Nothing Special   »   [go: up one dir, main page]

JP2750891B2 - Alloy type thermal fuse - Google Patents

Alloy type thermal fuse

Info

Publication number
JP2750891B2
JP2750891B2 JP1077674A JP7767489A JP2750891B2 JP 2750891 B2 JP2750891 B2 JP 2750891B2 JP 1077674 A JP1077674 A JP 1077674A JP 7767489 A JP7767489 A JP 7767489A JP 2750891 B2 JP2750891 B2 JP 2750891B2
Authority
JP
Japan
Prior art keywords
flux
insulating
thermal fuse
alloy
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1077674A
Other languages
Japanese (ja)
Other versions
JPH02256126A (en
Inventor
充明 植村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UCHIHASHI ESUTETSUKU KK
Original Assignee
UCHIHASHI ESUTETSUKU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UCHIHASHI ESUTETSUKU KK filed Critical UCHIHASHI ESUTETSUKU KK
Priority to JP1077674A priority Critical patent/JP2750891B2/en
Publication of JPH02256126A publication Critical patent/JPH02256126A/en
Application granted granted Critical
Publication of JP2750891B2 publication Critical patent/JP2750891B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Fuses (AREA)

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は合金型温度ヒューズの改良に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to an improvement in an alloy type thermal fuse.

〈従来の技術〉 合金型温度ヒューズとして、第2図に示すように、絶
縁層11′を被覆したリード導体1′・1′間に低融点可
溶金属2′(通常ハンダ)を溶接し、該低融点可溶金属
2′にフラックス3′を被覆し、両リード導体1′・
1′の絶縁層端部上にまたがって絶縁筒4′を挿通し、
絶縁筒各端と各リード導体絶縁層との間をエポキシ樹脂
等の封止材5′により封止したものが公知である。
<Prior Art> As shown in FIG. 2, a low melting point fusible metal 2 '(usually solder) is welded between lead conductors 1', 1 'coated with an insulating layer 11', as shown in FIG. The low melting point soluble metal 2 'is coated with a flux 3', and both lead conductors 1 '
Insert the insulating cylinder 4 'over the end of the insulating layer 1',
It is known that the space between each end of the insulating cylinder and each lead conductor insulating layer is sealed with a sealing material 5 'such as an epoxy resin.

周知の通り、温度ヒューズは、保護すべき電気機器の
内部のうち発熱を感知し易い部分に取付けて使用する。
而して、保護すべき電気機器が過電流により発熱する
と、その発熱のため温度ヒューズが加熱されて低融点可
溶合金が溶融し、この溶融合金が分断され、電気機器へ
の通電が遮断され、機器の異常加熱が防止される。
As is well known, the thermal fuse is used by being attached to a portion of the electrical equipment to be protected where heat is easily detected.
Thus, when the electrical equipment to be protected generates heat due to an overcurrent, the temperature fuse is heated by the generated heat to melt the low melting point fusible alloy, the molten alloy is cut off, and the power supply to the electrical equipment is cut off. In addition, abnormal heating of the equipment is prevented.

上記溶融合金の分断メカニズムは、溶融合金がその表
面張力のために球状化しようとし、この球状化に伴い分
断していくのである。この場合、上記溶融前の低融点可
溶合金の表面に酸化皮膜が存在すれば、この酸化皮膜が
不溶性の固い外皮となるから、外皮内が溶融状態になっ
ても球状化は、困難である。而して、かかる酸化皮膜の
生成を防止するために低融点可溶合金片の表面にフラッ
クスを塗布している。このフラックスにおいては、低融
点可溶合金が溶融するような高温時、酸化物と急激に反
応してその酸化物を可溶化する活性を付与することが必
要であり、かかる活性を有するフラックスとしてロジン
を用いている。
In the above-described mechanism for dividing the molten alloy, the molten alloy tends to be spherical due to its surface tension, and the molten alloy is divided along with the spheroidization. In this case, if an oxide film is present on the surface of the low-melting-point fusible alloy before the melting, the oxide film becomes an insoluble hard outer skin, so that spheroidization is difficult even when the outer skin is in a molten state. . Thus, a flux is applied to the surface of the low melting point fusible alloy piece in order to prevent the formation of such an oxide film. In such a flux, it is necessary to impart an activity of rapidly reacting with an oxide to solubilize the oxide at a high temperature at which the low melting point fusible alloy is melted. Is used.

〈解決しようとする課題〉 ところで、合金型温度ヒューズの電流遮断動作におい
て、溶融した合金が球状化進行により分断した瞬時で
は、まだ分断距離が短いのでアークにより導通された状
態であり、更に、球状化が進んで分断距離が拡大してア
ーク放電を持続できない状態になったときに完全に遮断
が行われる。而して、分断瞬時のアークによりフラック
スの一部が炭化し、この炭化フラックス部分は活性を喪
失し、溶融合金の球状化を鈍化させる。通常、ハンダに
おけるフラックス量は、ハンダ量よりも少量であるが、
温度ヒューズの場合は、上記したように、フラックスの
一部が、溶融金属の分断中に炭化して実質上消失するか
ら、ハンダ付けの場合のフラックス量(ハンダの約30
%)よりも多量のフラックスを使用することが必要であ
る。而るに、上記第2図に示す温度ヒューズにおいて
は、リード導体1′・1′間に溶接した低融点合金2′
上にフラックス3′を塗布し、次いで、低融点合金2′
上に絶縁層外面でガイドしつつ、絶縁筒4′を挿通する
際、絶縁筒4′の先端で、前記の塗布したフラックスを
拭ってしまい、この拭い取られるフラックス量が多いた
めに、最終的にはフラックス量が低融点金属量よりも少
量になり、上記の分断に不利があって、温度ヒューズの
作動上問題である。
<Problem to be Solved> By the way, in the current interrupting operation of the alloy type thermal fuse, at the moment when the molten alloy is cut by the progress of spheroidization, the cutting distance is still short, so that it is in a state of conduction by an arc. When the arcing progresses and the division distance increases, and the arc discharge cannot be maintained, the interruption is completely performed. Thus, a part of the flux is carbonized by the arc at the instant of the division, and the carbonized flux loses its activity and slows the spheroidization of the molten alloy. Usually, the amount of flux in solder is smaller than the amount of solder,
In the case of a thermal fuse, as described above, a part of the flux is carbonized during the cutting of the molten metal and substantially disappears.
%), It is necessary to use a larger amount of flux. In the thermal fuse shown in FIG. 2, the low melting point alloy 2 'welded between the lead conductors 1' and 1 'is used.
Flux 3 'is applied on top, then low melting point alloy 2'
When inserting the insulating cylinder 4 'while guiding it on the outer surface of the insulating layer, the applied flux is wiped at the tip of the insulating cylinder 4', and the amount of the flux to be wiped off is large. In this case, the amount of flux becomes smaller than the amount of low-melting metal, which is disadvantageous for the above-mentioned division, which is a problem in the operation of the thermal fuse.

本発明の目的は、絶縁筒による上記フラックスの拭取
り量が、リード線の絶縁被覆層外径によって左右される
ことに鑑み、低融点金属の外径と、その被覆層の外径と
の比を選定することにより、低融点金属量に対しフラッ
クス量を充分に確保して、作動性に秀れた合金型温度ヒ
ューズを提供することにある。
In view of the fact that the amount of the flux wiped off by the insulating cylinder is influenced by the outer diameter of the insulating coating layer of the lead wire, an object of the present invention is to provide a ratio of the outer diameter of the low melting point metal to the outer diameter of the coating layer. The purpose of the present invention is to provide an alloy type thermal fuse excellent in operability by ensuring a sufficient amount of flux with respect to the amount of low melting point metal.

〈課題を解決するための手段〉 本発明に係る合金型温度ヒューズは、絶縁被覆リード
導体間に低融点可溶金属を接合し、該低融点可溶金属に
フラックスを被覆し、両絶縁被覆リード導体の絶縁被覆
層端部上にまたがって絶縁筒を挿通し、絶縁筒各端と各
絶縁被覆リード導体の絶縁被覆層との間を封止材で封止
し、上記絶縁被覆層の外径を低融点可溶金属の外径の としたことを特徴とする構成である。
<Means for Solving the Problems> An alloy-type thermal fuse according to the present invention is characterized in that a low-melting-point fusible metal is joined between insulating-coated lead conductors, and the low-melting-point fusible metal is coated with a flux. The insulating cylinder is inserted over the end of the insulating coating layer of the conductor, and the gap between each end of the insulating cylinder and the insulating coating layer of each insulating coating lead conductor is sealed with a sealing material. The low melting point of the outer diameter of the soluble metal This is a configuration characterized by the following.

