Nothing Special   »   [go: up one dir, main page]

JP2604178B2 - Resin-sealed optical coupling semiconductor device and method of manufacturing the same - Google Patents

Resin-sealed optical coupling semiconductor device and method of manufacturing the same

Info

Publication number
JP2604178B2
JP2604178B2 JP25223387A JP25223387A JP2604178B2 JP 2604178 B2 JP2604178 B2 JP 2604178B2 JP 25223387 A JP25223387 A JP 25223387A JP 25223387 A JP25223387 A JP 25223387A JP 2604178 B2 JP2604178 B2 JP 2604178B2
Authority
JP
Japan
Prior art keywords
resin
semiconductor light
cured
silicone
inner lead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP25223387A
Other languages
Japanese (ja)
Other versions
JPH0194679A (en
Inventor
明美 向後
勝利 峰
君夫 山川
Original Assignee
東レ・ダウコーニング・シリコーン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ・ダウコーニング・シリコーン株式会社 filed Critical 東レ・ダウコーニング・シリコーン株式会社
Priority to JP25223387A priority Critical patent/JP2604178B2/en
Publication of JPH0194679A publication Critical patent/JPH0194679A/en
Application granted granted Critical
Publication of JP2604178B2 publication Critical patent/JP2604178B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4295Coupling light guides with opto-electronic elements coupling with semiconductor devices activated by light through the light guide, e.g. thyristors, phototransistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Light Receiving Elements (AREA)
  • Photo Coupler, Interrupter, Optical-To-Optical Conversion Devices (AREA)

Abstract

PURPOSE:To obtain a resin sealed photocoupled semiconductor device with excellent dielectric strength and moisture proof and whose photoconductive efficiency is not damaged by integrating a transmissive silicon hardened body, in which a semiconductor light emitting element and a semiconductor light receiving element are buried, with a sealing resin by bonding, while interposing a ultraviolet irradiation processing layer formed on such hardened silicon. CONSTITUTION:By optically coupling a semiconductor light emitting element 1 which is connected to an inner lead part 8 of an external connection lead 4 by a conductive material and a semiconductor light receiving element 2 which is connected to the inner lead part 8 of the external connection lead 4 by the conductive material, together with a part of the conductive material which is adjacent at least to the semiconductor elements 1, 2 and a part of the inner lead 8 in which the semiconductor elements 1, 2 are mounted, which is adjacent at least to semiconductor elements 1, 2, while burying them while bonding in a transmissive hardened silicone 5, a sealing resin 7 is formed by sealing the hardened silicone 5 together with the remainder of the inner lead part 8. In such a resin sealed semiconductor device, the silicon hardened body 5 is integrated by being bonded to the sealing resin 7 while interposing a ultraviolet irradiation processing layer 6 formed thereupon.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、樹脂封止型光結合半導体装置およびその製
造方法に関し、特には、半導体発光素子と半導体受光素
子が透光性のシリコーン硬化体により光学的に結合した
樹脂封止型光結合半導体装置に関する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a resin-encapsulated optically coupled semiconductor device and a method of manufacturing the same, and more particularly, to a cured silicone body in which a semiconductor light emitting element and a semiconductor light receiving element are transparent. The present invention relates to a resin-encapsulated optically coupled semiconductor device optically coupled with a resin.

〔従来の技術〕[Conventional technology]

光結合半導体装置は、半導体発光素子から出た光(入
力側電気信号)を半導体発受素子で受け、出力側に電気
信号を伝えるものであり、入出力時を電気的に絶縁した
まま信号のみを伝達する装置である。
An optical coupling semiconductor device receives light (input-side electric signal) emitted from a semiconductor light-emitting element by a semiconductor transmitting / receiving element and transmits an electric signal to an output side. Only a signal is electrically isolated during input / output. This is a device for transmitting.

光結合半導体装置は、無接点スイッチとして通信機
器,コンピュータ等に使用されており、今後も多用され
る傾向にある。
Optically coupled semiconductor devices are used as non-contact switches in communication devices, computers, and the like, and tend to be frequently used in the future.

光結合半導体装置は、半導体発光素子と半導体受光素
子が透光性のシリコーン硬化体により光学的に結合し、
該シリコーン硬化体ごと封止用樹脂により封止形成され
てなる樹脂封止型半導体装置が代表的である。
In an optical coupling semiconductor device, a semiconductor light emitting element and a semiconductor light receiving element are optically coupled by a transparent silicone cured body,
A typical example is a resin-encapsulated semiconductor device in which the cured silicone is sealed with a sealing resin.

樹脂封止型光結合半導体装置には、半導体発光素子と
半導体受光素子が対向位置にあり、両素子の間を透光性
のシリコーン硬化体により光学的に結合した対向型のも
の(特開昭59−220981号公報参照)と、半導体発光素子
と半導体受光素子が並列位置にあり、両素子を透光性の
シリコーン硬化体中に埋設し、シリコーン硬化体の上を
被覆する封止用樹脂面による反射硬化を利用して光学的
に結合した反射型のもの(特開昭59−204285号公報参
照)とがある。対向型のものの絶縁耐圧を向上させるた
めに、半導体発光素子と半導体受光素子の間のシリコー
ン硬化体中に、該シリコーン硬化体を発光素子側と受光
素子側に二分するように絶縁性樹脂フィルムを介在させ
たもの、すなわち、絶縁フィルム介在型(特開昭61−21
4585号公報参照)が知られている。
In a resin-encapsulated optically coupled semiconductor device, a semiconductor light-emitting element and a semiconductor light-receiving element are opposed to each other, and an opposing type in which the two elements are optically coupled by a transparent silicone cured body (Japanese Patent Laid-Open No. JP-A-59-220981), a semiconductor light emitting element and a semiconductor light receiving element are arranged in a parallel position, and both elements are embedded in a translucent cured silicone body, and a sealing resin surface covering the silicone cured body is covered. There is a reflection type optically coupled using reflection hardening (see JP-A-59-204285). In order to improve the withstand voltage of the opposed type, an insulating resin film is placed in the silicone cured body between the semiconductor light emitting element and the semiconductor light receiving element so as to bisect the silicone cured body into the light emitting element side and the light receiving element side. With an interposed structure, that is, an insulating film interposed type (JP-A-61-21)
No. 4585) is known.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

ところが、対向型の樹脂封止型光結合半導体装置、反
射型の樹脂封止型光結合半導体装置ともに光路物質層で
あるシリコーン硬化体と封止用樹脂とが一見密着してい
るが、よく観察すると離隔しているため、絶縁耐圧が低
いという問題があった。すなわち、発光素子側の外部接
続用リード線と受光素子側の外部接続用リード線の間に
高電圧を印加すると、シリコーン硬化体と封止用樹脂の
界面の隙間で放電して半導体発光素子と半導体受光素子
が破壊されたり、シリコーン硬化体と封止用樹脂の界面
で絶縁破壊が起って半導体発光素子と半導体受光素子が
破壊されるという問題があった。また、耐湿性が低いと
いう問題があった。
However, in both the opposing resin-encapsulated optically coupled semiconductor device and the reflection-type resin-encapsulated optically coupled semiconductor device, the silicone cured body, which is the optical path material layer, and the encapsulating resin seemingly adhere to each other. Then, there is a problem that the dielectric strength is low because of the separation. That is, when a high voltage is applied between the external connection lead wire on the light emitting element side and the external connection lead wire on the light receiving element side, discharge occurs in the gap between the interface between the cured silicone and the sealing resin, and the semiconductor light emitting element There has been a problem that the semiconductor light receiving element is destroyed, or dielectric breakdown occurs at the interface between the silicone cured product and the sealing resin, thereby destroying the semiconductor light emitting element and the semiconductor light receiving element. In addition, there is a problem that the moisture resistance is low.

対向型の樹脂封止型光結合半導体装置の改良品である
絶縁フィルム介在型のそれは、シリコーン硬化体と絶縁
フィルムとの密着性が十分でないため絶縁耐圧が十分で
なく、また、絶縁フィルム面で光反射されるため光伝導
効率が低いという問題があった。
The insulation-film-interposed type, which is an improved product of the opposing resin-encapsulated optical coupling semiconductor device, has insufficient withstand voltage due to insufficient adhesion between the cured silicone body and the insulation film. There is a problem that light transmission efficiency is low due to light reflection.

本発明は、かかる従来公知の樹脂封止型光結合半導体
装置の持つ問題点を解消すること、すなわち、絶縁耐圧
と耐湿性がすぐれ、光伝導効率が阻害されない樹脂封止
型光結合半導体装置およびその製造方法を提供すること
を目的とする。
The present invention solves the problems of such a conventionally known resin-encapsulated optically coupled semiconductor device, that is, a resin-encapsulated optically coupled semiconductor device having excellent withstand voltage and moisture resistance and not impairing the photoconductive efficiency. It is an object of the present invention to provide a manufacturing method thereof.

〔問題点を解決するための手段〕[Means for solving the problem]

これらの目的は、I.導電部材により外部接続用リード
線のインナーリード部に電気的に接続された半導体発光
素子と導電部材により外部接続用リード線のインナーリ
ード部に電気的に接続された半導体受光素子とが、これ
らの導電部材の少なくとも素子に近接した部分およびこ
れらのインナーリード部の少なくとも素子に近接した部
分と共に透光性のシリコーン硬化体中に接着状態で埋設
されて光学的に結合しており、該シリコーン硬化体がこ
れらのインナーリード部の残部と共に封止用樹脂により
封止成形されてなる樹脂封止型光結合半導体装置におい
て、該シリコーン硬化体が、硬化性・自己接着性シリコ
ーン組成物を硬化状態でケイ素原子結合水素原子および
/またはケイ素原子結合加水分解性基を有するように硬
化させた後、または硬化させながら紫外線を照射して形
成したものであることを特徴とする、該シリコーン硬化
体がその表面の紫外線照射処理層を介して該封止用樹脂
に接着し一体化するようにすることにより、また、II.
導電部材により外部接続用リード線のインナーリード部
に電気的に接続された半導体発光素子と導電部材により
外部接続用リード線のインナーリード部に電気的に接続
された半導体受光素子とを、これらの導電部材の少なく
とも素子に近接した部分およびこれらのインナーリード
部の素子に近接した部分と共に透光性のシリコーン硬化
体中に接着状態で埋設して光学的に結合した後、該シリ
コーン硬化体をこれらのインナーリード部の残部と共に
封止用樹脂により封止形成して樹脂封止型光結合半導体
装置を製造する方法において、該シリコーン硬化体を、
硬化性・自己接着性シリコーン組成物を硬化状態でケイ
素原子結合水素原子のおよび/またはケイ素原子結合加
水分解性基を有するように加熱下硬化させた後、または
加熱下硬化させながら紫外線を照射して形成することに
より達成される。
These objects are as follows: I. A semiconductor light-emitting element electrically connected to the inner lead portion of the external connection lead wire by a conductive member and a semiconductor electrically connected to the inner lead portion of the external connection lead wire by a conductive member. A light-receiving element is optically coupled with at least a portion of these conductive members adjacent to the element and at least a portion of these inner leads adjacent to the element in a transparent silicone cured body in an adhesive state. A resin-encapsulated optically-coupled semiconductor device in which the cured silicone is molded with a sealing resin together with the remainder of the inner leads, wherein the cured silicone is a curable / self-adhesive silicone. After curing the composition in a cured state to have silicon-bonded hydrogen atoms and / or silicon-bonded hydrolysable groups, or Characterized by being formed by irradiating ultraviolet rays while being cured, by bonding the silicone cured body to the sealing resin through an ultraviolet irradiation treatment layer on its surface so as to be integrated therewith. , And II.
The semiconductor light emitting element electrically connected to the inner lead portion of the external connection lead wire by the conductive member and the semiconductor light receiving element electrically connected to the inner lead portion of the external connection lead wire by the conductive member are referred to as these. After at least a portion of the conductive member close to the element and a portion of the inner lead portion close to the element are buried in a translucent silicone cured body in an adhesive state and optically bonded, the silicone cured body is removed. In a method of manufacturing a resin-sealed optically coupled semiconductor device by sealing and forming with a sealing resin together with the remainder of the inner lead portion,
The curable / self-adhesive silicone composition is cured under heating so as to have a silicon-bonded hydrogen atom and / or a silicon-bonded hydrolyzable group in a cured state, or is irradiated with ultraviolet rays while being cured under heating. It is achieved by forming.

本発明の樹脂封止型光結合半導体装置は、対向型と反
射型を代表例とする。
The opposing type and the reflection type are typical examples of the resin-sealed optical coupling semiconductor device of the present invention.

対向型は、外部接続用リード線のインナーリード部と
別のインナーリード部が距離をおいて平行にならんでお
り、一方のインナーリード部の内面上に半導体発光素子
が載置されており、他方のインナーリード部の内面上に
半導体受光素子が載置されており、半導体発光素子の能
動領域面と半導体受光素子の能動領域面とが向き合って
いる。
In the facing type, the inner lead portion of the external connection lead wire and another inner lead portion are arranged in parallel at a distance, and the semiconductor light emitting element is mounted on the inner surface of one inner lead portion, and the other The semiconductor light receiving element is mounted on the inner surface of the inner lead portion, and the active area surface of the semiconductor light emitting element and the active area surface of the semiconductor light receiving element face each other.

そして、半導体発光素子は導電部材、例えば、ボンデ
ィングワイヤにより半導体素子が載置されていないイン
ナーリード部に電気的に接続され、半導体発光素子は導
電部材、例えば、ボンディングワイヤにより半導体素子
が載置されていない別のインナーリード部に電気的に接
続されている。
The semiconductor light emitting element is electrically connected to an inner lead portion on which the semiconductor element is not mounted by a conductive member, for example, a bonding wire, and the semiconductor light emitting element is mounted on the inner lead portion by a conductive member, for example, a bonding wire. Not electrically connected to another inner lead.

反射型は、外部接続用リード線のインナーリード部と
別のインナリード部が距離をおいて略同一高さにならん
でおり、一方のインナーリード部の上面上に半導体発光
素子が載置され、他方のインナーリード部の上面上にも
半導体受光素子が載置されており、半導体発光素子の能
動領域面と半導体受光素子の能動領域面が同一方向を向
いている。
In the reflection type, the inner lead portion of the external connection lead wire and another inner lead portion are arranged at substantially the same height at a distance, and the semiconductor light emitting element is mounted on the upper surface of one of the inner lead portions, The semiconductor light receiving element is also mounted on the upper surface of the other inner lead portion, and the active area surface of the semiconductor light emitting element and the active area surface of the semiconductor light receiving element face in the same direction.

そして、半導体発光素子は導電部材、例えば、ボンデ
ィングワイヤにより半導体素子が載置されていないイン
ナーリード部に電気的に接続され、半導体受光素子は導
電部材、例えばボンディングワイヤにより半導体素子が
装置されていない別のインナーリード部に電気的に接続
されている。
The semiconductor light emitting element is electrically connected to an inner lead portion on which the semiconductor element is not mounted by a conductive member, for example, a bonding wire, and the semiconductor light receiving element is not provided with the semiconductor element by a conductive member, for example, a bonding wire. It is electrically connected to another inner lead part.

対向型,反射型のいずれも、半導体発光素子,導電部
材,例えば、ボンディングワイヤのうち少なくとも半導
体発光素子に近接した部分および半導体発光素子が載置
されたインナーリード部のうち少なくとも半導体発光素
子に近接した部分、ならびに、半導体発光素子,導電部
材,例えば、ボンディングワイヤのうち少なくとも半導
体受光素子に近接した部分および半導体受光素子が載置
されたインナーリード部のうち少なくとも半導体受光素
子に近接した部分は、同一の透光性のシリコーン硬化体
中に接着状態で埋設されている。
In each of the opposed type and the reflective type, a semiconductor light emitting element and a conductive member, for example, at least a portion of a bonding wire close to the semiconductor light emitting element and at least an inner lead portion on which the semiconductor light emitting element is mounted is close to the semiconductor light emitting element. And a portion of the semiconductor light emitting element and the conductive member, for example, at least a portion of the bonding wire close to the semiconductor light receiving element and a portion of the inner lead portion on which the semiconductor light receiving element is mounted, at least a portion close to the semiconductor light receiving element, It is embedded in the same translucent silicone cured product in an adhesive state.

換言すれば透光性のシリコーン硬化体は、半導体発光
素子,導電部材,例えば、ボンディングワイヤのうち少
なくとも半導体発光素子に近接した部分および半導体発
光素子が載置されたインナーリード部のうち少なくとも
半導体発光素子に近接した部分、ならびに、半導体受光
素子,導電部材,例えば、ボンディングワイヤのうち少
なくとも半導体受光素子に近接した部分および半導体受
光素子が載置されたインナーリード部のうち少なくとも
半導体受光素子に近接した部分に接着している。
In other words, the light-transmitting cured silicone material is used as a semiconductor light-emitting element, a conductive member, for example, at least a portion of a bonding wire close to the semiconductor light-emitting element and at least a semiconductor light-emitting part of an inner lead portion on which the semiconductor light-emitting element is mounted. A portion close to the element, and at least a portion of the semiconductor light-receiving element and the conductive member, for example, a bonding wire near the semiconductor light-receiving element, and at least a portion of the inner lead portion on which the semiconductor light-receiving element is mounted, and Glued to the part.

なお、対向型,反射型ともに導電部材はシリコーン硬
化体中に全部埋設されていてもよい。また、半導体発光
素子が載置されたインナーリード部,半導体受光素子が
載置されたインナーリード部ともに大部分がシリコーン
硬化体中に埋設されていてもよい。また、導電部材が接
続したインナーリード部は、ともに大部分がシリコーン
硬化体中に埋設されていてもよい。対向型,反射型とも
に、シリコーン硬化体の表面は紫外線照射処理されてい
る。
The conductive member may be entirely embedded in the cured silicone body for both the facing type and the reflecting type. Most of the inner lead portion on which the semiconductor light emitting element is mounted and the inner lead portion on which the semiconductor light receiving element is mounted may be mostly buried in the cured silicone body. In addition, most of the inner leads connected to the conductive member may be embedded in the cured silicone body. In both the facing type and the reflection type, the surface of the cured silicone body is subjected to an ultraviolet irradiation treatment.

表面にこの紫外線照射処理層を有するシリコーン硬化
体は、インナーリード部の残部および場合により導電部
材の残部と共に封止用樹脂により樹脂成形されており、
紫外線照射処理層を介して封止用樹脂と接着し一体化し
ている。
The cured silicone body having the ultraviolet irradiation treatment layer on its surface is resin-molded with a sealing resin together with the remaining inner lead portion and optionally the remaining conductive member,
It is adhered and integrated with the sealing resin via the ultraviolet irradiation treatment layer.

ここで、接着一体化とは、熱的ストレスや機械的スト
レスを負荷しても、シリコーン硬化体と封止用樹脂がそ
の界面で剥離することがなく、むりやりひきはがそうと
するとシリコーン硬化体と封止用樹脂のいずれかが破壊
するほど強固に接着していることをいう。
Here, the bonding and integration means that even when a thermal stress or a mechanical stress is applied, the silicone cured body and the sealing resin do not peel at the interface, and if the silicone cured body is to be peeled off, It means that any one of the sealing resin and the sealing resin is so strongly bonded that it is broken.

透光性のシリコーン硬化体は、半導体発光素子から発
せられた光が半導体受光素子に到達し、信号として感知
できる程度の透光性を有していれば着色されていてもよ
い。
The translucent cured silicone body may be colored as long as the light emitted from the semiconductor light emitting element reaches the semiconductor light receiving element and has a light transmissivity enough to be perceived as a signal.

また、透光性のシリコーン硬化体は、硬化性・自己接
着性シリコーン組成物を室温下放置,加熱,赤外線照
射,電子線照射など、いずれかひとつ以上の手段により
硬化させたものであり、硬化前の形態は常温において液
状,ペースト状,餅状,粉粒状,固形状などのいずれで
あってもよい。透光性のシリコーン硬化体は、常温にお
いて硬質レジン状,ゴム状,ゲル状,これらの中間的性
能のいずれであってもよいが、絶縁耐圧の点で硬質レン
ジ状がもっとも好ましく、ついでゴム状が好ましい。
The translucent silicone cured product is obtained by curing a curable / self-adhesive silicone composition by one or more means such as standing at room temperature, heating, infrared irradiation, and electron beam irradiation. The former form may be any of liquid, paste, rice cake, powder and granule, solid at room temperature. The translucent silicone cured product may be in the form of a hard resin, rubber, or gel at room temperature, or any of these intermediate properties, but the hard range is most preferable in terms of dielectric strength, and the rubber-like Is preferred.

シリコーン硬化体は、硬化状態でケイ素原子結合水
素原子を有するシリコーン硬化体,硬化状態でケイ素
原子結合加水分解性基を有するシリコーン硬化体,硬
化状態でケイ素原子結合水素原子とケイ素原子結合加水
分解性基を有するシリコーン硬化体であることが必要で
ある。
Silicone cured products include silicone cured products having silicon-bonded hydrogen atoms in the cured state, silicone cured products having silicon-bonded hydrolyzable groups in the cured condition, and silicon-bonded hydrogen atoms and silicon-bonded hydrolyzable compounds in the cured condition. It must be a cured silicone having a group.

のシリコーン硬化体としては、例えばビニル基含有
オルガノポリシロキサン,オルガノハイドロジエンポリ
シロキサンおよび白金化合物触媒を主剤とし、ケイ素原
子結合ビニル基に対して、ケイ素原子化合水素原子が大
過剰になるような比率で配合した酸化性・自己接着性シ
リコーン組成物を硬化させたものがある。
The silicone cured product of (1) is mainly composed of, for example, a vinyl group-containing organopolysiloxane, an organohydrogenpolysiloxane and a platinum compound catalyst, and has a ratio such that a silicon compound-bonded hydrogen atom has a large excess with respect to a silicon atom-bonded vinyl group. Oxidized and self-adhesive silicone compositions formulated in the above.

のシリコーン硬化体としては、例えば、ビニル基含
有オルガノポリシロキサン,オルガノハイドロジエンポ
リシロキサン,反応性接着促進剤(例えば、ビニルトリ
アルコキシシラン,アリルトリアルコキシシランもしく
はr−メタクロキシプロピルトリアルコキシシラン)お
よび白金化合物触媒を主剤とする硬化性・自己接着性シ
リコーン組成物を硬化させたものがある。
Examples of the silicone cured product include: a vinyl group-containing organopolysiloxane, an organohydrogenpolysiloxane, a reactive adhesion promoter (for example, vinyltrialkoxysilane, allyltrialkoxysilane or r-methacryloxypropyltrialkoxysilane) and There is one obtained by curing a curable / self-adhesive silicone composition containing a platinum compound catalyst as a main component.

のシリコーン硬化体としては、例えば、ビニル基含
有オルガノポリシロキサン,オルガノハイドロジエンポ
リシロキサン・反応性接着促進剤(例えば、ビニルトリ
アルコキシシランアリルトリアルコキシシランもしくは
r−メタクリロキシプロピルトリアルコキシシラン)お
よび白金化合物触媒を主剤とし、ケイ素原子結合ビニル
基に対してケイ素原子結合水素原子が大過剰になるよう
な比率で配合した硬化性・自己接着性シリコーン組成物
を硬化させたものがある。
Examples of the silicone cured product of the above include, for example, a vinyl group-containing organopolysiloxane, an organohydrogenpolysiloxane and a reactive adhesion promoter (for example, vinyl trialkoxysilane allyl trialkoxysilane or r-methacryloxypropyl trialkoxysilane) and platinum. Curable and self-adhesive silicone compositions containing a compound catalyst as a main component and blended in such a ratio that silicon-bonded hydrogen atoms are excessively large relative to silicon-bonded vinyl groups are cured.

これらシリコーン組成物は、付加反応遅延剤,補強充
填剤,増量充填剤,耐熱剤等を含有してもよいが、透光
性を妨げないものであることが望ましい。また、半導体
特性に悪影響を及ぼす不純物、特にアルカリ金属,ハロ
ゲンイオンの含有量は1ppm以下が望ましく、α線による
ソフトエラー防止の観点からウラン,トリウム等の放射
性元素の総合含有量は0.1ppb以下が望ましい。
These silicone compositions may contain an addition reaction retarder, a reinforcing filler, a bulking filler, a heat-resistant agent, and the like, but are preferably those which do not hinder the light transmission. Also, the content of impurities which adversely affect semiconductor characteristics, particularly alkali metal and halogen ions, is desirably 1 ppm or less, and the total content of radioactive elements such as uranium and thorium is 0.1 ppb or less from the viewpoint of preventing soft errors due to α rays. desirable.

透光性のシリコーン硬化体は、半導体発光素子と半導
体受光素子の間の光路部を完全に充填していることが必
要である。
It is necessary that the translucent cured silicone material completely fills the optical path between the semiconductor light emitting element and the semiconductor light receiving element.

対向型での光路距離は通常100μm〜20,000μmであ
り、半導体発光素子からの信号を効率よく半導体受光素
子に伝えるためには、可能な限り小さい方が望ましい。
反射型におけるシリコーン硬化体の厚みは、両半導体素
子表面,導電部材の半導体素子に近接した部分、両半導
体素子が載置されたインナーリード部のうち少なくとも
両半導体素子に近接した部分を確実に被覆できる程度で
あればよく、数十μm以上であることが好ましく、通常
10〜10,000μm位である。
The optical path distance in the facing type is usually 100 μm to 20,000 μm, and is preferably as small as possible in order to efficiently transmit a signal from the semiconductor light emitting element to the semiconductor light receiving element.
The thickness of the silicone cured body in the reflection type ensures that the surface of both semiconductor elements, the portion of the conductive member close to the semiconductor element, and at least the portion of the inner lead portion on which both semiconductor elements are mounted are close to both semiconductor elements As long as it is possible, it is preferably several tens μm or more, and usually
It is about 10 to 10,000 μm.

シリコーン硬化体の表面が紫外線照射処理されている
ことは、本発明の重要な構成要素であり、該シリコーン
硬化体の表面を被覆する封止用樹脂との接着一体化を確
実にするのに極めて重要である。
It is an important component of the present invention that the surface of the cured silicone body is subjected to the ultraviolet irradiation treatment, and is extremely important for ensuring adhesion and integration with the sealing resin covering the surface of the cured silicone body. is important.

照射処理に使用する紫外線は、通常の高強度紫外線で
あり、光源としては、例えば超高圧水銀灯,高圧水銀灯
やキセノン水銀灯がある。また、紫外線の照射量は、シ
リコーン硬化体の性質に依存して変化するが、通常、10
0〜3000Wの電力を有する紫外線ランプにより、約300〜
1秒間照射すればよいが、180〜30秒間の照射が好まし
い。
Ultraviolet rays used for the irradiation treatment are ordinary high-intensity ultraviolet rays, and examples of the light source include an ultra-high pressure mercury lamp, a high pressure mercury lamp, and a xenon mercury lamp. Further, the irradiation amount of the ultraviolet ray varies depending on the properties of the cured silicone material, but is usually 10
About 300 ~ by UV lamp with power of 0 ~ 3000W
Irradiation may be performed for 1 second, but irradiation for 180 to 30 seconds is preferable.

また、シリコーン硬化体が熱硬化性・自己接着性シリ
コーン組成物の硬化物から形成される場合は、該シリコ
ーン組成物を加熱しつつ該表面に紫外線を照射してもよ
い。この加熱は通常の加熱によってもよいし、紫外線照
射に使用する光源ランプの熱によってもよい。
When the cured silicone is formed from a cured product of a thermosetting / self-adhesive silicone composition, the surface may be irradiated with ultraviolet rays while heating the silicone composition. This heating may be performed by ordinary heating or by the heat of a light source lamp used for ultraviolet irradiation.

次に、封止用樹脂は、半導体の特性・信頼性に悪影響
を及ぼさない有機樹脂であればよく、ポリフェニレンサ
ルファイド樹脂に代表される熱可塑性樹脂,エポキシ樹
脂,シリコーン樹脂,フェノール樹脂に代表される熱硬
化性樹脂などがある。封止用樹脂の封止に供する前の形
態は、常温において、液状,ペースト状,固形状,粉状
等のいずれでもよく、いわゆる樹脂の他に充填剤、その
他添加剤を含有することが多く、熱硬化性樹脂について
は、さらに硬化剤を含有している。
Next, the encapsulating resin may be any organic resin that does not adversely affect the characteristics and reliability of the semiconductor, such as a thermoplastic resin represented by polyphenylene sulfide resin, an epoxy resin, a silicone resin, and a phenol resin. There are thermosetting resins and the like. The form of the sealing resin before being provided for sealing may be any of liquid, paste, solid, and powder at room temperature, and often contains a filler and other additives in addition to the so-called resin. The thermosetting resin further contains a curing agent.

本発明の樹脂封止型光結合半導体装置を製造するに
は、対向型については、例えば、半導体受光素子がイン
ナーリード部に載置され、半導体受光素子と別のインナ
ーリード部が導電部材であるボンディングワイヤ、例え
ば、金線またはアルミ線により電気的に接続されたもの
を用意しておき、半導体受光素子,導電部材のうち少な
くとも半導体受光素子に近接した部分および半導体受光
素子が載置されたインナーリードのうち少なくとも半導
体受光素子に近接した部分を被覆するように前述の硬化
性・自己接着性シリコーン組成物を適用し、次に、半導
体発光素子がインナーリード部に載置され、半導体発光
素子と別のインナーリード部が導電部材であるボンディ
ングワイヤ、例えば、金線またはアルミ線により電気的
に接続されたものを、半導体発光素子の能動領域面が半
導体受光素子の能動領域面に対向するように、前記硬化
性シリコーン組成物上にのせ、次いで該硬化性シリコー
ン組成物を加熱下を硬化させて、生成したシリコーン硬
化体の表面に紫外線照射処理するか、該硬化性・自己接
着性シリコーン組成物に紫外線照射しつつ加熱下硬化さ
せて表面に紫外線照射処理層を有する透光性のシリコー
ン硬化体を形成、次いで該シリコーン硬化体,インナー
リード部の残部および場合により導電部材の残部を封止
用樹脂により封止成形すればよい。
In order to manufacture the resin-sealed optical coupling semiconductor device of the present invention, for the facing type, for example, the semiconductor light receiving element is mounted on the inner lead portion, and the inner lead portion different from the semiconductor light receiving element is a conductive member. A bonding wire, for example, one electrically connected by a gold wire or an aluminum wire is prepared, and at least a portion of the semiconductor light receiving element and the conductive member which is close to the semiconductor light receiving element and an inner member on which the semiconductor light receiving element is mounted. The curable / self-adhesive silicone composition described above is applied so as to cover at least a portion of the lead close to the semiconductor light receiving element, and then the semiconductor light emitting element is mounted on the inner lead portion, and the semiconductor light emitting element and Another inner lead portion is a bonding wire that is a conductive member, for example, one electrically connected by a gold wire or an aluminum wire, The curable silicone composition is placed on the curable silicone composition such that the active area surface of the conductive light emitting element faces the active area surface of the semiconductor light receiving element, and then the curable silicone composition is cured under heating to form the cured silicone. The surface of the body is irradiated with ultraviolet light, or the curable / self-adhesive silicone composition is cured by heating while irradiating with ultraviolet light to form a transparent silicone cured product having an ultraviolet irradiation treatment layer on the surface. The silicone cured body, the remainder of the inner lead portion and, if necessary, the remainder of the conductive member may be molded with a sealing resin.

あるいは、半導体発光素子がインナーリード部に載置
され、半導体発光素子と別のインナーリード部が導電部
材により電気的に接続されたものと、半導体受光素子が
インナーリード部に載置され、半導体受光素子と別のイ
ンナーリード部が導電部材により電気的に接続されたも
のを、半導体発光素子の能動領域面と半導体受光素子の
能動領域面が距離をおいて対向するように配置し、次い
で両素子間の空隙に硬化・自己接着性シリコーン組成物
を充填し、次いで以下前記同様の操作を行なってもよ
い。
Alternatively, the semiconductor light-emitting element is mounted on the inner lead portion, the semiconductor light-emitting element and another inner lead portion are electrically connected by a conductive member, and the semiconductor light-receiving element is mounted on the inner lead portion, and the semiconductor light-receiving element is mounted. An element and another inner lead portion electrically connected by a conductive member are arranged so that the active area surface of the semiconductor light emitting element and the active area surface of the semiconductor light receiving element face each other with a distance therebetween. The space between them may be filled with the cured / self-adhesive silicone composition, and then the same operation as described above may be performed.

半導体発光素子がインナーリード部に載置され、半導
体発光素子とインナーリード部が導電部材により電気的
に接続されたものと、半導体受光素子がインナーリード
部に載置され、半導体受光素子とインナーリード部が導
電部材により電気的に接続されたものとを、両半導体素
子の能動領域面が同一方向を向くように、かつ、略同一
高さになるように並列し、両半導体素子,両導電部材の
うち少なくとも両半導体素子に近接した部分および両半
導体素子の載置された両インナーリード部のうち少なく
とも両半導体素子に近接した部分が硬化性・自己接着性
シリコーン組成物中に埋設されるように硬化性・自己接
着性シリコーン組成物を適用し、次いで該硬化性シリコ
ーン組成物を加熱下硬化させて生成したシリコーン硬化
体の表面を紫外線照射処理するか、該硬化性シリコーン
組成物に紫外線照射しつつ加熱下硬化させ、次いで該シ
リコーン硬化体,インナーリード部の残部および場合に
より導電部材の残部を封止用樹脂により封止成形すれば
よい。
A semiconductor light emitting device is mounted on an inner lead portion, and a semiconductor light emitting device and an inner lead portion are electrically connected by a conductive member, and a semiconductor light receiving device is mounted on the inner lead portion. The parts electrically connected by a conductive member are arranged in parallel so that the active regions of both semiconductor elements face the same direction and have substantially the same height. At least a portion close to both semiconductor elements and at least a part close to both semiconductor elements of both inner lead portions mounted on both semiconductor elements are embedded in the curable / self-adhesive silicone composition. A curable / self-adhesive silicone composition is applied, and then the curable silicone composition is cured by heating, and the surface of the cured silicone product is irradiated with ultraviolet light. The composition may be treated or cured by heating while irradiating the curable silicone composition with ultraviolet rays, and then the silicone cured product, the remaining portion of the inner lead portion, and optionally the remaining portion of the conductive member may be sealed and molded with a sealing resin. .

ここで使用する硬化性・自己接着性シリコーン組成物
は、生産性の点で熱硬化・自己接着性のものが好まし
い。
The curable / self-adhesive silicone composition used here is preferably a thermosetting / self-adhesive one from the viewpoint of productivity.

硬化性・自己接着性シリコーン組成物の適用方法に
は、滴下,注入,塗布,噴霧,浸漬などがあり、封止樹
脂による封止成形の方法には、トランスファー成形,射
出成形,粉体塗装,ケース内への注入などがある。本発
明の樹脂封止型光結合半導体装置は、コンピュータ,通
信機器などにきわめて有効である。
Methods for applying the curable / self-adhesive silicone composition include dropping, pouring, coating, spraying, and dipping. Methods for encapsulating with a sealing resin include transfer molding, injection molding, powder coating, There is injection into the case. The resin-encapsulated optically coupled semiconductor device of the present invention is extremely effective for computers, communication devices, and the like.

〔実施例〕〔Example〕

次に、本発明の実施例と従来技術を示す比較例をかか
げる。「部」とあるのは重量部を意味する。粘度は25℃
における値である。
Next, an example of the present invention and a comparative example showing the prior art will be described. "Parts" means parts by weight. Viscosity is 25 ° C
Is the value at.

初期耐圧試験では、半導体発光素子を載置した外部接
続用リード線と半導体受光素子を記載した外部接続用リ
ード線との間に5.0KVの電圧を印加して良品率を算出し
た。
In the initial withstand voltage test, a non-defective product rate was calculated by applying a voltage of 5.0 KV between the external connection lead wire on which the semiconductor light emitting element was mounted and the external connection lead wire on which the semiconductor light receiving element was described.

絶縁耐圧試験では、両リード線間の印加電圧を3.0KV,
5.0KV,8.0KV,10.0KV各10秒間として良品率を算出した。
In the dielectric strength test, the applied voltage between both lead wires was 3.0KV,
The non-defective rate was calculated as 5.0 KV, 8.0 KV, 10.0 KV for 10 seconds each.

耐湿試験では、半導体装置を(1)120℃,2気圧に150
時間または(2)120℃,2気圧に300時間放置し、次いで
両リード線間に5KVの電圧を10秒間印加して良品率を算
出した。
In the moisture resistance test, the semiconductor device was (1) heated to 120 ° C and 2 atm.
Or (2) left at 120 ° C. and 2 atm for 300 hours, and then applied a voltage of 5 KV between both lead wires for 10 seconds to calculate the yield rate.

<実施例1> 第1図は、本発明の一実施例の反射型の樹脂封止型光
結合半導体装置の断面図である。この半導体装置は、半
導体発光素子1,金製のボンディングワイヤ3のうち半導
体発光素子1に近接した部分およびインナーリード部8
のうち半導体発光素子1に近接した部分、半導体発光素
子2,金製のボンディングワイヤ3のうち半導体受光素子
2に近接した部分およびインナーリード部8のうち半導
体受光素子2に近接した部分に、 (a)両末端ジメチルビニルシロキシ基封鎖メチルフェ
ニルシロキサン・ジメチルシロキサン共重合体(メチル
フェニルシロキサン単位とジメチルシロキサン単位のモ
ル比は1:9,粘度2000c.p.) 100部 (b)両末端トリメチルシロキシ基封鎖メチルハイドロ
ジエンポリシロキサン(粘度20c.p.) 3.0部 (c)アリルトリメトキシシラン 2.0部 (d)塩化白金酸とジビニルテトラメチルジシロキサン
の錯塩 白金原子として組成物全体の5.0ppmとなるような量 からなる付加反応硬化型・自己接着性シリコーンゴム組
成物〔ケイ素原子結合水素原子と(a)成分中のビニル
基のモル比は2:1である〕と滴下し、100℃に10分間保っ
て硬化させ、生成した透光性のシリコーンゴム硬化体5
を3000Wの超高圧水銀灯から6cmの距離に置き、90秒間紫
外線を照射してシリコーンゴム硬化体5の表面に紫外線
照射処理層6を形成し、次いでボンディングワイヤ3の
残部,インナーリード部8の残部およびボンディングワ
イヤ3の接続したインナーリード部(図示せず)ととも
に、市販の封止用エポキシ樹脂7により封止成形するこ
とにより製造されている。
Embodiment 1 FIG. 1 is a cross-sectional view of a reflective resin-sealed optical coupling semiconductor device according to one embodiment of the present invention. This semiconductor device includes a semiconductor light emitting element 1, a portion of a gold bonding wire 3 close to the semiconductor light emitting element 1 and an inner lead portion 8.
Among the portions close to the semiconductor light-emitting element 1, the semiconductor light-emitting element 2, the portion of the gold bonding wire 3 close to the semiconductor light-receiving element 2, and the part of the inner lead portion 8 close to the semiconductor light-receiving element 2. a) A dimethylvinylsiloxy group-blocked methylphenylsiloxane-dimethylsiloxane copolymer at both ends (molar ratio of methylphenylsiloxane unit to dimethylsiloxane unit is 1: 9, viscosity 2000 c.p.) 100 parts (b) Trimethylsiloxy at both ends Group-blocked methylhydrogenpolysiloxane (viscosity: 20 c.p.) 3.0 parts (c) Allyltrimethoxysilane 2.0 parts (d) Complex salt of chloroplatinic acid and divinyltetramethyldisiloxane It becomes 5.0 ppm of the total composition as platinum atoms. Addition-curable, self-adhesive silicone rubber composition [silicon-bonded hydrogen atom and (a) The molar ratio of the vinyl groups in the minute 2: dropwise with 1 a is], and cured at a constant temperature of 100 ° C. 10 min, the resulting translucent silicone rubber cured product 5
Is placed at a distance of 6 cm from a 3000 W ultra-high pressure mercury lamp and irradiated with ultraviolet light for 90 seconds to form an ultraviolet irradiation treatment layer 6 on the surface of the cured silicone rubber body 5, and then the remaining portion of the bonding wire 3 and the remaining portion of the inner lead portion 8. It is manufactured by sealing molding with a commercially available sealing epoxy resin 7 together with an inner lead portion (not shown) to which the bonding wire 3 is connected.

透光性のシリコーンゴム硬化体5は、半導体発光素子
1,半導体発光素子2,ボンディングワイヤ3の両素子に近
接した部分およびインナーリード部8の両素子に近接し
た部分に強固に接着するとともに、紫外線照射処理層6
上を被覆する封止用エポキシ樹脂7と強固に接着して一
体化していた。
The translucent cured silicone rubber 5 is a semiconductor light emitting device.
1, the semiconductor light emitting element 2 and the bonding wire 3 are firmly adhered to the portion adjacent to both elements and the inner lead portion 8 to the portion adjacent to both elements.
It was firmly bonded and integrated with the sealing epoxy resin 7 covering the top.

この樹脂封止型光結合半導体装置は、初期耐圧試験で
は100%の良品率を示し、絶縁耐圧試験では10KVを印加
しても95%の良品率を維持した(第5図参照)。
This resin-encapsulated optically coupled semiconductor device exhibited a non-defective rate of 100% in the initial withstand voltage test, and maintained a non-defective rate of 95% in the withstand voltage test even when 10 KV was applied (see FIG. 5).

不良品解析により、電気的破壊はシリコーンゴム硬化
体5の内部で起っていることが判明した。
The defective product analysis revealed that the electrical breakdown occurred inside the silicone rubber cured body 5.

耐湿試験では第1表に示す結果を得た。 The results shown in Table 1 were obtained in the moisture resistance test.

なお、シリコーンゴム硬化体自体の絶縁破壊強さは10
KV/mmであった。
The dielectric strength of the cured silicone rubber itself is 10
It was KV / mm.

<比較例1> 第2図は、従来の反射型の樹脂封止型光結合半導体装
置の断面図である。この半導体装置は、半導体発光素子
1,半導体受光素子2,金製のボンディングワイヤ3の両素
子に近接した部分およびインナーリード部8の両素子に
近接した部分に、実施例1の(a)成分100部、(b)
成分1.0部および(d)成分が白金原子として組成物全
体の5.0ppmとなるような量のみからなる付加反応硬化型
シリコーンゴム組成物を滴下し、100℃に10分間保って
硬化させ、生成した透光性のシリコーンゴム硬化体5を
ボンディングワイヤ3の残部,インナーリード部8の残
部およびボンディングワイヤ3の接続したインナーリー
ド部(図示せず)とともに、市販の封止用エポキシ樹脂
7により封止形成することにより製造されている。
<Comparative Example 1> FIG. 2 is a cross-sectional view of a conventional reflection-type resin-sealed optical coupling semiconductor device. This semiconductor device is a semiconductor light emitting element
1, 100 parts of the component (a) of Example 1 and (b) in the portion of the semiconductor light receiving element 2 and the gold bonding wire 3 adjacent to both elements and the portion of the inner lead portion 8 adjacent to both elements.
An addition reaction-curable silicone rubber composition consisting of only 1.0 part of the component and the amount of the component (d) as platinum atoms of 5.0 ppm of the total composition as platinum atoms was added dropwise, and the composition was cured by keeping the composition at 100 ° C. for 10 minutes. The translucent silicone rubber cured body 5 is sealed with a commercially available sealing epoxy resin 7 together with the remaining portion of the bonding wire 3, the remaining portion of the inner lead portion 8, and the inner lead portion (not shown) to which the bonding wire 3 is connected. It is manufactured by forming.

透光性のシリコーンゴム硬化体5は、半導体発光素子
1,半導体受光素子2,ボンディングワイヤ3の両素子に近
接した部分およびインナーリード部8の両素子に近接し
た部分にわずかに接着するとともに、その上を被覆する
封止用エポキシ樹脂7と一見密接していたが、顕微鏡で
観察すると微細な隙間があり、接着していなかった。
The translucent cured silicone rubber 5 is a semiconductor light emitting device.
1, the semiconductor light receiving element 2 and the bonding wire 3 are slightly adhered to the portion close to both elements and the inner lead portion 8 to the portion close to both elements, and seemingly closely contact with the sealing epoxy resin 7 covering the upper portion. However, when observed with a microscope, there were fine gaps and no adhesion was observed.

この樹脂封止型光結合半導体装置は、初期耐圧試験で
は75%の良品率を示し、絶縁耐圧試験では8KV印加で良
品率は50%であった(第5図参照)。
This resin-encapsulated optically coupled semiconductor device showed a good product rate of 75% in the initial withstand voltage test, and a good product rate of 50% with the application of 8 KV in the withstand voltage test (see FIG. 5).

不良品解析の結果、電気的破壊はシリコーンゴム硬化
体5と封止用エポキシ樹脂7の界面で起っていることが
判明した。耐圧試験では第1表に示す結果を得た。
As a result of the defective product analysis, it was found that the electrical breakdown occurred at the interface between the cured silicone rubber 5 and the epoxy resin 7 for sealing. The results shown in Table 1 were obtained in the pressure resistance test.

なお、シリコーンゴム硬化体自体の絶縁破壊強さは1
1.2KV/mmであった。
The dielectric breakdown strength of the cured silicone rubber itself is 1
It was 1.2 KV / mm.

<実施例2> 実施例1の樹脂封止型光結合半導体装置の製造方法に
おいて、付加反応硬化型・自己接着性シリコーンゴム組
成物として (a)両末端ジメチルビニルシロキシ基封鎖メチルフェ
ニルシロキサン・ジメチルシロキサン共重合体(ジメチ
ルシロキサン単位とメチルフェニルシロキサン単位のモ
ル比は9:1,粘度2000c.p.)80部と比表面積200m2/gの疎
水化煙霧状シリカ20部の混合物(粘度95000c.p.)100部 (b)両末端トリメチルシロキシ基封鎖メチルハイドロ
ジエンポリシロキサン(粘度20c.p.)4.0部 (c)塩化白金酸とジビニルテトラメチルジシロキサン
の錯塩 白金原子として組成物全体の5.0ppmとなるような量 からなるもの〔ケイ素原子結合水素原子と(a)成分中
のビニル基のモル比は4:1である〕を使用し、硬化条件
を150℃,1時間とし、透光性のシリコーンゴムの硬化体
5と超高圧水銀灯の距離を15cmとし、紫外線照射時間を
60秒間とした他は実施例と同一の条件で反射型の樹脂封
止型光結合半導体装置を製造した。
<Example 2> In the method of manufacturing the resin-sealed optically coupled semiconductor device of Example 1, the addition reaction-curable, self-adhesive silicone rubber composition was prepared as follows: (a) Methylphenylsiloxane-dimethyl-terminated at both ends dimethylvinylsiloxy group A mixture of 80 parts of a siloxane copolymer (the molar ratio of dimethylsiloxane units to methylphenylsiloxane units is 9: 1, viscosity 2000 c.p.) and 20 parts of hydrophobized fumed silica having a specific surface area of 200 m 2 / g (viscosity 95,000 c.p. p.) 100 parts (b) 4.0 parts of methylhydrogen polysiloxane (viscosity 20 c.p.) capped with a trimethylsiloxy group at both terminals (c) Complex salt of chloroplatinic acid and divinyltetramethyldisiloxane 5.0 parts of the total composition as platinum atoms The amount is set to be ppm (the molar ratio of silicon-bonded hydrogen atoms to vinyl groups in component (a) is 4: 1). A cured body 5 of the sex of the silicone rubber the distance of the super-high pressure mercury lamp and 15cm, the ultraviolet irradiation time
A reflection-type resin-encapsulated optically coupled semiconductor device was manufactured under the same conditions as in the example except that the time was set to 60 seconds.

透光性のシリコーンゴム硬化体5は、半導体発光素子
1,半導体受光素子2,ボンディングワイヤ3の両素子に近
接した部分およびインナーリード部8の両素子に近接し
た部分に強固に接着するとともに、紫外線照射処理層6
上を被覆する封止用エポキシ樹脂7と強固に接着して一
体化していた。
The translucent cured silicone rubber 5 is a semiconductor light emitting device.
1, the semiconductor light receiving element 2 and the bonding wire 3 are firmly adhered to the portion close to both elements and the inner lead portion 8 to the portion close to both elements.
It was firmly bonded and integrated with the sealing epoxy resin 7 covering the top.

この樹脂封止型光結合半導体装置は、初期耐圧試験で
は100%の良品率を示し、絶縁耐圧試験では10KVを印加
しても95%の良品率を維持した。
This resin-encapsulated optically coupled semiconductor device exhibited a good product rate of 100% in the initial withstand voltage test, and maintained a good product rate of 95% in the dielectric withstand voltage test even when 10 KV was applied.

不良品解析の結果、電気的破壊はシリコーンゴム硬化
体5内部で発生していることが判明した。
As a result of the defective product analysis, it was found that the electrical breakdown occurred inside the cured silicone rubber 5.

耐湿試験では第1表に示す結果を得た。 The results shown in Table 1 were obtained in the moisture resistance test.

なお、シリコーンゴム硬化体自体の絶縁破壊強さは15
KV/mmであった。
The dielectric strength of the cured silicone rubber itself is 15
It was KV / mm.

<比較例2> 実施例2の反射型の樹脂封止型光結合半導体装置の製
造方法において、透光性のシリコーンゴム硬化体5の紫
外線照射処理を省略した他は実施例2と同一の条件で反
射型の樹脂封止型光結合半導体装置を製造した。
<Comparative Example 2> The same conditions as in Example 2 except that the ultraviolet irradiation treatment of the translucent cured silicone rubber 5 was omitted in the method of manufacturing the reflective resin-sealed optical coupling semiconductor device of Example 2 In this way, a reflection-type resin-sealed optical coupling semiconductor device was manufactured.

透光性のシリコーンゴム硬化体5は、半導体発光素子
1,半導体受光素子2,ボンディングワイヤ3の両素子に近
接した部分およびインナーリード部8の両素子に近接し
た部分に強固に接着していたが、封止用エポキシ樹脂7
とは一見密接しているが、顕微鏡でよく観察すると所々
微細な隙間があり、接着していなかった。
The translucent cured silicone rubber 5 is a semiconductor light emitting device.
1, the semiconductor light-receiving element 2 and the bonding wire 3 were firmly adhered to the portion close to both elements and the inner lead portion 8 to the portion close to both elements.
At first glance, it was close, but when carefully observed with a microscope, there were small gaps in some places and they were not adhered.

この樹脂封止型光結合半導体装置は、初期耐圧試験で
は75%の良品率を示し、絶縁耐圧試験では8KV印加で75
%の良品率を示した。
This resin-encapsulated optically coupled semiconductor device shows a good product rate of 75% in the initial withstand voltage test, and 75% in 8 KV application in the withstand voltage test.
% Of non-defective products.

不良品解析により電気的破壊はシリコーンゴム硬化体
5と封止用エポキシ樹脂7の界面で起っていることが判
明した。
The defective product analysis revealed that the electrical breakdown occurred at the interface between the cured silicone rubber 5 and the epoxy resin 7 for sealing.

耐湿試験では第1表に示す結果を得た。 The results shown in Table 1 were obtained in the moisture resistance test.

なお、シリコーンゴム硬化体自身の絶縁破壊強さは1
6.8KV/mmであった。
The dielectric strength of the cured silicone rubber itself is 1
It was 6.8 KV / mm.

<実施例3> 第3図は、本発明の一実施例の対向型の樹脂封止型光
結合半導体装置の断面図である。
Embodiment 3 FIG. 3 is a cross-sectional view of an opposing resin-sealed optical coupling semiconductor device according to an embodiment of the present invention.

この半導体装置は、半導体発光素子1,金製のボンディ
ングワイヤ3のうち半導体発光素子1に近接した部分お
よび半導体発光素子1が載置されたインナーリード部8
のうち半導体発光素子1に近接した部分、半導体受光素
子2,金製のボンディングワイヤ3のうち半導体受光素子
2に近接した部分および半導体受光素子2が載置された
インナーリード部8のうち半導体受光素子2に近接した
部分に、 (a)両末端ジメチルビニルシロキシ基封鎖メチルフェ
ニルシロキサン・ジメチルシロキサン共重合体(メチル
フェニルシロキサン単位とジメチルシロキサン単位のモ
ル比は1:9,粘度2000c.p.) 100部 (b)両末端トリメチルシロキシ基封鎖メチルハイドメ
ジエンポリシロキサン(粘度20c.p.) 1.0部 (c)γ−メタクリロキシプロピルトリメトキシシラン
2.0部 (d)塩化白金酸とジビニルテトラメチルジシロキサン
の錯塩 白金原子として組成物全体の5.0ppmとなるような量 からなる付加反応硬化型・自己接着性シリコーンゴム組
成物〔ケイ素原子結合水素原子と(a)成分中のビニル
基のモル比は3:1である〕を滴下し、100℃に20分間保っ
て硬化させ、生成した透光性のシリコーンゴム硬化体5
を3000Wの超高圧水銀灯から15cmの距離に置き、90秒間
紫外線照射してシリコーンゴム硬化体5の表面に紫外線
照射処理層6を形成し、次いでインナーリード部8の残
部およびボンディングワイヤ3の接続したインナーリー
ド部(図示せず)とともに市販の封止用エポキシ樹脂7
により封止成形することにより製造されている。
The semiconductor device includes a semiconductor light emitting element 1, a portion of a gold bonding wire 3 close to the semiconductor light emitting element 1, and an inner lead portion 8 on which the semiconductor light emitting element 1 is mounted.
The semiconductor light receiving element 2, the semiconductor light receiving element 2, the gold bonding wire 3, the part close to the semiconductor light receiving element 2, and the semiconductor light receiving element 2 in the inner lead portion 8. (A) A methylphenylsiloxane-dimethylsiloxane copolymer having both ends dimethylvinylsiloxy group-blocked (molar ratio of methylphenylsiloxane unit to dimethylsiloxane unit is 1: 9, viscosity is 2000 c.p.) 100 parts (b) Methyl hydrimediene polysiloxane capped with trimethylsiloxy groups at both terminals (viscosity: 20 c.p.) 1.0 part (c) γ-methacryloxypropyltrimethoxysilane
2.0 parts (d) Complex salt of chloroplatinic acid and divinyltetramethyldisiloxane An addition-reaction-curable, self-adhesive silicone rubber composition (silicon-bonded hydrogen atom) consisting of platinum atoms in an amount of 5.0 ppm of the total composition. And the molar ratio of the vinyl groups in the component (a) is 3: 1], and the mixture is cured at 100 ° C. for 20 minutes.
Was placed at a distance of 15 cm from a 3000 W ultra-high pressure mercury lamp and irradiated with ultraviolet light for 90 seconds to form an ultraviolet irradiation treatment layer 6 on the surface of the silicone rubber cured body 5, and then the remaining inner lead portion 8 and the bonding wire 3 were connected. Epoxy resin 7 for sealing which is commercially available together with the inner lead portion (not shown)
It is manufactured by sealing molding.

シリコーンゴム硬化体5は、半導体発光素子1,半導体
受光素子2,ボンディングワイヤ3のうち両素子に近接し
た部分およびインナーリード部8の両素子に近接した部
分に強固に接着するとともに、紫外線照射処理層6上を
被覆する封止用エポキシ樹脂7と強固に接着して一体化
していた。
The silicone rubber cured body 5 is firmly adhered to a portion of the semiconductor light emitting element 1, the semiconductor light receiving element 2, and the bonding wire 3 close to both elements and a part of the inner lead portion 8 close to both elements, and is irradiated with ultraviolet light. It was firmly bonded and integrated with the sealing epoxy resin 7 covering the layer 6.

この樹脂封止型光結合半導体装置は、初期耐圧試験で
は100%の良品率を示し、絶縁耐圧試験では10KVを印加
しても95%の良品率を維持した。
This resin-encapsulated optically coupled semiconductor device exhibited a good product rate of 100% in the initial withstand voltage test, and maintained a good product rate of 95% in the dielectric withstand voltage test even when 10 KV was applied.

不良品解析により、電気的破壊はシリコーンゴム硬化
体5の内部で起っていることが判明した。
The defective product analysis revealed that the electrical breakdown occurred inside the silicone rubber cured body 5.

耐湿試験では第1表に示す結果を得た。 The results shown in Table 1 were obtained in the moisture resistance test.

なお、シリコーンゴム硬化体自体の絶縁破壊強さは1
3.2KV/mmであった。
The dielectric breakdown strength of the cured silicone rubber itself is 1
It was 3.2 KV / mm.

<比較例3> 第4図は、従来の対向型の樹脂封止型光結合半導体装
置の断面図である。
Comparative Example 3 FIG. 4 is a cross-sectional view of a conventional opposed-type resin-sealed optical coupling semiconductor device.

この半導体装置は、半導体発光素子1,半導体受光素子
2,金製のボンディングワイヤ3のうち両素子に近接した
部分およびインナーリード部8の両素子に近接した部分
に、実施例3の(a)成分100部、(b)成分0.5部およ
び(d)成分が白金原子として組成物全体の5.0ppmとな
るような量のみからなる付加反応硬化型シリコーンゴム
組成物を滴下し、100℃に10分間保って硬化させ、生成
した透光性のシリコーンゴム硬化体5をインナーリード
部8の残部およびボンディングワイヤ3の接続したイン
ナーリード部(図示せず)とともに、市販の封止用エポ
キシ樹脂7により封止成形することにより製造されてい
る。
This semiconductor device comprises a semiconductor light emitting element 1, a semiconductor light receiving element
2, 100 parts of the component (a), 0.5 part of the component (b) and (d) of the component (a) of Example 3 are provided on the portion of the gold bonding wire 3 that is close to both elements and the portion of the inner lead portion 8 that is close to both elements. ) A translucent silicone rubber formed by dropping an addition-curable silicone rubber composition consisting solely of an amount of 5.0 ppm of platinum atoms in the composition as a platinum atom, keeping at 100 ° C for 10 minutes, and curing. The hardened body 5 is manufactured by sealing molding with a commercially available sealing epoxy resin 7 together with the remaining portion of the inner lead portion 8 and the inner lead portion (not shown) to which the bonding wire 3 is connected.

透光性のシリコーンゴム硬化体5は、半導体発光素子
1,半導体受光素子2,ボンディングワイヤ3のうち両素子
に近接した部分およびインナーリード部8の両素子に近
接した部分にわずかに接着するとともに、その上を被覆
する封止用エポキシ樹脂と一見密着していたが、顕微鏡
で観察すると微細な隙間があり、接着していなかった。
The translucent cured silicone rubber 5 is a semiconductor light emitting device.
1, the semiconductor light receiving element 2 and the bonding wire 3 are slightly adhered to a portion close to both elements and to a portion close to both elements of the inner lead portion 8, and seemingly adhered to a sealing epoxy resin which covers them. However, when observed with a microscope, there were fine gaps and no adhesion was observed.

この樹脂封止型光結合半導体装置は、初期耐圧試験で
は90%の良品率を示し、絶縁耐圧試験では5.0KV印加で
良品率は80%であった。
This resin-encapsulated optically coupled semiconductor device showed a non-defective rate of 90% in the initial withstand voltage test, and a non-defective rate of 80% in the dielectric withstand voltage test with 5.0 KV applied.

不良品解析により、電気的破壊は、シリコーンゴム硬
化体5と封止用エポキシ樹脂7の界面で起っていること
が判明した。
The defective product analysis revealed that electrical breakdown occurred at the interface between the cured silicone rubber 5 and the epoxy resin 7 for sealing.

耐湿試験では、第1表に示す結果を得た。 In the moisture resistance test, the results shown in Table 1 were obtained.

なお、シリコーンゴム硬化体自体の絶縁破壊強さは1
4.7KV/mmであった。
The dielectric breakdown strength of the cured silicone rubber itself is 1
It was 4.7 KV / mm.

<実施例4> 実施例3の樹脂封止型光結合半導体装置の製造方法に
おいて、付加反応硬化型・自己接着性シリコーン組成物
として (a)両末端ジメチルビニルシロキシ基封鎖ジメチルポ
リシロキサン(粘度1800c.p.)90部を比表面積200m2/g
の疎水化煙霧状シリカ10部からなる混合物(粘度80000
c.p.) 100部 (b)両末端トリメチルシロキシ基封鎖メチルハイドメ
ジエンポリシロキサン(粘度20c.p.) 3.5部 (c)ビニルトリアルコキシシラン 1.0部 (d)塩化白金酸とジビニルテトラメチルジシロキサン
の錯塩 白金原子として組成物全体の5.0ppmとなるような量 からなるもの〔ケイ素原子結合水素原子と(a)成分中
のビニル基のモル比は3:1である〕を使用し、硬化条件
を100℃10分間とし、紫外線照射時間を60秒間とした他
は実施例3と同様にして対向型の樹脂封止型光結合半導
体装置を製造した。
<Example 4> In the method for manufacturing a resin-sealed optically coupled semiconductor device of Example 3, the addition reaction-curable self-adhesive silicone composition was prepared as follows. .p.) 90 parts of specific surface area 200m 2 / g
Mixture consisting of 10 parts of hydrophobized fumed silica (viscosity of 80,000)
cp) 100 parts (b) Methyl hydrimediene polysiloxane capped with trimethylsiloxy groups at both ends (viscosity 20 c.p.) 3.5 parts (c) Vinyl trialkoxysilane 1.0 part (d) Complex salt of chloroplatinic acid and divinyltetramethyldisiloxane Platinum atoms in an amount of 5.0 ppm of the total composition (the molar ratio of silicon-bonded hydrogen atoms to vinyl groups in component (a) is 3: 1) was used, and the curing conditions were 100%. A facing resin-sealed optically coupled semiconductor device was manufactured in the same manner as in Example 3 except that the temperature was set to 10 ° C. and the ultraviolet irradiation time was changed to 60 seconds.

透光性のシリコーンゴム硬化体5は、半導体発光素子
1,半導体受光素子2,ボンディングワイヤ3のうち両素子
に近接した部分およびインナーリード部8の両素子に近
接した部分に強固に接着するとともに、紫外線照射処理
層6上を被覆する封止用エポキシ樹脂7と強固に接着し
一体化していた。
The translucent cured silicone rubber 5 is a semiconductor light emitting device.
1, an epoxy for sealing which firmly adheres to a portion of the semiconductor light receiving element 2 and the bonding wire 3 which is close to both elements and a part of the inner lead portion 8 which is close to both elements, and which covers the ultraviolet irradiation treatment layer 6 It was firmly bonded and integrated with the resin 7.

この樹脂封止型光結合半導体装置は、初期耐圧試験で
は100%の良品率を示し、絶縁耐圧試験A法では10KVを
印加しても良品率は100%であった。
This resin-encapsulated optically coupled semiconductor device exhibited a non-defective rate of 100% in the initial withstand voltage test, and the non-defective rate in the dielectric withstand voltage test A was 100% even when 10 KV was applied.

耐湿試験では、第1表に示す結果を得た。 In the moisture resistance test, the results shown in Table 1 were obtained.

なお、シリコーン硬化体自身の絶縁破壊強さは16.6KV
/mmであつた。
The dielectric breakdown strength of the silicone cured product itself is 16.6 KV
/ mm.

<比較例4> 実施例4の対向型の樹脂封止型光結合半導体装置の製
造方法において、付加反応硬化型・自己接着性シリコー
ンゴム組成物の替りに(c)成分を含有しない他は同一
組成の付加反応硬化型シリコーンゴム組成物を使用し、
透光性のシリコーンゴム硬化体5への紫外線照射処理を
省略した他は同一の条件で対向型の樹脂封止型光結合半
導体装置を製造した。
Comparative Example 4 The same method as in Example 4 was carried out except that the component (c) was not used in place of the addition-reaction-curable self-adhesive silicone rubber composition in the method of manufacturing the opposed resin-sealed optically coupled semiconductor device. Using an addition reaction-curable silicone rubber composition of the composition,
A facing-type resin-encapsulated optically coupled semiconductor device was manufactured under the same conditions except that the ultraviolet irradiation treatment on the translucent cured silicone rubber 5 was omitted.

透光性のシリコーンゴム硬化体5は、半導体発光素子
1,半導体受光素子2,ボンディングワイヤ3のうち両素子
に近接した部分およびインナーリード部8の両素子に近
接した部分にわずかに接着するとともに、その上を被覆
する封止用エポキシ樹脂と一見密接していたが、顕微鏡
で観察すると微細な隙間があり、接着していなかった。
The translucent cured silicone rubber 5 is a semiconductor light emitting device.
1, the semiconductor light receiving element 2 and the bonding wire 3 are slightly adhered to a portion close to both elements and a portion close to both elements of the inner lead portion 8, and seemingly close to an epoxy resin for sealing which covers them. However, when observed with a microscope, there were fine gaps and no adhesion was observed.

この樹脂封止型光結合半導体装置は、初期耐圧試験で
は78%の良品率を示し、絶縁耐圧試験では8.0KV印加で6
0%の良品率であった。
This resin-encapsulated optically-coupled semiconductor device shows a good product rate of 78% in the initial withstand voltage test, and 6
The non-defective rate was 0%.

不良品解析により、電気的破壊はシリコーンゴム硬化
体5と封止用エポキシ樹脂7の界面で起っていることが
判明した。
The defective product analysis revealed that the electrical breakdown occurred at the interface between the cured silicone rubber 5 and the epoxy resin 7 for sealing.

耐湿試験では第1表に示す結果を得た。 The results shown in Table 1 were obtained in the moisture resistance test.

なお、シリコーンゴム硬化体自身の絶縁破壊強さは1
7.2KV/mmであった。
The dielectric strength of the cured silicone rubber itself is 1
7.2 KV / mm.

<実施例5> 実施例1の反射型の樹脂封止型光結合半導体装置の製
造方法において、滴下した付加反応硬化型・自己接着性
シリコーンゴム組成物を100℃に10分保って、生成した
透光性のシリコーンゴム硬化体5を紫外線照射処理する
替りに、滴下した付加反応硬化型・自己接着性シリコー
ンゴム組成物から6cmの距離に3000Wの超高圧水銀灯を置
き、5分間紫外線照射することにより、表面に紫外線照
射処理層6を有する透光性のシリコーンゴム硬化体5を
形成した他は同一の条件で、反射型の樹脂封止型光結合
半導体装置を製造した。なお、紫外線照射時の雰囲気温
度は130℃〜150℃であった。
<Example 5> In the manufacturing method of the reflection-type resin-encapsulated optical coupling semiconductor device of Example 1, the dropped addition reaction-curable self-adhesive silicone rubber composition was formed by keeping the composition at 100 ° C for 10 minutes. Instead of subjecting the translucent cured silicone rubber 5 to UV irradiation, place a 3000 W ultra-high pressure mercury lamp at a distance of 6 cm from the dropped addition-reaction-curable, self-adhesive silicone rubber composition and irradiate it with UV for 5 minutes. Thus, a reflection-type resin-encapsulated optically coupled semiconductor device was manufactured under the same conditions except that a transparent silicone rubber cured body 5 having an ultraviolet irradiation treatment layer 6 on the surface was formed. The ambient temperature during ultraviolet irradiation was 130 ° C to 150 ° C.

透光性のシリコーンゴム硬化体5は、半導体発光素子
1,半導体受光素子2,ボンディングワイヤ3のうち両素子
に近接した部分およびインナーリード部8の両素子に近
接した部分に強固に接着するとともに、紫外線照射処理
層6上を被覆する封止用エポキシ樹脂7と強固に接着し
て一体化していた。
The translucent cured silicone rubber 5 is a semiconductor light emitting device.
1, an epoxy for sealing which firmly adheres to a portion of the semiconductor light receiving element 2 and the bonding wire 3 which is close to both elements and a part of the inner lead portion 8 which is close to both elements, and which covers the ultraviolet irradiation treatment layer 6 The resin 7 was firmly adhered and integrated.

この樹脂封止型光結合半導体装置は、初期耐圧試験で
は100%の良品率を示し、絶縁耐圧試験では10KVを印加
しても95%の良品率を維持した。
This resin-encapsulated optically coupled semiconductor device exhibited a good product rate of 100% in the initial withstand voltage test, and maintained a good product rate of 95% in the dielectric withstand voltage test even when 10 KV was applied.

不良品解析により、電気的破壊はシリコーンゴム硬化
体5の内部で起っていることが判明した。
The defective product analysis revealed that the electrical breakdown occurred inside the silicone rubber cured body 5.

耐湿試験では第1表に示す結果を得た。 The results shown in Table 1 were obtained in the moisture resistance test.

なお、シリコーンゴム硬化体の絶縁破壊強さは10KV/m
mであった。
The dielectric breakdown strength of the cured silicone rubber is 10 KV / m
m.

〔発明の効果〕 本発明の樹脂封止型光結合半導体装置は、光路物質で
ある透光性のシリコーン硬化体が半導体発光素子,半導
体受光素子,導電部材の少なくとも両素子に近接した部
分および両素子の載置されたインナーリード部の少なく
とも両素子に近接した部分に接着するとともに、透光性
のシリコーン硬化体が紫外線照射処理層を介してその上
を被覆する封止用樹脂と接着し一体化しているので絶縁
耐圧と耐湿性がすぐれており、光伝導効率が低下してい
ない。
[Effects of the Invention] In the resin-encapsulated optically coupled semiconductor device of the present invention, the light-transmitting silicone cured body as an optical path material has a semiconductor light-emitting element, a semiconductor light-receiving element, a portion close to at least both elements of a conductive member, and both of The adhesive is attached to at least the portion of the inner lead portion on which the element is mounted and adjacent to both elements, and a transparent silicone cured body is adhered to the sealing resin that covers it via an ultraviolet irradiation treatment layer and integrated. Because of this, the withstand voltage and moisture resistance are excellent, and the photoconductive efficiency does not decrease.

