板3板を光路に挿入する移動機構4と、それらを1
体に収納して人工衛生に取付けられる本体ケース7と、
焦点位置検出時に本体ケース7を撮像時に比べて90°回
転する回転機構5とを含んで構成される。
As shown in FIG. 1, a line sensor 2 for imaging a continuously moving target, an optical system 1 for imaging light from the target on a light receiving surface of the line sensor 2, a line sensor 2 and an optical system 1, And a glass plate 6 as a first transparent plate having two parallel surfaces facing each other, which can be inserted and removed in the middle of the optical path; A glass plate 3 as a second transparent plate whose two surfaces are inclined in a wedge shape along the imaging direction of the line sensor 2,
The moving mechanism 4 inserts the glass plate 6 into the optical path when capturing an image and inserts the glass plate 3 into the optical path when detecting the focal position.
A body case 7 that is housed in the body and attached to artificial hygiene;
The rotation mechanism 5 is configured to rotate the main body case 7 by 90 ° compared to the time of imaging when the focal position is detected.

次に、第2図は第1図の実施例の動作を説明するため
の撮像時の放射計の要部斜視図、第3図は第1図の実施
例の動作を説明するための焦点位置検出時の放射計の要
部斜視図である。以下に、第1図の実施例の動作につい
て第2図及び第3図を参照して説明する。
Next, FIG. 2 is a perspective view of a main part of the radiometer at the time of imaging for explaining the operation of the embodiment of FIG. 1, and FIG. 3 is a focus position for explaining the operation of the embodiment of FIG. It is a principal part perspective view of the radiometer at the time of detection. The operation of the embodiment shown in FIG. 1 will be described below with reference to FIGS. 2 and 3.

対象10の撮像時は、第2図に示すように、人工衛星の
移動方向8に直交する方向にラインセンサ2の撮像方向
がセットされる。又、光学系1とラインセンサ2との光
路の中間にはガラス板6が挿入されている。焦点位置検
出時には、回転機構5により本体ケース7全体を、第3
図に示すように、90°回転させ、ラインセンサ2の撮像
方向を人工衛星の移動方向8と平行にセットする。又、
同時に移動機構4によりガラス板6をガラス板3と入換
える。
At the time of imaging the object 10, as shown in FIG. 2, the imaging direction of the line sensor 2 is set in a direction orthogonal to the moving direction 8 of the artificial satellite. A glass plate 6 is inserted in the middle of the optical path between the optical system 1 and the line sensor 2. When the focus position is detected, the entire body case 7 is
As shown in the drawing, the line sensor 2 is rotated by 90 °, and the imaging direction of the line sensor 2 is set parallel to the moving direction 8 of the artificial satellite. or,
At the same time, the glass plate 6 is replaced with the glass plate 3 by the moving mechanism 4.

いま、第3図に示す状態で、対象10のエッジを撮像す
る。この時、撮像周期は第2図に示す撮像時と同じ周期
とすると、人工衛星の移動方向8への速度と撮像周期と
の関係は、1撮像周期で対象10上のラインセンサ2の1
画素に対応する撮像軌跡9に相当する移動となる。
Now, in the state shown in FIG. 3, the edge of the object 10 is imaged. At this time, assuming that the imaging cycle is the same as that at the time of the imaging shown in FIG. 2, the relationship between the speed of the artificial satellite in the moving direction 8 and the imaging cycle is one of the line sensors 2 on the target 10 in one imaging cycle.
The movement corresponds to the imaging trajectory 9 corresponding to the pixel.

従って、第3図の状態で撮像を続けると、各ラインデ
ータには対象10のエッジ像が毎ライン1画素ずつずれた
状態で得られる。各ライン画像のエッジ像はガラス板3
の効果により、焦点ずれの状態から焦点が合い、再び焦
点がずれた状態となる。
Therefore, if the imaging is continued in the state of FIG. 3, the edge image of the object 10 is obtained in each line data in a state shifted by one pixel per line. Edge image of each line image is glass plate 3
By the effect of (1), the focus is adjusted from the out-of-focus state, and the state is shifted again.

第4図(a)及び(b)はそれぞれ第3図の焦点位置
検出時の画像データのラインセンサの画素番号に対する
出力レベルの相関を示す特性図である。
FIGS. 4A and 4B are characteristic diagrams showing the correlation between the output level and the pixel number of the line sensor of the image data at the time of detecting the focal position in FIG.

第4図(a)は焦点のずれた状態、第4図(b)はほ
ぼ合った状態であり、縦軸は出力レベル11を示し横軸は
ラインセンサ2の画素番号を示す。
FIG. 4 (a) shows a state where the focus is shifted, and FIG. 4 (b) shows a state where the focus is almost adjusted. The vertical axis indicates the output level 11 and the horizontal axis indicates the pixel number of the line sensor 2.

このようにガラス板3の効果により、種々の焦点位置
合せ状態での画像データを得ることにより、最良の焦点
位置はガラス板3のどの厚さに相当するかがわかり、そ
の厚さとガラス板6の厚さの関係から、第2図に示す撮
像時にどの程度の焦点位置調整を行えばよいかのデータ
を得ることができる。
As described above, by obtaining the image data in various focusing positions by the effect of the glass plate 3, it is possible to determine which thickness of the glass plate 3 corresponds to the best focus position, and to determine the thickness and the glass plate 6. From the relationship of the thickness, it is possible to obtain data on how much the focus position should be adjusted at the time of imaging shown in FIG.

〔発明の効果〕〔The invention's effect〕

以上説明したように本発明は、ラインセンサを人工衛
星進行方向に平行にするとともに、ラインセンサ前方の
平行平面ガラスをクサビ状ガラスに入れ換えることによ
り、ラインセンサからの画像データで直接かつ短時間に
最良焦点位置を検出することができる効果がある。更
に、本体自体のデータで確認できるので、検出精度が非
常に高くなり、従って、焦点調整精度を向上できる効果
がある。
As described above, the present invention makes the line sensor parallel to the traveling direction of the satellite and replaces the parallel flat glass in front of the line sensor with wedge-shaped glass, so that the image data from the line sensor can be used directly and in a short time. There is an effect that the best focus position can be detected. Further, since it can be confirmed by the data of the main body itself, the detection accuracy becomes very high, and therefore, there is an effect that the focus adjustment accuracy can be improved.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の一実施例のブロック図、第2図は第1
図の実施例の動作を説明するための撮像時の放射計の要
部斜視図、第3図は第1図の実施例の動作を説明するた
めの焦点位置検出時の放射計の要部斜視図、第4図
(a)及び(b)はそれぞれ第3図の焦点位置検出時の
画像データのラインセンサの画素番号に対する出力レベ
ルの相関を示す特性図である。 1……光学系、2……ラインセンサ、3……くさび状の
ガラス板、4……移動機構、5……回転機構、6……平
板状のガラス板、7……本体ケース、8……移動方向、
9……1画素に対応する撮像軌跡、10……対象、11……
出力レベル、12……画素番号。
FIG. 1 is a block diagram of one embodiment of the present invention, and FIG.
FIG. 3 is a perspective view of a main part of the radiometer at the time of imaging for explaining the operation of the embodiment of FIG. 3, and FIG. 3 is a perspective view of a main part of the radiometer at the time of detecting the focus position for explaining the operation of the embodiment of FIG. FIGS. 4 (a) and 4 (b) are characteristic diagrams showing the correlation between the output level and the pixel number of the line sensor of the image data at the time of detecting the focal position in FIG. 3, respectively. DESCRIPTION OF SYMBOLS 1 ... Optical system, 2 ... Line sensor, 3 ... Wedge-shaped glass plate, 4 ... Moving mechanism, 5 ... Rotation mechanism, 6 ... Flat glass plate, 7 ... Body case, 8 ... …Direction of movement,
9: imaging locus corresponding to one pixel, 10: target, 11:
Output level, 12: Pixel number.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】連続して移動する対象を撮像するラインセ
ンサと、前記対象からの光を前記ラインセンサの受光面
に結像する光学系とを備える放射計において、前記ライ
ンセンサと前記光学系との光路の中間に挿入及び離脱可
能な対向する2面が平行な第1の透明板と、前記ライン
センサと前記光学系との光路の中間に挿入及び離脱可能
な対向する2面が前記ラインセンサの撮像方向に沿って
傾斜する第2の透明板と、撮像時に前記第1の透明板を
前記光路に挿入しかつ焦点位置検出時に前記第2の透明
板を前記光路に挿入する移動機構と、焦点位置検出時に
前記ラインセンサの撮像方向を90°変更する回転機構と
を含むことを特徴とする放射計。
1. A radiometer comprising: a line sensor for imaging a continuously moving target; and an optical system for imaging light from the target on a light receiving surface of the line sensor, wherein the line sensor and the optical system are provided. A first transparent plate whose two opposing surfaces that can be inserted and removed in the middle of the optical path between the first sensor and the two parallel surfaces that can be inserted and removed in the middle of the optical path between the line sensor and the optical system have the line A second transparent plate inclined along the imaging direction of the sensor, a moving mechanism that inserts the first transparent plate into the optical path at the time of imaging and inserts the second transparent plate into the optical path at the time of focus position detection; A rotation mechanism that changes the imaging direction of the line sensor by 90 ° when the focal position is detected.
JP3650889A 1989-02-15 1989-02-15 Radiometer Expired - Lifetime JP2765002B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3650889A JP2765002B2 (en) 1989-02-15 1989-02-15 Radiometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3650889A JP2765002B2 (en) 1989-02-15 1989-02-15 Radiometer

Publications (2)

Publication Number Publication Date
JPH03188334A JPH03188334A (en) 1991-08-16
JP2765002B2 true JP2765002B2 (en) 1998-06-11

Family

ID=12471776

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3650889A Expired - Lifetime JP2765002B2 (en) 1989-02-15 1989-02-15 Radiometer

Country Status (1)

Country Link
JP (1) JP2765002B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0712645A (en) * 1993-06-28 1995-01-17 Nec Corp Image sensing system by means of radiometer

Also Published As

Publication number Publication date
JPH03188334A (en) 1991-08-16

Similar Documents

Publication Publication Date Title
US7702229B2 (en) Lens array assisted focus detection
CN102801929B (en) Imageing sensor and picture pick-up device
US6023056A (en) Scene-based autofocus method
CN101312503A (en) Image sensing apparatus and control method for the same
JPS57161839A (en) Distance measuring device of camera
JP2886865B2 (en) Focus state detection device
WO1988002518A2 (en) Real time generation of stereo depth maps
JP2765002B2 (en) Radiometer
JPH06300624A (en) Optical scanner
JPS59142506A (en) Focus detecting device
JPS63194237A (en) Camera
JP2770521B2 (en) Focus position detection method
JPS5870540A (en) Focal position detector
US4259688A (en) TV camera
US5552594A (en) Focus detecting system using a beam splitter to form an image at nominal best focus, slightly in front of best focus and slightly behind best focus
JPH11223516A (en) Three dimensional image pickup device
US5023724A (en) Focus enhancing method
JP3620710B2 (en) Imaging device
JP2000019386A (en) Camera
JPH0949706A (en) Method for measuring moving amount of object to be measured in front/rear direction with using laser light
JP2831388B2 (en) Distance measurement mechanism of passive autofocus system
JPH0646257B2 (en) Focus detection device
JP2001067455A (en) Device of reading number of sheets
JPH02190083A (en) Offset value measurement and offset correction method for infrared ray image pickup device
JPH03604B2 (en)