〈実施例の説明〉 以下、図面により本発明の実施例について説明する。<Description of Example> Hereinafter, an example of the present invention will be described with reference to the drawings.

第1図において、1・1はリード導体であり、絶縁層
11(塩化ビニル、ナイロン、ポリエチレン等)を被覆し
てある。2はリード導体間に溶接した低融点可溶金属体
であり、ハンダを用いることができる。この低融点可溶
金属体の外径は、通常リード導体径の0.8〜1.3倍であ
る。3は低融点可溶合金体2上に被覆したフラックスで
あり、ロジンに必要に応じて活性剤を添加したものを使
用できる。4は両絶縁層端部にまたがって低融点可溶合
金2上に挿通した絶縁筒であり、セラミック管を用いる
ことができる。5は封止材であり、エポキシ樹脂を使用
できる。
In FIG. 1, reference numeral 1.1 denotes a lead conductor, which is an insulating layer.
11 (vinyl chloride, nylon, polyethylene, etc.). Reference numeral 2 denotes a low-melting-point fusible metal body welded between lead conductors, and solder can be used. The outer diameter of the low melting point fusible metal body is usually 0.8 to 1.3 times the lead conductor diameter. Reference numeral 3 denotes a flux coated on the low-melting-point fusible alloy body 2, and a flux obtained by adding an activator to rosin as necessary can be used. Reference numeral 4 denotes an insulating cylinder that extends over both ends of the insulating layer and is inserted on the low-melting-point fusible alloy 2, and a ceramic tube can be used. Reference numeral 5 denotes a sealing material, which can use an epoxy resin.

上記において、絶縁層11の外径Rは低融点可溶金属体
2の外径rの としてある。
In the above, the outer diameter R of the insulating layer 11 is equal to the outer diameter r of the low melting point fusible metal body 2. There is.

上記温度ヒューズの製作において、フラックスは絶縁
層外径Rよりもやや厚く塗布し、次いで、絶縁筒4を挿
通する。この場合、絶縁筒は絶縁層外面でガイドされつ
つ移動し、絶縁筒先端面で上記厚塗りのフラックスの外
周部が拭われることになる。而して、低融点金属量vと
フラックス量Vとの比は、 であり、 であるから、 であり、必ず、フラックス量を低融点金属量をよりも
多くできる。
In the manufacture of the thermal fuse, the flux is applied slightly thicker than the outer diameter R of the insulating layer, and then the insulating tube 4 is inserted. In this case, the insulating cylinder moves while being guided by the outer surface of the insulating layer, and the outer peripheral portion of the thick coating flux is wiped on the front end surface of the insulating cylinder. Thus, the ratio between the low melting point metal amount v and the flux amount V is And Because Therefore, the amount of flux can always be made larger than the amount of low melting point metal.

而して、通常、ハンダに対するフラックス量はたかだ
か30〜40%であるが、本発明に係る合金型温度ヒューズ
においては、ハンダ量に対しフラックス量を多くできる
から、既述した低融点可溶金属の溶断瞬時、フラックス
が炭化してフラックス作用を喪失しても、まだ充分量の
フラックスが保有されているので、その後の溶融金属の
球状化分断を円滑に促進できる。上記において、絶縁層
外径Rを低融点可溶金属体外径の2.4以下とした理由
は、これ以上ではフラックス量が必要以上となり、絶縁
筒と絶縁層との間の隙間が小さくなり過ぎ、この隙間へ
の封止材の注入が困難となるからである。
In general, the amount of flux with respect to solder is at most 30 to 40%. However, in the alloy-type thermal fuse according to the present invention, the amount of flux can be increased with respect to the amount of solder. Even when the flux is carbonized and loses the flux action at the instant of fusing, since a sufficient amount of the flux is still retained, the subsequent spheroidization and division of the molten metal can be smoothly promoted. In the above description, the reason why the outer diameter R of the insulating layer is set to 2.4 or less of the outer diameter of the low-melting soluble metal body is that above this, the amount of flux becomes more than necessary, and the gap between the insulating cylinder and the insulating layer becomes too small. This is because it becomes difficult to inject the sealing material into the gap.

〈発明の効果〉 上述した通り、本発明に係る合金型温度ヒューズにお
いては、温度ヒューズ作動時での溶融金属の分断球状化
を、アークによるフラックスの炭化にもかかわらずよく
促進でき、作動迅速性を向上できる。
<Effect of the Invention> As described above, in the alloy type thermal fuse according to the present invention, the spheroidization of the molten metal during the operation of the thermal fuse can be promoted well despite the carbonization of the flux by the arc, and the operation speed is improved. Can be improved.

【図面の簡単な説明】 第1図は本発明の実施例を示す説明図、第2図は従来例
を示す説明図である。 1……リード導体、11……絶縁層、3……フラックス、
4……絶縁筒、5……封止材。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an explanatory view showing an embodiment of the present invention, and FIG. 2 is an explanatory view showing a conventional example. 1 ... lead conductor, 11 ... insulating layer, 3 ... flux,
4 ... insulating cylinder, 5 ... sealing material.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】絶縁被覆リード導体間に低融点可溶金属を
接合し、該低融点可溶金属にフラックスを被覆し、両絶
縁被覆リード導体の絶縁被覆層端部上にまたがって絶縁
筒を挿通し、絶縁筒各端と各絶縁被覆リード導体の絶縁
被覆層との間を封止材で封止し、上記絶縁被覆層の外径
を低融点可溶金属の外径の としたことを特徴とする合金型温度ヒューズ。
1. A low-melting-point fusible metal is joined between insulating-coated lead conductors, the low-melting-point fusible metal is coated with a flux, and an insulating cylinder is laid over the ends of the insulating coating layers of the two insulating-coated lead conductors. Insert, seal between each end of the insulating cylinder and the insulating coating layer of each insulating coated lead conductor with a sealing material, and change the outer diameter of the insulating coating layer to the outer diameter of the low melting point fusible metal. An alloy-type thermal fuse characterized by the following.
JP1077674A 1989-03-28 1989-03-28 Alloy type thermal fuse Expired - Fee Related JP2750891B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1077674A JP2750891B2 (en) 1989-03-28 1989-03-28 Alloy type thermal fuse

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1077674A JP2750891B2 (en) 1989-03-28 1989-03-28 Alloy type thermal fuse

Publications (2)

Publication Number Publication Date
JPH02256126A JPH02256126A (en) 1990-10-16
JP2750891B2 true JP2750891B2 (en) 1998-05-13

Family

ID=13640430

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1077674A Expired - Fee Related JP2750891B2 (en) 1989-03-28 1989-03-28 Alloy type thermal fuse

Country Status (1)

Country Link
JP (1) JP2750891B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59130032A (en) * 1983-01-17 1984-07-26 日本電気ホームエレクトロニクス株式会社 Method of producing fusible alloy temperature fuse

Also Published As

Publication number Publication date
JPH02256126A (en) 1990-10-16

Similar Documents

Publication Publication Date Title
JP2750891B2 (en) Alloy type thermal fuse
JP3995058B2 (en) Alloy type temperature fuse
JP2762129B2 (en) Alloy type thermal fuse
JPH086354Y2 (en) Alloy type thermal fuse
JP2819409B2 (en) Alloy type thermal fuse
JPH086353Y2 (en) Thermal fuse
JPH07107823B2 (en) Method for manufacturing alloy type thermal fuse
JPH0766728B2 (en) Alloy type thermal fuse
JPH0514438Y2 (en)
JP2504294Y2 (en) Temperature fuse
JP2779708B2 (en) Alloy type temperature fuse
JP2001195963A (en) Alloy temperature fuse
JPH05258653A (en) Substrate type temperature fuse
JPH1140025A (en) Thermal alloy fuse
JPH076604Y2 (en) Current fuse
JPS6239568Y2 (en)
JPH076677A (en) Substrate type thermal fuse
JP2574700B2 (en) Flat thermal fuse
JPH0760627B2 (en) Alloy type thermal fuse
JPH0755790Y2 (en) Thermal fuse
JPH0357122A (en) Alloy type temperature fuse
JPH02288125A (en) Temperature fuse
EP0140631A2 (en) A thermocouple
JP2001243861A (en) Fuse with flux
JPH02291623A (en) Temperature sensing switch

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees