Nothing Special   »   [go: up one dir, main page]

JP2629606B2 - encoder - Google Patents

encoder

Info

Publication number
JP2629606B2
JP2629606B2 JP6180959A JP18095994A JP2629606B2 JP 2629606 B2 JP2629606 B2 JP 2629606B2 JP 6180959 A JP6180959 A JP 6180959A JP 18095994 A JP18095994 A JP 18095994A JP 2629606 B2 JP2629606 B2 JP 2629606B2
Authority
JP
Japan
Prior art keywords
light
diffraction grating
beam splitter
incident
quarter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP6180959A
Other languages
Japanese (ja)
Other versions
JPH07167679A (en
Inventor
哲治 西村
正彰 築地
哲 石井
公 石塚
洋一 窪田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP6180959A priority Critical patent/JP2629606B2/en
Publication of JPH07167679A publication Critical patent/JPH07167679A/en
Application granted granted Critical
Publication of JP2629606B2 publication Critical patent/JP2629606B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Optical Transform (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はエンコーダーに関し、特
に移動物体に取付けた回折格子に可干渉性光束を入射さ
せ該回折格子からの回折光を互いに干渉させて干渉縞を
形成し、干渉縞の明暗の縞を計数することによって回折
格子の移動量、即ち移動物体の移動量を測定するロータ
リーエンコーダーやリニアエンコーダー等のエンコーダ
ーに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an encoder, and more particularly to an encoder, in which a coherent light beam is made incident on a diffraction grating attached to a moving object, and diffracted lights from the diffraction grating interfere with each other to form interference fringes. The present invention relates to an encoder such as a rotary encoder or a linear encoder that measures a movement amount of a diffraction grating, that is, a movement amount of a moving object by counting light and dark fringes.

【0002】[0002]

【従来の技術】近年NC工作機械や半導体焼付装置等の
精密機械においては1μm以下(サフ゛ミクロン) の単位で測
定することのできる精密な測定器が要求されている。従
来よりサブミクロンの単位で測定することのできる測定
器としては、レーザー等の可干渉性光束を用い、移動物
体からの回折光より干渉縞を形成させ、該干渉縞を利用
したロータリーエンコーダーやリニアエンコーダーが良
く知られている。
2. Description of the Related Art In recent years, in precision machines such as NC machine tools and semiconductor printing apparatuses, precise measuring instruments capable of measuring in units of 1 μm or less (submicron) have been required. Conventionally, as a measuring instrument capable of measuring in submicron units, a coherent light beam such as a laser is used to form interference fringes from diffracted light from a moving object, and a rotary encoder or linear encoder using the interference fringes is formed. Encoders are well known.

【0003】図6は従来のリニアエンコーダーの一例の
構成図である。同図において1はレーザー、2はコリメ
ーターレンズ、3は不図示の移動物体に取付けた格子ピ
ッチの回折格子であり、例えば矢印の方向に速度vで
移動している。51 ,52 は各々1/4波長板、41
2 は回折格子3の傾きによって生ずる再回折光の軸ず
れを防止する為のダハプリズム、又はコーナーキューブ
反射鏡、6はビームスプリッター、71 ,72 は偏光板
で各々偏光軸は互いに直交しており、更に1/4波長板
1 ,52 の偏光軸と45度の角度をなすように配置さ
れている。81,82 は各々受光素子である。
FIG. 6 is a configuration diagram of an example of a conventional linear encoder. In FIG. 1, reference numeral 1 denotes a laser, 2 denotes a collimator lens, and 3 denotes a diffraction grating having a grating pitch P attached to a moving object (not shown), and moves at a speed v in the direction of an arrow, for example. 5 1 and 5 2 are quarter-wave plates, 4 1 ,
4 2 roof prism for preventing axial displacement of the re-diffracted light caused by the inclination of the diffraction grating 3, or a corner cube reflector, 6 beamsplitter 7 1, 7 2 are each polarization axis orthogonal to each other by the polarizing plate and which is further arranged at an angle of 5 1, 5 2 of the polarization axis 45 ° quarter-wave plate. 8 1 and 8 2 are light receiving elements, respectively.

【0004】同図においてレーザー1からの光束はコリ
メーターレンズ2により略平行光束となり回折格子3に
入射する。回折格子3で回折された正と負のm次の回折
光は1/4波長板51 ,52 を介してコーナーキューブ
反射鏡41 ,42 で反射させて、回折格子3に再度入射
し再び正と負のm次の回折光となって重なり合いビーム
スプリッター6で2光束に分割されて偏光板71 ,72
を介して受光素子81,82 に入射する。
In FIG. 1, a light beam from a laser 1 is converted into a substantially parallel light beam by a collimator lens 2 and is incident on a diffraction grating 3. The positive and negative mth-order diffracted lights diffracted by the diffraction grating 3 are reflected by the corner cube reflecting mirrors 4 1 and 4 2 via the quarter-wave plates 5 1 and 5 2, and are incident on the diffraction grating 3 again. Then, the diffracted lights become positive and negative m-th order diffracted lights again, are overlapped and split into two light beams by the beam splitter 6, and are polarized by the polarizing plates 7 1 and 7 2.
And enters the light receiving elements 8 1 and 8 2 .

【0005】ここで受光素子81 ,82 に入射する光束
は1/4波長板51 ,52 と偏光板71 ,72 の組み合
わせによって互いに90度の位相差がつけられ、回折格
子3の移動方向の弁別に用いられている。そして受光素
子81 ,82 で受光される干渉縞の明暗の縞を計数する
ことにより回折格子3の移動量を求めている。
Here, the light beams incident on the light receiving elements 8 1 and 8 2 are given a phase difference of 90 degrees from each other by a combination of the 4 wavelength plates 5 1 and 5 2 and the polarizing plates 7 1 and 7 2 , and the diffraction grating is provided. 3 is used for discrimination in the moving direction. The amount of movement of the diffraction grating 3 is obtained by counting the bright and dark fringes of the interference fringes received by the light receiving elements 8 1 and 8 2 .

【0006】図6に示すリニアエンコーダーにおいてレ
ーザー1からの光束が回折格子3に入射すると例えば回
折格子3からのm次の回折光はコーナーキューブ反射鏡
2,1/4波長板52 を介して回折格子3に再入射
し、該回折格子3で+m次回折したm次回折光は信号光
として受光素子81 ,82 に入射している。このとき回
折格子3に再入射した光束のうち回折格子3で正反射し
た0次回折光は1/4波長板51 ,コーナーキューブ反
射鏡41 を介して再び回折格子3に入射し、そして回折
格子3で正反射し、コーナーキューブ反射鏡42 と1/
4波長板52 を介して回折格子3に入射し、該回折格子
3でm次回折した回折光がノイズ光となって受光素子8
1 ,82 に入射してくる場合がある。この結果、検出精
度が低下してくるという問題点があった。
[0006] m order diffracted light from the light beam is incident on the diffraction grating 3, for example a diffraction grating 3 from the laser 1 in the linear encoder shown in Fig. 6 through the corner cube reflector 4 2, 1/4-wave plate 5 2 The m-order diffracted light, which is re-incident on the diffraction grating 3 by the + m-th order, is incident on the light receiving elements 8 1 and 8 2 as signal light. Regular reflected 0-order diffracted quarter-wave plate 5 1 by the diffraction grating 3 of the light beam at this time and re-incident on the diffraction grating 3 is incident again on the diffraction grating 3 through the corner cube reflector 4 1, and diffraction Specularly reflected by grating 3, corner cube reflecting mirrors 4 2 and 1 /
4 is incident on the diffraction grating 3 through the wave plate 5 2, the light receiving element 8 diffracted light m order diffracted by the diffraction grating 3 as a noise light
1, there is a case that comes incident on the 8 2. As a result, there is a problem that the detection accuracy is reduced.

【0007】[0007]

【発明が解決しようとする課題】本発明は偏光ビームス
プリッター及び1/4波長板の軸方向を適切に配置する
ことにより、受光素子に不要な回折光(ノイズ光)が入
射しないようにし検出精度の向上を図ったエンコーダ
ー、例えばロータリーエンコーダーやリニアエンコーダ
ーの提供を目的とする。
SUMMARY OF THE INVENTION According to the present invention, by properly arranging the polarizing beam splitter and the quarter-wave plate in the axial direction, unnecessary diffracted light (noise light) is prevented from being incident on the light receiving element, and the detection accuracy is improved. It is an object of the present invention to provide an encoder that achieves an improvement, for example, a rotary encoder or a linear encoder.

【0008】[0008]

【課題を解決するための手段】本発明のエンコーダー
は、可干渉光束を回折格子に入射させ、該回折格子から
の回折光より干渉光を形成し、該干渉光を光電変換する
ことにより前記回折格子の移動状態を測定するエンコー
ダにおいて、前記可干渉性光束を偏光ビームスプリッタ
ーで2光束に分割し、該2光束の各々を入射光に対する
進相軸を互いに同一方向に配置した1/4波長板を介し
て前記回折格子に相異なる方向から入射させ、前記回折
格子からの該2光束の各々の回折光を前記1/4波長板
を介して偏光ビームスプリッターへ逆行させ、偏光ビー
ムスプリッターによって該2光束の回折光を重ね合わせ
ることによって干渉光を形成し、該干渉光を光電変換す
ることを特徴としている。
SUMMARY OF THE INVENTION An encoder according to the present invention is characterized in that a coherent light beam is made incident on a diffraction grating, interference light is formed from the diffraction light from the diffraction grating, and the interference light is photoelectrically converted. In an encoder for measuring a moving state of a grating, the coherent light beam is split into two light beams by a polarizing beam splitter, and each of the two light beams is arranged with a fast axis for incident light in the same direction as each other. And diffracted light of each of the two light beams from the diffraction grating is returned to the polarizing beam splitter through the quarter-wave plate, and the polarized light is split by the polarizing beam splitter. It is characterized in that interference light is formed by superimposing diffracted light beams, and the interference light is photoelectrically converted.

【0009】[0009]

【実施例】図1は本発明の一実施例の光学系の概略図で
ある。同図において図6に示す要素と同一のものには同
符番を付してある。図1において9は偏光ビームスプリ
ッター、51 ,52 は各々1/4波長板である。1/4
波長板51 ,52 は後述するようにその進相軸が互いに
同一方向を向き、かつ偏光ビームスプリッター9に対し
て所定方向に配置されている。
FIG. 1 is a schematic view of an optical system according to an embodiment of the present invention. 6, the same elements as those shown in FIG. 6 are denoted by the same reference numerals. 9 polarization beam splitter, 5 1, 5 2 are each quarter-wave plate in FIG. 1/4
As described later, the wave plates 5 1 and 5 2 have their fast axes oriented in the same direction as each other, and are arranged in a predetermined direction with respect to the polarizing beam splitter 9.

【0010】101 ,102 は反射鏡、11は端面結像
型の屈折率分布型の光学部材で、一方の端に反射膜12
が施されている。光学部材11と反射膜12より集光系
20を構成している。
Reference numerals 10 1 and 10 2 denote reflecting mirrors, 11 denotes an end-surface imaging type refractive index distribution type optical member, and a reflection film 12 is provided on one end.
Is given. The optical member 11 and the reflection film 12 constitute a light converging system 20.

【0011】本実施例ではレーザー1からの可干渉性光
束をコリメーターレンズ2によて略平行光束とし、偏光
ビームスプリッター9に入射させ直線偏光の透過光束と
同じく直線偏光の反射光束の2つの光束に分割してい
る。このときレーザー1の出射光束の直線偏光方位が偏
光ビームスプリッター9に対して45度となるようにレ
ーザー1の取付位置を調整している。これにより偏光ビ
ームスプリッター9からの透過光束と反射光束の強度比
が略1:1となるようにしている。
In the present embodiment, the coherent light beam from the laser 1 is converted into a substantially parallel light beam by the collimator lens 2 and is made incident on the polarization beam splitter 9. It is split into luminous flux. At this time, the mounting position of the laser 1 is adjusted such that the linear polarization direction of the light beam emitted from the laser 1 is 45 degrees with respect to the polarization beam splitter 9. Thereby, the intensity ratio between the transmitted light beam and the reflected light beam from the polarizing beam splitter 9 is set to be approximately 1: 1.

【0012】そして偏光ビームスプリッター9からの反
射光束と透過光束を1/4波長板51 ,52 を介して円
偏光とし、反射鏡101 ,102 で反射させて回折格子
3に入射させる際、対象とする回折格子3からのm次回
折光が回折格子3から略垂直に反射するように入射させ
ている。
The reflected light beam and the transmitted light beam from the polarization beam splitter 9 are converted into circularly polarized light via quarter-wave plates 5 1 and 5 2 , reflected by the reflecting mirrors 10 1 and 10 2 , and made incident on the diffraction grating 3. At this time, the m-order diffracted light from the target diffraction grating 3 is incident so as to be reflected substantially perpendicularly from the diffraction grating 3.

【0013】即ち回折格子3の格子ピッチをP、可干渉
性光束の波長をλ、mを整数とし、可干渉性光束の回折
格子3への入射角度をθm としたとき θm ≒ sin-1(mλ/P) ‥‥‥(1) となるように入射させている。
That is, when the grating pitch of the diffraction grating 3 is P, the wavelength of the coherent light beam is λ, and m is an integer, and the incident angle of the coherent light beam on the diffraction grating 3 is θ m , θ m ≒ sin − 1 (mλ / P) ‥‥‥ (1).

【0014】回折格子3から略垂直に射出したm次回折
光を光学部材11に入射させている。光学部材11の焦
点面近傍には反射膜12が施されているので、入射した
光束は図2に示すように反射膜12で反射した後、元の
光路を戻り光学部材11から射出し、再度回折格子3に
入射する。
The m-th order diffracted light emitted substantially perpendicularly from the diffraction grating 3 is made incident on the optical member 11. Since the reflecting film 12 is provided near the focal plane of the optical member 11, the incident light flux is reflected by the reflecting film 12 as shown in FIG. The light enters the diffraction grating 3.

【0015】そして回折格子3で再度回折されたm次の
反射回折光は元の光路を戻り、反射鏡101 ,102
反射し、1/4波長板51 ,52 を透過し偏光ビームス
プリッター9に再入射する。
The m-order reflected diffracted light diffracted again by the diffraction grating 3 returns to the original optical path, is reflected by the reflecting mirrors 10 1 and 10 2 , passes through the quarter-wave plates 5 1 and 5 2 , and is polarized. Re-enter the beam splitter 9.

【0016】このとき再回折光は1/4波長板51 ,5
2 を往復しているので、偏光ビームスプリッター9で最
初反射した光束は再入射するときは偏光ビームスプリッ
ター9に対して偏光方位が90度異なっている為、透過
するようになる。逆に偏光ビームスプリッター9で最初
透過した光束は再入射したとき反射されるようになる。
At this time, the re-diffracted light is divided into quarter wave plates 5 1 , 5
2 reciprocates, the light flux first reflected by the polarizing beam splitter 9 will be transmitted when re-entering, because the polarization direction differs by 90 degrees with respect to the polarizing beam splitter 9. Conversely, the light beam first transmitted by the polarizing beam splitter 9 is reflected when re-entering.

【0017】こうして偏光ビームスプリッター9で2つ
の回折光を重なり合わせ1/4波長板53 を介した後、
円偏光とし、ビームスプリッター6で2つの光束に分割
し、各々偏光板71 ,72 を介した後、直線偏光とし受
光素子81 ,82 に各々入射させている。
[0017] After thus through the quarter-wave plate 5 3 not overlapping the two diffracted light by the polarization beam splitter 9,
Circularly polarized light is split into two light beams by the beam splitter 6, and after passing through the polarizing plates 7 1 and 7 2 , the light is converted into linearly polarized light and incident on the light receiving elements 8 1 and 8 2 , respectively.

【0018】尚、(1)式の角度θm は回折光が集光系
20に入射し、再度回折格子3に入射出来る程度の範囲
内であれば良いことを示している。
Incidentally, the angle θ m in the expression (1) indicates that the angle should be within a range in which the diffracted light can enter the condensing system 20 and be incident again on the diffraction grating 3.

【0019】本実施例においてm次の回折光の位相は回
折格子が1ピッチ移動すると2mπだけ変化する。従っ
て受光素子81 ,82 からは正と負のm次の回折を2回
ずつ受けた光束の干渉を受光している為、回折格子が格
子の1ピッチ分移動すると4m個の正弦波信号が得られ
る。
In this embodiment, the phase of the m-th order diffracted light changes by 2mπ when the diffraction grating moves by one pitch. Therefore, since the light receiving elements 8 1 and 8 2 receive the interference of the luminous flux having received the positive and negative m-order diffraction twice each, when the diffraction grating moves by one pitch of the grating, 4m sine wave signals are obtained. Is obtained.

【0020】例えば回折格子3のピッチ 3.2μm 、回折
光として1次(m=1)を利用したとすれば回折格子3
が 3.2μm 移動したとき受光素子81 ,82 からは4個
の正弦波信号が得られる。即ち正弦波1個当りの分解能
として回折格子3のピッチの1/4即ち 3.2/4= 0.8μ
m が得られる。
For example, if the pitch of the diffraction grating 3 is 3.2 μm and the first order (m = 1) is used as the diffracted light, the diffraction grating 3
Is moved by 3.2 μm, four sine wave signals are obtained from the light receiving elements 8 1 and 8 2 . That is, the resolution per sine wave is 1/4 of the pitch of the diffraction grating 3, that is, 3.2 / 4 = 0.8 .mu.m.
m is obtained.

【0021】図7は本実施例における偏光ビームスプリ
ッター9の偏光方位と1/4波長板51 ,52 の進相軸
(速い軸)との位置関係について示した説明図である。
同図に示すように1/4波長板51 ,52 は、その進相
軸(速い軸)が、偏光ビームスプリッター9を反射・透
過した直線偏光の偏光方位に対して45°方向に設定さ
れており、かつ1/4波長板51 ,52 の進相軸が互い
に同一方向に設定されている。即ち、偏光ビームスプリ
ッター9で反射した光束は1/4波長板51 を透過して
右回りの円偏光となって回折格子3に入射し、集光系2
0で反射して戻ってくるm次回折光が1/4波長板51
を再度透過すると、往路とは直交した方向に振動する直
線偏光となって偏光ビームスプリッター9を透過し、受
光部に導光される。
[0021] FIG. 7 is an explanatory view showing the positional relationship between the polarizing direction and a quarter-wave plate 5 1 of the polarizing beam splitter 9, 5 2 of the fast axis (fast axis) in this embodiment.
As shown in the figure, the fast axes (fast axes) of the quarter-wave plates 5 1 and 5 2 are set at 45 ° with respect to the polarization direction of the linearly polarized light reflected and transmitted through the polarizing beam splitter 9. by which, and quarter-wave plate 5 1, 5 2 of the fast axis is set in the same direction. That is, the reflected light beam becomes right-handed circularly polarized light passes through the quarter-wave plate 5 1 enters the diffraction grating 3 by the polarization beam splitter 9, the focusing optical system 2
The m-order diffracted light reflected at 0 and returned is a quarter-wave plate 5 1
Is transmitted again, becomes linearly polarized light vibrating in a direction orthogonal to the outward path, passes through the polarization beam splitter 9, and is guided to the light receiving unit.

【0022】一方、偏光ビームスプリッター9を最初透
過した光束は1/4波長板52 を透過して左回りの円偏
光となって回折格子3に入射し、集光系20で反射して
戻ってくる−m次回折光が1/4波長板52 を再度透過
すると、往路とは直交方向の直線偏光となって偏光ビー
ムスプリッター9で反射し、受光部に導光される。回折
格子3に(1)式で表わされる角度θm で2光束を入射
させると、回折格子3による正反射光(0次反射回折
光)が、±m次の往復回折光の光路に重なり合って偏光
ビームスプリッター9に入射する。ここで、1/4波長
板51 と52 の進相軸は同一方向に設定されているの
で、最初偏光ビームスプリッター9で反射して1/4波
長板51 を透過して右回りの円偏光となって回折格子3
で正反射した光束は1/4波長板52 を透過すると、1
/4波長板51 に入射したときとは直交する方向の直線
偏光となるので該直線偏光は偏光ビームスプリッター9
を透過する。従って、この光束は受光部には入らない。
最初偏光ビームスプリッター9を透過して回折格子で正
反射した光束についても同様に受光部には入らない。
On the other hand, incident on the diffraction grating 3 is counterclockwise circularly polarized light light beam which has first passed through the polarizing beam splitter 9 passes through the quarter-wave plate 5 2, reflected back by the condenser system 20 When come -m order diffracted light is transmitted through the quarter-wave plate 5 2 again, is reflected by the polarization beam splitter 9 is the forward becomes orthogonal direction of the linearly polarized light is guided to the light receiving portion. When two light beams enter the diffraction grating 3 at an angle θ m represented by the expression (1), the specularly reflected light (0-order reflected diffraction light) by the diffraction grating 3 overlaps the optical path of ± m-order reciprocating diffraction light. The light enters the polarization beam splitter 9. Here, 1/4 fast axis of the wave plate 5 1 and 5 2 is because it is set in the same direction, clockwise transmitted through the first polarization beam splitter quarter-wave plate 5 1 is reflected by the 9 Diffraction grating 3 with circular polarization
In the positive reflected light beam is transmitted through the quarter-wave plate 5 2, 1
/ 4 linearly polarized light since the direction of the linearly polarized light perpendicular to the having entered into the wavelength plate 5 1 polarization beam splitter 9
Through. Therefore, this light beam does not enter the light receiving section.
Similarly, the light beam transmitted through the polarization beam splitter 9 and regularly reflected by the diffraction grating does not enter the light receiving unit.

【0023】更に集光系20で反射し、回折格子3に再
度入射して発生した回折光のうち、往路を戻るm次回折
光の反対符号の−m次回折光が反対側の光路に重なり合
って偏光ビームスプリッター9に入射するが、1/4波
長板51 と52 の軸を前記のように設定することによ
り、上記正反射光と同様に受光部に入射するのを防止し
ている。つまり、1/4波長板51 ,52 の進相軸を同
一方向に設定することによって、信号光となる±m次の
往復回折光のみが受光部に入り、正反射光及びm次回折
後に−m次回折した光及び−m次回折後に+m次回折し
た光等のノイズ光は、いずれも受光部に入ることはな
い。このように本実施例では受光素子81 ,82 の出力
信号のS/N比は低下を防止し、高精度の検出を可能と
している。
Further, of the diffracted light reflected by the light condensing system 20 and re-entering the diffraction grating 3, the -m-order diffracted light having the opposite sign to the m-order diffracted light returning on the outward path overlaps with the optical path on the opposite side and is polarized. enters the beam splitter 9 but, by setting 1/4-wave plate 5 1 and 5 2 axes as described above, are prevented from entering the light receiving portion as in the specular reflected light. In other words, 1/4-wave plate 5 1, the fast axis of 5 2 by setting the same direction, only the ± m order reciprocating diffracted light becomes the signal light enters the light receiving portion, specular reflection light and the m-th order diffraction None of the noise light, such as the light that has been diffracted in the −m order and the light that has been diffracted in the + m order after the −m order, does not enter the light receiving portion. As described above, in the present embodiment, the S / N ratio of the output signals of the light receiving elements 8 1 and 8 2 is prevented from lowering, and highly accurate detection is possible.

【0024】本実施例における集光系20は焦点面近傍
に反射面を配置している為に例えばレーザー光の発振波
長の変化に伴う回折角が微少変化して集光レンズへの入
射角が多少変化しても、略同じ光路で戻すことができ
る。これにより2つの正と負の回折光を重なり合わせ受
光素子81 ,82 の出力信号のS/N比の低下を防止し
ている。
Since the light condensing system 20 in this embodiment has a reflecting surface near the focal plane, for example, the diffraction angle changes with the change in the oscillation wavelength of the laser light, and the incident angle to the light condensing lens becomes small. Even if it changes slightly, it can be returned in substantially the same optical path. As a result, the two positive and negative diffracted lights are overlapped to prevent a decrease in the S / N ratio of the output signals of the light receiving elements 8 1 and 8 2 .

【0025】又、本実施例では可干渉性光束の回折格子
3への入射角度を前述の如く設定すると共に集光系を用
いることにより装置全体の小型化を図っている。
Further, in this embodiment, the angle of incidence of the coherent light beam on the diffraction grating 3 is set as described above, and the overall size of the apparatus is reduced by using a light condensing system.

【0026】例えば回折格子3の格子ピッチ 3.2μm 、
レーザー1の波長を0.78μとすれば、±1次の回折光の
回折角度は14.2度である。そこで光学部材11として直
径2mm程度の屈折率分布型レンズを用いて、±1次の回
折光のみを反射させる場合、回折格子3から、レンズ1
1までの距離は2/tan14.2°=7.9mm となり、8mm程度
離せばよく、装置全体を極めて小型に構成することがで
きる。
For example, the grating pitch of the diffraction grating 3 is 3.2 μm,
Assuming that the wavelength of the laser 1 is 0.78 μ, the diffraction angle of ± 1st-order diffracted light is 14.2 degrees. Therefore, in the case where a refractive index distribution type lens having a diameter of about 2 mm is used as the optical member 11 and only the ± 1st-order diffracted light is reflected,
The distance to 1 is 2 / tan14.2 ° = 7.9 mm, and it is sufficient to leave the distance of about 8 mm, so that the entire apparatus can be made extremely small.

【0027】尚、本実施例では光学部材11として屈折
率分布型レンズを用いているが、図3のように集光レン
ズ13と反射鏡14の組み合わせで構成しても良い。
Although a gradient index lens is used as the optical member 11 in this embodiment, it may be constituted by a combination of the condenser lens 13 and the reflecting mirror 14 as shown in FIG.

【0028】又、本実施例においては反射回折光を用い
ているが図4のように集光系20を配置して透過回折光
を利用しても良い。
In this embodiment, the reflected diffracted light is used. However, as shown in FIG. 4, the condensing system 20 may be arranged to use the transmitted diffracted light.

【0029】図5は本発明の別の実施例である。同図に
おいて図1の要素と同一要素には同符番を付してある。
図5において15は偏光プリズムで、図1の実施例にお
ける偏光ビームスプリッター9と同一の機能を有するも
のである。又、16は折り返しプリズムで、図1の実施
例における反射鏡101 ,102 の組み合わせと同一の
機能を有している。
FIG. 5 shows another embodiment of the present invention. In the figure, the same elements as those in FIG. 1 are denoted by the same reference numerals.
In FIG. 5, a polarizing prism 15 has the same function as the polarizing beam splitter 9 in the embodiment of FIG. A folding prism 16 has the same function as the combination of the reflecting mirrors 10 1 and 10 2 in the embodiment of FIG.

【0030】本実施例ではレーザー1からの光束をコリ
メーターレンズ2により略平行光とし、偏光プリズム1
5に入射させている。偏光プリズム15に入射させた光
束は反射面15a,15bで反射させた後、偏光ビーム
分割面15cで反射光束L1と透過光束L2の2つの光
束に分割している。反射光束L1と透過光束L2は各々
反射面15a,15dで反射し、面15bより射出し
て、進相軸が互いに同一方向を向いた1/4波長板5
1 ,52 を透過した後、折り返しプリズム16で所定角
度屈折させ、回折格子3に前述の条件を満足するように
各々入射させている。
In this embodiment, the light beam from the laser 1 is made substantially collimated by the collimator lens 2 and
5 is incident. The light beam incident on the polarizing prism 15 is reflected by the reflection surfaces 15a and 15b, and then split by the polarization beam splitting surface 15c into two light beams, a reflected light beam L1 and a transmitted light beam L2. The reflected light beam L1 and the transmitted light beam L2 are reflected by the reflecting surfaces 15a and 15d, respectively, are emitted from the surface 15b, and the quarter-wave plates 5 whose fast axes are oriented in the same direction.
1, 5 2 passes through the, by a predetermined angle refracted by folding prism 16, thereby respectively incident so as to satisfy the above conditions the diffraction grating 3.

【0031】そして回折格子3で回折した所定次数の回
折光を集光系20を介し、再度回折格子3に入射させ、
回折格子3からの2つの再回折光を折り返しプリズム1
6と偏光プリズム15を介し重ね合わせた後、図1の実
施例と同様に1/4波長板53 を透過させ、ビームスプ
リッター6で2つの光束に分割して各々偏光板71 ,7
2 を介した後、受光素子81 ,82 で各々受光してい
る。
Then, the diffracted light of a predetermined order diffracted by the diffraction grating 3 is made incident on the diffraction grating 3 again through the light condensing system 20, and
A prism 1 that returns two re-diffracted lights from the diffraction grating 3
After through superimposed 6 and the polarizing prism 15, is transmitted through the embodiment similarly to the quarter-wave plate 5 3 of Figure 1, each polarizer is divided by the beam splitter 6 into two light beams 7 1, 7
After through 2, are respectively received by the light receiving element 81, 82.

【0032】尚、以上の各実施例ではリニアエンコーダ
ーについて説明したがロータリーエンコーダーについて
も全く同様に適用することができる。
In each of the embodiments described above, the linear encoder is described. However, the present invention can be applied to a rotary encoder in the same manner.

【0033】[0033]

【発明の効果】本発明によれば可干渉性光束を偏光ビー
ムスプリッターで2つの直線偏光に分割した後、該2つ
の光束を所定の方向に進相軸を向けた1/4波長板を通
過させた後、該2つの光束の回折格子への入射角を前述
の如く設定することにより、受光部に不要な回折光が入
射するのを防止し、高精度のエンコーダーを達成するこ
とができる。
According to the present invention, a coherent light beam is split into two linearly polarized light beams by a polarizing beam splitter, and the two light beams pass through a quarter-wave plate having a fast axis directed in a predetermined direction. After that, by setting the incident angles of the two light beams to the diffraction grating as described above, it is possible to prevent unnecessary diffracted light from entering the light receiving unit, and to achieve a highly accurate encoder.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の一実施例の光学系の概略図FIG. 1 is a schematic view of an optical system according to an embodiment of the present invention.

【図2】 図1の一部分の光学作用の説明図FIG. 2 is an explanatory diagram of an optical function of a part of FIG. 1;

【図3】 図1の一部分の光学作用の説明図FIG. 3 is an explanatory view of an optical function of a part of FIG. 1;

【図4】 図1の実施例において一部変更したときの部
分説明図
FIG. 4 is a partial explanatory view when a part is changed in the embodiment of FIG. 1;

【図5】 本発明の他の実施例の光学系の概略図FIG. 5 is a schematic view of an optical system according to another embodiment of the present invention.

【図6】 従来のリニアエンコーダーの説明図FIG. 6 is an explanatory diagram of a conventional linear encoder.

【図7】 本発明のエンコーダーにおける偏光ビームス
プリッターの偏光方位と1/4波長板の軸方位との関係
を示す説明図
FIG. 7 is an explanatory diagram showing the relationship between the polarization direction of the polarization beam splitter and the axial direction of the quarter-wave plate in the encoder of the present invention.