本発明の樹脂封止型光結合半導体装置の製造方法で
は、半導体発光素子,半導体受光素子,導電部材の少な
くとも両素子に近接した部分および両素子の載置された
インナーリード部の少なくとも両素子に近接した部分を
硬化性・自己接着性シリコーン組成物中に埋設し、次い
で、該硬化性・自己接着性シリコーン組成物を硬化状態
でケイ素原子結合水素原子および/またはケイ素原子結
合加水分解性基を有するように加熱下硬化させた後、ま
たは加熱下硬化させながら紫外線を照射して形成して、
表面に紫外線照射処理を有する透光性のシリコーン硬化
体を形成し、次いで該シリコーン硬化体をインナーリー
ド部の残部とともに封止用樹脂により封止成形するの
で、絶縁耐圧と耐湿性のすぐれた樹脂封止型光結合半導
体装置を生産性をよく製造できるという利点がある。
In the method of manufacturing a resin-encapsulated optically coupled semiconductor device according to the present invention, at least a portion of the semiconductor light emitting element, the semiconductor light receiving element, the conductive member, which is close to both elements, and at least both elements of the inner lead portion on which both elements are mounted. The adjacent portion is embedded in a curable / self-adhesive silicone composition, and then the curable / self-adhesive silicone composition is cured to form silicon-bonded hydrogen atoms and / or silicon-bonded hydrolyzable groups. After curing under heating to have, or by irradiating ultraviolet rays while curing under heating,
A transparent silicone cured body having an ultraviolet irradiation treatment is formed on the surface, and then the silicone cured body is molded with a sealing resin together with the remainder of the inner lead portion, so that a resin having excellent withstand voltage and moisture resistance is provided. There is an advantage that the sealed optical coupling semiconductor device can be manufactured with good productivity.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の一実施例の反射型の樹脂封止型光結合
半導体装置の断面図であり、第2図は従来の反射型の樹
脂封止型光結合半導体装置の断面図である。第3図は本
発明の一実施例の対向型の樹脂封止型光結合半導体装置
の断面図であり、第4図は従来の対向型の樹脂封止型光
結合半導体装置の断面図である。第5図は絶縁耐圧試験
結果を示す。 1……半導体発光素子、2……半導体受光素子、3……
ボンディングワイヤ、4……外部接続用リード線、5…
…透光性のシリコーン硬化体、6……紫外線照射処理
層、7……封止用エポキシ樹脂、8……半導体素子が載
置されたインナーリード部
FIG. 1 is a cross-sectional view of a reflective resin-sealed optically coupled semiconductor device according to one embodiment of the present invention, and FIG. 2 is a cross-sectional view of a conventional reflective resin-sealed optically coupled semiconductor device. . FIG. 3 is a cross-sectional view of an opposing resin-sealed optically coupled semiconductor device according to one embodiment of the present invention, and FIG. 4 is a cross-sectional view of a conventional opposed-type resin-encapsulated optically coupled semiconductor device. . FIG. 5 shows the results of the dielectric strength test. 1 ... Semiconductor light emitting element, 2 ... Semiconductor light receiving element, 3 ...
Bonding wire, 4 ... Lead wire for external connection, 5 ...
... Transparent silicone cured body, 6 ... Ultraviolet irradiation treatment layer, 7 ... Epoxy resin for sealing, 8 ... Inner lead part on which semiconductor element is mounted

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】導電部材により外部接続用リード線のイン
ナーリード部に電気的に接続された半導体発光素子と導
電部材により外部接続用リード線のインナーリード部に
電気的に接続された半導体受光素子とが、これらの導電
部材の少なくとも素子に近接した部分およびこれらのイ
ンナーリード部の少なくとも素子に近接した部分と共に
透光性のシリコーン硬化体中に接着状態で埋設されて光
学的に結合しており、該シリコー硬化体がこれらのイン
ナーリード部の残部と共に封止用樹脂により封止形成さ
れてなる樹脂封止型光結合半導体装置において、該シリ
コーン硬化体が、硬化性・自己接着剤シリコーン組成物
を硬化状態でケイ素原子結合水素原子および/またはケ
イ素原子結合加水分解性基を有するように硬化させた
後、または硬化させながら紫外線を照射して形成したも
のであることを特徴とする、該シリコーン硬化体がその
表面の紫外線照射処理層を介して該封止樹脂に接着し一
体化している樹脂封止型光結合半導体装置。
1. A semiconductor light emitting device electrically connected to an inner lead portion of an external connection lead wire by a conductive member, and a semiconductor light receiving device electrically connected to an inner lead portion of the external connection lead wire by a conductive member. And at least a portion of these conductive members adjacent to the element and at least a portion of these inner leads adjacent to the element are embedded in the translucent silicone cured body in an adhesive state and optically coupled. A resin-encapsulated optically-coupled semiconductor device in which the cured silicone is sealed with a sealing resin together with the remainder of the inner lead portion, wherein the cured silicone is a curable self-adhesive silicone composition Is cured so as to have a silicon-bonded hydrogen atom and / or a silicon-bonded hydrolysable group in a cured state, or A resin-encapsulated optically-coupled semiconductor, wherein the silicone cured product is bonded to and integrated with the encapsulation resin via an ultraviolet-irradiation treatment layer on the surface thereof. apparatus.
【請求項2】半導体発光素子と半導体受光素子とが対向
位置にある特許請求の範囲第1項記載の樹脂封止型光結
合半導体装置。
2. The resin-encapsulated optically coupled semiconductor device according to claim 1, wherein the semiconductor light emitting element and the semiconductor light receiving element are located at opposing positions.
【請求項3】半導体発光素子と半導体受光素子とが並列
位置にある特許請求の範囲第1項記載の樹脂封止型光結
合半導体装置。
3. The resin-encapsulated optically coupled semiconductor device according to claim 1, wherein the semiconductor light emitting element and the semiconductor light receiving element are arranged in parallel.
【請求項4】導電部材がボンディングワイヤである特許
請求の範囲第1項記載の樹脂封止型光結合半導体装置。
4. The resin-encapsulated optically coupled semiconductor device according to claim 1, wherein the conductive member is a bonding wire.
【請求項5】導電部材により外部接続用リード線のイン
ナーリード部に電気的に接続された半導体発光素子と導
電部材により外部接続用リート線のインナーリード部に
電気的に接続された半導体発光素子とを、これらの導電
部材の少なくとも素子に近接した部分およびこれらのイ
ンナーリード部の素子に近接した部分と共に透光性のシ
リコーン硬化体中に接着状態で埋設して光学的に結合し
た後、該シリコーン硬化体をこれらのインナーリード部
の残部と共に封止用樹脂により封止成形して樹脂封止型
光結合半導体装置を製造する方法において、該シリコー
ン硬化体を、硬化性・自己接着性シリコーン組成物を硬
化状態でケイ素原子結合水素原子および/またはケイ素
原子結合加水分解性基を有するように加熱下硬化させた
後、または加熱下硬化させながら紫外線を照射して形成
することを特徴とする、該シリコーン硬化体がその表面
の紫外線照射処理層を介して該封止用樹脂に接着し一体
化している樹脂封止型光結合半導体装置の製造方法。
5. A semiconductor light emitting device electrically connected to an inner lead portion of an external connection lead wire by a conductive member, and a semiconductor light emitting device electrically connected to an inner lead portion of an external connection lead wire by a conductive member. And at least a portion of these conductive members adjacent to the element and a portion of the inner lead portion adjacent to the element are embedded in a light-transmitting silicone cured body in an adhesive state and optically coupled. In a method of manufacturing a resin-encapsulated optically coupled semiconductor device by molding a silicone cured product together with a sealing resin together with the remainder of the inner lead portion, the silicone cured product is cured by a curable / self-adhesive silicone composition. The product is cured under heating so as to have a silicon-bonded hydrogen atom and / or a silicon-bonded hydrolyzable group in a cured state, or under heating. A resin-encapsulated optically-coupled semiconductor wherein the cured silicone is bonded to and integrated with the encapsulating resin via an ultraviolet-irradiation-treated layer on the surface thereof. Device manufacturing method.
【請求項6】硬化性・自己接着性シリコーン組成物が付
加反応硬化性・自己接着性シリコーン組成物である特許
請求の範囲第5項記載の製造方法。
6. The method according to claim 5, wherein the curable / self-adhesive silicone composition is an addition reaction-curable / self-adhesive silicone composition.
JP25223387A 1987-10-06 1987-10-06 Resin-sealed optical coupling semiconductor device and method of manufacturing the same Expired - Lifetime JP2604178B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25223387A JP2604178B2 (en) 1987-10-06 1987-10-06 Resin-sealed optical coupling semiconductor device and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25223387A JP2604178B2 (en) 1987-10-06 1987-10-06 Resin-sealed optical coupling semiconductor device and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH0194679A JPH0194679A (en) 1989-04-13
JP2604178B2 true JP2604178B2 (en) 1997-04-30

Family

ID=17234370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25223387A Expired - Lifetime JP2604178B2 (en) 1987-10-06 1987-10-06 Resin-sealed optical coupling semiconductor device and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2604178B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1036510A (en) * 1996-07-26 1998-02-10 Toray Dow Corning Silicone Co Ltd Electric part and its production
JP3527369B2 (en) * 1996-09-04 2004-05-17 東レ・ダウコーニング・シリコーン株式会社 Electric component and method of manufacturing the same
CN114097097B (en) * 2019-07-10 2024-10-29 株式会社村田制作所 Optical sensor and proximity sensor provided with same

Also Published As

Publication number Publication date
JPH0194679A (en) 1989-04-13

Similar Documents

Publication Publication Date Title
EP0803542B1 (en) Electrically conductive silicone elastomer compositions and use for manufacturing semiconductor devices
KR0146294B1 (en) Resin-sealed semiconductor device manufacturing method
JP4908736B2 (en) Curable organopolysiloxane composition and semiconductor device
US5097317A (en) Resin-sealed semiconductor device
JPH09286971A (en) Silicon-based die bonding agent, production of semiconductor device and semiconductor device
JP2004143361A (en) Curable organopolysiloxane composition and semiconductor device
SG77576A1 (en) Curable organosiloxane compositions and semiconductor devices
KR0157844B1 (en) Resin-sealed semiconductor device and manufacturing method
EP0513908B1 (en) Opto-electronic coupler
US5008733A (en) Semiconductor device
WO2006028081A1 (en) Semiconductor device
JPH1036510A (en) Electric part and its production
KR20010049725A (en) Adhesive and semiconductor devices
KR100490186B1 (en) Electrically conductive silicone composition, method for manufacturing semiconductor device using same and semiconductor device
JPH1117073A (en) Optical coupler and sealing resin composition
JP2604178B2 (en) Resin-sealed optical coupling semiconductor device and method of manufacturing the same
KR20010049733A (en) Adhesive and semiconductor devices
JP2701072B2 (en) Resin-sealed optical coupling semiconductor device and method of manufacturing the same
US20050167773A1 (en) Semiconductor element for solid state image sensing device and solid state image sensing device using the same
JPH0311757A (en) Semiconductor device and manufacture thereof
JP3443196B2 (en) Semiconductor device and manufacturing method thereof
JPH08148612A (en) Semiconductor device and its manufacture
JPS6215838A (en) Resin sealed type semiconductor device
JPS6314494B2 (en)
JPH0251259A (en) Semiconductor device and its manufacturing method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080129

Year of fee payment: 11