JP2764988B2 - Semiconductor device - Google Patents
Semiconductor deviceInfo
- Publication number
- JP2764988B2 JP2764988B2 JP434789A JP434789A JP2764988B2 JP 2764988 B2 JP2764988 B2 JP 2764988B2 JP 434789 A JP434789 A JP 434789A JP 434789 A JP434789 A JP 434789A JP 2764988 B2 JP2764988 B2 JP 2764988B2
- Authority
- JP
- Japan
- Prior art keywords
- type
- layer
- groove
- semiconductor
- semiconductor chip
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Bipolar Transistors (AREA)
- Bipolar Integrated Circuits (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体装置に関し、特に微細構造のバイポー
ラ型半導体装置に関するものである。Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device, and more particularly to a microstructured bipolar semiconductor device.
〔従来の技術〕 従来この種のバイポーラ型半導体装置は、プレーナ型
と称し、P型基板の上に形成したN型エピタキシャル層
表面の上方から不純物を選択的に導入してP型領域,N+
型領域を形成した構造を有している。[Prior Art] Conventionally, this type of bipolar type semiconductor device is called a planar type, in which impurities are selectively introduced from above a surface of an N-type epitaxial layer formed on a P-type substrate to form a P-type region, N +
It has a structure in which a mold region is formed.
上述した従来の半導体装置は、プレーナ型(その変形
を含む)であるので、トランジスタの半導体チップ上の
面積占有率が高いこと及び能動領域の寸法もリソグラフ
ィー工程の目合せマージンを含む分だけ大きくなること
から微細化,高速化に障害がある。Since the above-described conventional semiconductor device is of a planar type (including its deformation), the area occupancy of the transistor on the semiconductor chip is high and the size of the active region is also increased by including the alignment margin in the lithography process. Therefore, there are obstacles to miniaturization and speeding up.
本発明の半導体装置は、P型半導体基板上にN型半導
体層を積層してなる半導体チップの絶縁物で充填された
溝及びP型埋込み層で絶縁分離されて区画された前記N
型半導体層に、前記溝の側面に接して設けられたP型ベ
ース層及び前記溝中の絶縁物内を通って半導体チップの
表面に達するベース引出領域と、前記P型ベース層に設
けられたN型エミッタ層及び前記溝中の絶縁物を通って
半導体チップの表面に達するエミッタ引出領域とを有す
るNPNトランジスタを含んでなるというものである。In the semiconductor device of the present invention, the N-type semiconductor layer is formed by stacking an N-type semiconductor layer on a P-type semiconductor substrate.
A P-type base layer provided in contact with the side surface of the groove, a base extraction region reaching the surface of the semiconductor chip through an insulator in the groove, and the P-type base layer. An NPN transistor having an N-type emitter layer and an emitter extraction region reaching an upper surface of the semiconductor chip through an insulator in the trench.
次に、本発明の実施例について図面を参照して説明す
る。Next, embodiments of the present invention will be described with reference to the drawings.
第1図は本発明の一実施例を示す半導体チップの断面
図である。FIG. 1 is a sectional view of a semiconductor chip showing one embodiment of the present invention.
この実施例では、P型シリコン基板1上にN型エピタ
キシャル層3を積層してなる半導体チップの絶縁物(酸
化シリコン膜5、多結晶シリコン層6、酸化シリコン膜
14,16)で充填された溝及びP型埋込み層2で絶縁分離
されて区画されたN型エピタキシャル層3(素子形成領
域)に、前述の溝の側面に接して設けられたP型ベース
層9及び前述の溝中の絶縁物内を通って半導体チップの
表面に達するベース引出領域(P型多結晶シリコン層7,
15)と、P型ベース層9に設けられたN+型エミッタ層12
及び前述の溝中の絶縁物を通って半導体チップの表面に
達するエミッタ引出領域(N型多結晶シリコン層)とを
有するNPNトランジスタを含んでなるというものであ
る。In this embodiment, an insulator (a silicon oxide film 5, a polycrystalline silicon layer 6, a silicon oxide film) of a semiconductor chip formed by laminating an N-type epitaxial layer 3 on a P-type silicon substrate 1 is used.
The P-type base layer provided in contact with the side surface of the above-described groove is provided in the N-type epitaxial layer 3 (element formation region) partitioned and insulated and separated by the groove filled with (14, 16) and the P-type buried layer 2. 9 and a base extraction region (P-type polysilicon layer 7,
15) and the N + -type emitter layer 12 provided on the P-type base layer 9
And an NPN transistor having an emitter extraction region (N-type polycrystalline silicon layer) reaching the surface of the semiconductor chip through the insulator in the above-described groove.
次に、この実施例の製造方法について説明する。 Next, the manufacturing method of this embodiment will be described.
第2図(a)〜(c)はこの実施例の製造方法を説明
するための工程順に配置した半導体チップの断面図であ
る。2 (a) to 2 (c) are cross-sectional views of semiconductor chips arranged in the order of steps for explaining the manufacturing method of this embodiment.
まず、第2図(a)に示すように、1014〜1016ヶ/cm3
の不純物濃度のP型シリコン基板1に、表面濃度1016〜
1018ヶ/cm3の不純物を有するP型埋込層2を設け、厚さ
0.8μm〜7μm、不純物濃度1015〜1017ヶ/cm3のN型
エピタキシャル層3を成長させる。その後、P型埋込層
2に接するまで0.7μm〜6.5μmの深さの溝4を形成
し、その表面を酸化して厚さ0.2μm〜0.5μmの酸化シ
リコン膜5を形成する。次に、第2図(b)に示すよう
に、溝をノンドープの多結晶シリコン層6(シリカフィ
ルムでもよい)で充填した後に、前述の溝部を0.5μm
〜5μmの深さで再度開孔する。このとき、素子形成領
域のN型エピタキシャル層3にも溝(11のところ)を掘
る。その開孔部にP型多結晶シリコン層7を埋め込み、
熱処理を行いP型ベース層9を形成すると同時にP型多
結晶シリコン層7を0.3μm〜2μmの深さまで酸化す
る。次に、こうしてできた酸化シリコン層8を厚さ0.1
μm〜0.5μm残し再々度溝を開孔する。この溝部にN
型多結晶シリコン層10,11を埋め込み、熱処理を行いN+
型エミッタ層12を形成する。First, as shown in FIG. 2 (a), 10 14 to 10 16 pieces / cm 3
The P-type silicon substrate 1 having an impurity concentration of a surface concentration of 10 16 ~
Provide a P-type buried layer 2 with 10 18 / cm 3 impurity and thickness
0.8Myuemu~7myuemu, grow N-type epitaxial layer 3 having an impurity concentration 1015 17 months / cm 3. Thereafter, a groove 4 having a depth of 0.7 μm to 6.5 μm is formed until it contacts the P-type buried layer 2, and the surface thereof is oxidized to form a silicon oxide film 5 having a thickness of 0.2 μm to 0.5 μm. Next, as shown in FIG. 2 (b), after the groove is filled with a non-doped polycrystalline silicon layer 6 (a silica film may be used), the above-mentioned groove is filled with 0.5 μm.
The hole is opened again at a depth of 55 μm. At this time, a groove (at 11) is also dug in the N-type epitaxial layer 3 in the element formation region. A P-type polycrystalline silicon layer 7 is buried in the opening,
Heat treatment is performed to form the P-type base layer 9 and simultaneously oxidize the P-type polycrystalline silicon layer 7 to a depth of 0.3 μm to 2 μm. Next, the silicon oxide layer 8 thus formed is deposited to a thickness of 0.1
The groove is opened again while leaving a thickness of 0.5 μm to 0.5 μm. N
Buried type polycrystalline silicon layers 10 and 11, heat treatment is performed N +
The mold emitter layer 12 is formed.
このN+型エミッタ層12を形成する時、同時にN型多結
晶シリコン層11からの拡散によりN+型コレクタコンタク
ト領域が形成される。When the N + -type emitter layer 12 is formed, an N + -type collector contact region is simultaneously formed by diffusion from the N-type polycrystalline silicon layer 11.
その後、第2図(c)に示すように、溝部にベース引
出領域を設けるべくN型多結晶シリコン層10及び酸化シ
リコン層8を貫通する開孔を設け、側面に酸化シリコン
層14をつけ、P型多結晶シリコン層15を埋込む。Thereafter, as shown in FIG. 2 (c), an opening is formed through the N-type polycrystalline silicon layer 10 and the silicon oxide layer 8 to provide a base lead region in the groove, and a silicon oxide layer 14 is formed on the side surface. The P-type polycrystalline silicon layer 15 is embedded.
その後、第1図に示すように、P型多結晶シリコン層
15の中央部に、ノンドープの多結晶シリコン層6に達す
る幅0.5μm〜1μmの溝を設ける。次にその溝を埋め
るために熱的に酸化し、酸化シリコン層16を形成する。Thereafter, as shown in FIG. 1, a P-type polysilicon layer
A groove having a width of 0.5 μm to 1 μm which reaches the non-doped polycrystalline silicon layer 6 is provided in the center of 15. Next, the silicon oxide layer 16 is formed by thermal oxidation to fill the groove.
最後に、必要なコンタクト孔を設け、エミッタ電極E,
ベース電極B,コレクタ電極Cを設ける。Finally, the necessary contact holes are provided and the emitter electrodes E,
A base electrode B and a collector electrode C are provided.
この実施例を、従来例のアイソプレーナ型トランジス
タと比較すると、コレクタ電流10mAのトランジスタの場
合、面積占有率は約1/2ですむことが判明した。Comparing this embodiment with a conventional isoplanar transistor, it was found that the area occupancy of the transistor having a collector current of 10 mA was reduced to about 1/2.
エミッタ層,ベース層の深さ方向の寸法はエッチング
の深さで定まり、エミッタ層とベース層の目合せ工程を
有していないので、寸法精度がプレーナ型より改善され
る。The dimensions of the emitter layer and the base layer in the depth direction are determined by the etching depth, and since there is no step of aligning the emitter layer and the base layer, the dimensional accuracy is improved as compared with the planar type.
以上説明したように、本発明は絶縁分離用の溝の側面
に接してエミッタ層及びベース層を設けることにより、
面積占有率が小さく高精度のNPNトランジスタを実現で
きるので、大出力トランジスタの超微細化及び高速化が
達成できる効果がある。As described above, the present invention provides the emitter layer and the base layer in contact with the side surface of the insulating isolation groove,
Since an NPN transistor with a small area occupancy and a high accuracy can be realized, there is an effect that ultra-miniaturization and high speed operation of a large output transistor can be achieved.
第1図は本発明の一実施例示す半導体チップの断面図、
第2図(a)〜(c)は本発明の実施例の製造方法を説
明するための工程順に配置した半導体チップの断面図で
ある。 1……P型シリコン基板、2……P型埋込み層、3……
N型エピタキシャル層、4……溝、5……酸化シリコン
膜、5……多結晶シリコン層、7……P型多結晶シリコ
ン層、8……酸化シリコン層、9……P型ベース層、1
0,11……N型多結晶シリコン層、12……N+型エミッタ
層、13……N+型コレクタコンタクト領域、14……酸化シ
リコン層、15……P型多結晶シリコン層、16……酸化シ
リコン層。FIG. 1 is a sectional view of a semiconductor chip showing one embodiment of the present invention,
2 (a) to 2 (c) are cross-sectional views of semiconductor chips arranged in the order of steps for explaining a manufacturing method according to an embodiment of the present invention. 1 ... P-type silicon substrate, 2 ... P-type buried layer, 3 ...
N-type epitaxial layer, 4 groove, 5 silicon oxide film, 5 polycrystalline silicon layer, 7 P-type polycrystalline silicon layer, 8 silicon oxide layer, 9 P-type base layer, 1
0,11 ... N-type polycrystalline silicon layer, 12 ... N + type emitter layer, 13 ... N + type collector contact region, 14 ... Silicon oxide layer, 15 ... P-type polycrystalline silicon layer, 16 ... ... a silicon oxide layer.
Claims (1)
てなる半導体チップの絶縁物で充填された溝及びP型埋
込み層で絶縁分離されて区画された前記N型半導体層
に、前記溝の側面に接して設けられたP型ベース層及び
前記溝中の絶縁物内を通って半導体チップの表面に達す
るベース引出領域と、前記P型ベース層に設けられたN
型エミッタ層及び前記溝中の絶縁物を通って半導体チッ
プの表面に達するエミッタ引出領域とを有するNPNトラ
ンジスタを含んでなることを特徴とする半導体装置。1. A semiconductor chip formed by laminating an N-type semiconductor layer on a P-type semiconductor substrate, a groove filled with an insulator, and the N-type semiconductor layer separated and separated by a P-type buried layer. A P-type base layer provided in contact with the side surface of the groove and a base extraction region reaching the surface of the semiconductor chip through an insulator in the groove; and an N-type base provided in the P-type base layer.
A semiconductor device comprising: an NPN transistor having a mold emitter layer and an emitter extraction region reaching an upper surface of a semiconductor chip through an insulator in the trench.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP434789A JP2764988B2 (en) | 1989-01-10 | 1989-01-10 | Semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP434789A JP2764988B2 (en) | 1989-01-10 | 1989-01-10 | Semiconductor device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02184037A JPH02184037A (en) | 1990-07-18 |
JP2764988B2 true JP2764988B2 (en) | 1998-06-11 |
Family
ID=11581893
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP434789A Expired - Lifetime JP2764988B2 (en) | 1989-01-10 | 1989-01-10 | Semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2764988B2 (en) |
-
1989
- 1989-01-10 JP JP434789A patent/JP2764988B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH02184037A (en) | 1990-07-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0355984B2 (en) | ||
JPS6221269A (en) | Semiconductor device and manufacture thereof | |
JPH0727974B2 (en) | Method of manufacturing semiconductor memory device | |
JP2764988B2 (en) | Semiconductor device | |
JP3242000B2 (en) | Bipolar transistor having self-aligned base electrode and method of manufacturing the same | |
JP2890509B2 (en) | Method for manufacturing semiconductor device | |
JP3130330B2 (en) | Manufacturing method of semiconductor integrated circuit | |
JP3150420B2 (en) | Bipolar integrated circuit and manufacturing method thereof | |
JPH0778833A (en) | Bipolar transistor and its manufacture | |
JP2575204B2 (en) | Manufacturing method of bipolar semiconductor integrated circuit device | |
JP2518357B2 (en) | Semiconductor device and manufacturing method thereof | |
JP2633411B2 (en) | Method for manufacturing semiconductor device | |
JP2836393B2 (en) | Semiconductor device and manufacturing method thereof | |
JPS63211748A (en) | Manufacture of semiconductor device | |
JPH04323832A (en) | Semiconductor device and manufacture thereof | |
JPH04287329A (en) | Lateral bipolar transistor and its manufacture | |
JPH02152240A (en) | Manufacture of semiconductor device | |
JPH0521446A (en) | Semiconductor device and its manufacture | |
JPH07245313A (en) | Manufacture of bipolar transistor | |
JPS5917282A (en) | Semiconductor device | |
JPH0715940B2 (en) | Method for manufacturing semiconductor device | |
JPH02146775A (en) | Insulation gate field effect transistor | |
JPS61237466A (en) | Manufacture of bipolar transistor | |
JPH11265894A (en) | Semiconductor device | |
JPH03201528A (en) | Semiconductor device and manufacture thereof |