【符号の説明】[Explanation of symbols]

1 レーザー 2 コリメーターレンズ 3 回折格子 41 ,42 コーナーキューブ反射鏡 51 ,52 ,53 1/4波長板 6 ビームスプリッター 71 ,72 偏光板 81 ,82 受光素子 9 偏光ビームスプリッター 101 ,102 反射鏡 20 集光系1 laser 2 a collimator lens 3 diffraction grating 4 1, 4 2 corner cube reflector 5 1, 5 2, 5 3 1/4 wave plate 6 a beam splitter 7 1, 7 2 polarizing plates 81, 82 light-receiving element 9 polarization Beam splitter 10 1 , 10 2 Mirror 20 Focusing system

───────────────────────────────────────────────────── フロントページの続き (72)発明者 石塚 公 東京都大田区下丸子3丁目30番2号 キ ヤノン株式会社内 (72)発明者 窪田 洋一 東京都大田区下丸子3丁目30番2号 キ ヤノン株式会社内 (56)参考文献 特開 昭59−163517(JP,A) ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Kimi Ishizuka 3-30-2 Shimomaruko, Ota-ku, Tokyo Canon Inc. (72) Inventor Yoichi Kubota 3-30-2 Shimomaruko, Ota-ku, Tokyo Canon Co., Ltd. (56) References JP-A-59-163517 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 可干渉光束を回折格子に入射させ、該回
折格子からの回折光より干渉光を形成し、該干渉光を光
電変換することにより前記回折格子の移動状態を測定す
るエンコーダにおいて、前記可干渉性光束を偏光ビーム
スプリッターで2光束に分割し、該2光束の各々を入射
光に対する進相軸を互いに同一方向に配置した1/4波
長板を介して前記回折格子に相異なる方向から入射さ
せ、前記回折格子からの該2光束の各々の回折光を前記
1/4波長板を介して偏光ビームスプリッターへ逆行さ
せ、偏光ビームスプリッターによって該2光束の回折光
を重ね合わせることによって干渉光を形成し、該干渉光
を光電変換することを特徴とするエンコーダー。
1. An encoder for making a coherent light beam incident on a diffraction grating, forming interference light from the diffraction light from the diffraction grating, and measuring the moving state of the diffraction grating by photoelectrically converting the interference light. The coherent light beam is split into two light beams by a polarizing beam splitter, and each of the two light beams is directed in different directions to the diffraction grating via a quarter-wave plate in which the fast axes to the incident light are arranged in the same direction. And the diffracted light of each of the two light beams from the diffraction grating travels back to the polarizing beam splitter via the quarter-wave plate, and is superposed on the diffracted light of the two light beams by the polarizing beam splitter. An encoder that forms light and photoelectrically converts the interference light.
JP6180959A 1994-07-08 1994-07-08 encoder Expired - Fee Related JP2629606B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6180959A JP2629606B2 (en) 1994-07-08 1994-07-08 encoder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6180959A JP2629606B2 (en) 1994-07-08 1994-07-08 encoder

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP63113081A Division JPH0718714B2 (en) 1988-05-10 1988-05-10 encoder

Publications (2)

Publication Number Publication Date
JPH07167679A JPH07167679A (en) 1995-07-04
JP2629606B2 true JP2629606B2 (en) 1997-07-09

Family

ID=16092278

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6180959A Expired - Fee Related JP2629606B2 (en) 1994-07-08 1994-07-08 encoder

Country Status (1)

Country Link
JP (1) JP2629606B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105628188A (en) * 2016-01-11 2016-06-01 襄阳爱默思智能检测装备有限公司 Raster interference vibration measurement method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59163517A (en) * 1983-03-09 1984-09-14 Yokogawa Hokushin Electric Corp Optical scale reader

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105628188A (en) * 2016-01-11 2016-06-01 襄阳爱默思智能检测装备有限公司 Raster interference vibration measurement method

Also Published As

Publication number Publication date
JPH07167679A (en) 1995-07-04

Similar Documents

Publication Publication Date Title
JP2586120B2 (en) encoder
JPH073344B2 (en) Encoder
US4979826A (en) Displacement measuring apparatus
JP2629948B2 (en) encoder
US9201313B2 (en) Compact encoder head for interferometric encoder system
US20060139654A1 (en) Displacement detector
US20110310396A1 (en) Displacement detecting device
JPS6391515A (en) Photoelectric angle gage
US5000542A (en) Optical type encoder
JP6702666B2 (en) Displacement detection device
WO2022105533A1 (en) Interferometer displacement measurement system and method
JPH0778433B2 (en) Rotary encoder
JPS63277926A (en) Length measuring instrument
JPH03146822A (en) Encoder
JPH046884B2 (en)
JP2629606B2 (en) encoder
JP7497122B2 (en) Optical Displacement Sensor
JPH0416177Y2 (en)
JP3038860B2 (en) Encoder
JP2557967B2 (en) Grating interference displacement meter
JP2000018917A (en) Optical system displacement measuring apparatus
JP2683098B2 (en) encoder
US20210318114A1 (en) Optical displacement sensor
JP3517506B2 (en) Optical displacement measuring device
JPS61178613A (en) Linear encoder

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees