Nothing Special   »   [go: up one dir, main page]

JP2603282Y2 - Heat transport device - Google Patents

Heat transport device

Info

Publication number
JP2603282Y2
JP2603282Y2 JP1993018652U JP1865293U JP2603282Y2 JP 2603282 Y2 JP2603282 Y2 JP 2603282Y2 JP 1993018652 U JP1993018652 U JP 1993018652U JP 1865293 U JP1865293 U JP 1865293U JP 2603282 Y2 JP2603282 Y2 JP 2603282Y2
Authority
JP
Japan
Prior art keywords
pipe
refrigerant
heat
evaporator
heat transport
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1993018652U
Other languages
Japanese (ja)
Other versions
JPH0674862U (en
Inventor
誠 楠間
将申 大竹
邦明 川村
潤二 松田
誠一 佐久間
岳 神村
Original Assignee
東京電力株式会社
株式会社前川製作所
株式会社クボタ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京電力株式会社, 株式会社前川製作所, 株式会社クボタ filed Critical 東京電力株式会社
Priority to JP1993018652U priority Critical patent/JP2603282Y2/en
Publication of JPH0674862U publication Critical patent/JPH0674862U/en
Application granted granted Critical
Publication of JP2603282Y2 publication Critical patent/JP2603282Y2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

【考案の詳細な説明】[Detailed description of the invention]

【0001】[0001]

【産業上の利用分野】本考案は冷媒循環方式を利用した
熱輸送方式、特に長距離の熱輸送を可能とする長距離熱
輸送装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat transport system utilizing a refrigerant circulation system, and more particularly to a long-distance heat transport device which enables long-distance heat transport.

【0002】[0002]

【従来の技術】従来より冷媒の循環方式を利用した熱輸
送方式として、複数本のヒートパイプを束状に複合する
と同時に互いに隣接するヒートパイプをその長さ方向に
重複して配列してなる複合ヒートパイプを有する長距離
熱輸送装置は公知である。この種の各ヒートパイプの凝
縮部から隣接する他のヒートパイプの蒸発部への熱伝導
により伝達される熱抵抗が大きく、言い換えれば温度低
下が大きいという欠点を有す。
2. Description of the Related Art Conventionally, as a heat transport system using a refrigerant circulation system, a plurality of heat pipes are combined in a bundle and at the same time, adjacent heat pipes are overlapped and arranged in the longitudinal direction. Long-distance heat transport devices having heat pipes are known. This type of heat pipe has a drawback that the heat resistance transmitted from the condensing section of each heat pipe to the evaporating section of another adjacent heat pipe is large, that is, the temperature drop is large.

【0003】かかる欠点を解消するために、前記複合ヒ
ートパイプの長さ方向途中にヒートポンプ又は冷凍機を
介装した事を特徴とする長距離輸送装置を実公平4ー1
0522号にて提案している。しかしながらヒートポン
プ又は冷凍機を介在させても基本的にはこれらより熱補
充を行うのみで、供給される熱量に対する損失量は同一
であり、必ずしも熱移動効率が向上するわけではない。
In order to solve such a drawback, a long-distance transportation device characterized by interposing a heat pump or a refrigerator in the middle of the length of the composite heat pipe has been proposed in Japanese Utility Model 4-1.
No. 0522. However, even if a heat pump or a refrigerator is interposed, the heat is basically replenished only from these, and the amount of loss with respect to the supplied heat is the same, and the heat transfer efficiency is not necessarily improved.

【0004】かかる欠点を解消するために、特開平1−
147290号において、上部に凝縮器を、下部に蒸発
を設けると共に、両者間に冷媒液管と冷媒ガス管を夫
々連結し、冷媒の自然循環により熱移動を行う装置が提
案されている。しかしながらかかる装置においては重力
により熱移動を行うもので、ビル等の高低差を有する箇
所でなければ使用出来ず、又自然循環方式であるため
に、長距離輸送には適さない。
[0004] In order to solve such a disadvantage, Japanese Patent Laid-Open Publication No. Hei.
No. 147290, condenser on top and evaporation on bottom
A device has been proposed in which a heat exchanger is provided, and a refrigerant liquid pipe and a refrigerant gas pipe are respectively connected between the two to perform heat transfer by natural circulation of the refrigerant. However, such a device performs heat transfer by gravity, cannot be used unless there is a difference in elevation, such as a building, and is not suitable for long-distance transportation because of the natural circulation system.

【0005】[0005]

【考案が解決しようとする課題】本考案はかかる技術的
課題に鑑み、熱抵抗や熱損失が生じる事なく長距離の熱
輸送を可能とする長距離熱輸送装置を提供する事を目的
とする。本考案の他の目的は例え冷媒管が破損した場合
においてもフロン若しくはアンモニア等の環境に有害な
冷媒が外気に放散される事のない長距離熱輸送装置を提
供する事を目的とする。
SUMMARY OF THE INVENTION In view of the above technical problems, it is an object of the present invention to provide a long-distance heat transport device that enables long-distance heat transport without causing thermal resistance and heat loss. . Another object of the present invention is to provide a long-distance heat transport device in which even if a refrigerant pipe is broken, a refrigerant harmful to the environment such as chlorofluorocarbon or ammonia is not radiated to the outside air.

【0006】[0006]

【課題を解決する為の手段】本考案はかかる技術的課題
を達成するために、蒸発器と、凝縮器と、蒸発器より凝
縮器側に冷媒ガスの移動を行う第一の冷媒管と、凝縮器
より蒸発器側へ冷媒液の移動を行う第二の冷媒管を具え
てなる熱輸送装置において、第一の冷媒管のガス移動を
蒸発器出口側に設けたブロワを用いて行い、一方第二の
冷媒管の液移動を液ポンプを用いて行うと共に、前記両
冷媒管が第二の冷媒管の周囲に第一の冷媒管が位置する
二重管で構成した事を特徴とする熱輸送装置を提案す
る。
In order to achieve the above technical object, the present invention provides an evaporator, a condenser, a first refrigerant pipe for moving refrigerant gas from the evaporator to the condenser side, In a heat transport device including a second refrigerant pipe for moving a refrigerant liquid from a condenser to an evaporator side, gas transfer of the first refrigerant pipe is performed.
Using a blower provided on the evaporator outlet side , while performing liquid transfer of the second refrigerant pipe using a liquid pump, the first refrigerant pipe around the second refrigerant pipe with both refrigerant pipes We propose a heat transport device characterized by comprising a double tube located.

【0007】[0007]

【作用】本考案は前記冷媒の移動が特開平1ー1472
90号に示すように、重力を用いるものではなく、液ポ
ンプとブロワにより強制循環を行なうものである為に、
水平方向でも又遠距離の場合でも円滑に熱輸送が可能と
なる。又ブロワを使用する事により送風ガス量を大きく
取れ、而も前記ブロワにより圧力差(0.2Kgf/c
2 前後)をもたせて圧送するために、配管径が小さく
てすむ。而も前記ブロワにより昇温して圧送する事が出
来るために、その分温度降下を小さく出来る。
According to the present invention, the movement of the refrigerant is described in JP-A-1-14772.
As shown in No. 90, instead of using gravity, forced circulation is performed by a liquid pump and blower.
Heat can be transported smoothly both horizontally and at long distances. The use of a blower allows a large amount of air to be blown, and the pressure difference (0.2 kgf / c
(approximately 2 m2) for pressure-feeding, the pipe diameter can be small. Also, since the temperature can be increased and pressure-fed by the blower, the temperature drop can be reduced accordingly.

【0008】さて前記装置においては冷媒ガスの移動を
行う第一の冷媒管と、冷媒液の移動を行う第二の冷媒管
を夫々独立して設けねばならず、而も特に冷媒液の移動
を行う第二の冷媒管は液ポンプの圧送であるために外気
若しくは蒸発器との間である程度の圧力差を有し、而も
長距離輸送であるために、その配管経路途中で破損する
場合が有り、該管が破損するとオゾン破壊の元凶となる
フロンガスが外気に多量に流出する事となり、環境上極
めて問題が大きくなる。そこで本考案は第二の冷媒管の
周囲に第一の冷媒管が位置する二重管で構成し即ち内管
を冷媒液とし、外管を冷媒ガスとする事により、万一事
故で液管が破損しても外管が漏れを防止する機能を有す
るため、冷媒液管を単管で配管するよりも安全性が高
く、特に該管が破損するとオゾン破壊の元凶となるフロ
ンガスが外気に多量に流出する恐れを解消し、環境上極
めて有利である。
In the above apparatus, the first refrigerant pipe for moving the refrigerant gas and the second refrigerant pipe for moving the refrigerant liquid must be provided independently of each other. The second refrigerant pipe to be performed has a certain pressure difference between the outside air and the evaporator due to the pressure feeding of the liquid pump, and may be broken in the middle of the piping route due to the long distance transportation. Yes, if the pipe is broken, a large amount of Freon gas, which is a cause of ozone destruction, will flow out to the outside air, which is extremely problematic for the environment. Therefore, the present invention comprises a double pipe in which the first refrigerant pipe is located around the second refrigerant pipe, that is, the inner pipe is used as a refrigerant liquid, and the outer pipe is used as a refrigerant gas. Since the outer tube has a function to prevent leakage even if the tube is damaged, the safety is higher than piping the refrigerant liquid tube with a single tube. Eliminating the risk of spills to the environment is extremely advantageous for the environment.

【0009】又、前記熱輸送は蒸発と凝縮の潛熱輸送で
あるため第1の冷媒管と第2の冷媒管の温度差が小さく
しても問題がなく、従って両外管と内管の間に断熱が不
要である。このため第1の冷媒管と第2の冷媒管を一体
にした二重管が容易に形成できる。更に、液による輸送
密度はガスによる輸送密度に比較して相当大であるため
に、ガス輸送を行なう第1の冷媒管を外管にして輸送量
を大きくし、液輸送を行なう第2の冷媒管(内管)との
間で輸送量の平衡を取る事が出来、好ましい。即ち液体
のみ若しくは気体のみの輸送の場合は往管と復管を同断
面口径にしなければ輸送量の平衡を取る事が出来ず好ま
しくなく、而も熱量に対応する流体の移動量が必然的に
大きくなり、例え断面口径を一致させた二重管で構成す
る場合でもその口径が必然的に大きくなるが、本考案の
場合は潛熱輸送は顕熱輸送より小さい配管径ですむ事に
加えて、液輸送を行なう第2の冷媒管(内管)を小径に
しても問題がないために、二重管としてもガス管の1.
1〜1.2倍程度の配管径ですみ、大口径化しない。
Further, since the heat transport is latent heat transport of evaporation and condensation, there is no problem even if the temperature difference between the first refrigerant pipe and the second refrigerant pipe is small. No thermal insulation is required. Therefore, a double pipe in which the first refrigerant pipe and the second refrigerant pipe are integrated can be easily formed. Further, since the transport density by the liquid is considerably higher than the transport density by the gas, the first refrigerant pipe for performing the gas transport is used as an outer pipe to increase the transport amount, and the second refrigerant for performing the liquid transport is used. This is preferable because the transport amount can be balanced with the pipe (inner pipe). That is, in the case of transporting only liquid or only gas, it is not preferable because the forward and return pipes do not have the same cross-sectional diameter, because the transport amount cannot be balanced, and the amount of movement of the fluid corresponding to the heat amount is inevitable. Even if it is composed of double pipes with the same sectional diameter, the diameter is inevitably large, but in the case of the present invention, the latent heat transport is smaller than the sensible heat transport in addition to the pipe diameter, Since there is no problem even if the diameter of the second refrigerant pipe (inner pipe) for transporting the liquid is reduced, even if the pipe is a double pipe, 1.
A pipe diameter of about 1 to 1.2 times is sufficient, and the diameter does not increase.

【0010】更に潛熱輸送でもあり又ブロワにより第1
の冷媒管内は正圧下に維持されている為に、ガスの圧力
差が小さくなり、結果として二重管の内管は耐圧の小さ
い材料でも可能で有る。従って鋼管はもとよりプラスチ
ック管も採用できる。又二重管構成とすることにより外
管が内管側より熱保持され2管別々の配管よりも熱ロス
が少なくなる。又内管も外管内の冷媒ガスにより熱保持
されているために、熱損失が大幅に低減する。
[0010] It is also a latent heat transport and the first blower.
Since the inside of the refrigerant pipe is maintained under a positive pressure, the pressure difference of the gas becomes small. As a result, the inner pipe of the double pipe can be made of a material having a low pressure resistance. Therefore, not only steel pipe but also plastic pipe can be adopted. In addition, by adopting the double pipe structure, the outer pipe is kept heat from the inner pipe side, and the heat loss is smaller than that of two separate pipes. Further, since the inner tube is also held by the refrigerant gas in the outer tube, heat loss is greatly reduced.

【0011】従って本考案によれば、地域熱供給等の熱
輸送配管のコンパクト化が計られ、熱輸送洞道や共同溝
の断面積を小さく出来るとともに、建設費が大幅に低減
される。
Therefore, according to the present invention, the heat transport piping for district heat supply and the like can be made compact, the cross-sectional area of the heat transport tunnel and the common groove can be reduced, and the construction cost can be greatly reduced.

【0012】[0012]

【実施例】以下、図面に基づいて本考案の実施例を例示
的に詳しく説明する。但しこの実施例に記載されている
構成部品の寸法、材質、形状、その相対配置などは特に
特定的な記載がない限りは、この考案の範囲をそれのみ
に限定する趣旨ではなく単なる説明例に過ぎない。図1
は本考案の基本構成図で、1は蒸発器、2は凝縮器、3
は受液器、4は蒸発器1より凝縮器2側に冷媒ガスの移
動を行う第一の冷媒管(以下ガス外管と言う)、5は凝
縮器2より蒸発器1側へ冷媒液の移動を行う第二の冷媒
管(以下液内管と言う)、7は膨張弁である。ガス外管
4の蒸発器1側にはバイパスさせて該バイパス管8にブ
ロワ9を配設している。一方液内管5の凝縮器2側の受
液器3出口側には液ポンプ10が直結されている。そし
て前記ブロワ9出口側と液ポンプ10出口側間のガス外
管4と液内管5間は二重管11で構成されている。この
場合前記二重管11には例えば塩化ビニール管を用いて
いる。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a block diagram showing an embodiment of the present invention; However, unless otherwise specified, dimensions, materials, shapes, relative arrangements, and the like of the components described in this embodiment are not intended to limit the scope of the present invention thereto, but are merely illustrative examples. Not just. FIG.
Is a basic configuration diagram of the present invention, 1 is an evaporator, 2 is a condenser, 3
Is a liquid receiver, 4 is a first refrigerant pipe (hereinafter referred to as a gas outer pipe) for moving refrigerant gas from the evaporator 1 to the condenser 2 side, and 5 is a refrigerant pipe from the condenser 2 to the evaporator 1 side. A second refrigerant pipe (hereinafter, referred to as an in-liquid pipe) that moves, and 7 is an expansion valve. A blower 9 is disposed in the bypass pipe 8 so as to bypass the gas outer pipe 4 on the side of the evaporator 1. On the other hand, a liquid pump 10 is directly connected to an outlet side of the liquid receiver 3 on the condenser 2 side of the inner liquid pipe 5. A double pipe 11 is provided between the gas outer pipe 4 and the liquid inner pipe 5 between the blower 9 outlet side and the liquid pump 10 outlet side. In this case, for example, a vinyl chloride tube is used as the double tube 11.

【0013】そしてこの二重管11の断面口径は、25
GCal/hの輸送熱量、輸送距離を2km、流速が同じ状
態で独立配管にした場合と、二重管11構成を取った場
合では該管が夫々100mm増加するのみでほとんど変
らず、而も一つの配管でできる。そしてこの場合例えば
蒸発器1側の蒸発温度が9℃で12℃の冷水をつくり、
熱輸送を行なう場合2kmの遠方の凝縮器2側で35℃
の凝縮温度となり、十分に冷房に供する事が出来る。こ
の場合冷媒は35℃の飽和圧力から液ポンプで差圧され
て蒸発器に送られ、9℃の飽和圧力から冷凍機で圧縮さ
れ、ガスは二重管を経て凝縮器へ行く。又前記ブロワ9
はバイパス管8に配設されているために、その給送圧力
を任意に可変出来、好ましい。
The cross-sectional diameter of the double pipe 11 is 25
In the case of using an independent pipe with the same calorific value of Cal / h, the transport distance of 2 km, and the same flow rate, and in the case of using a double pipe 11 configuration, the pipes only increase by 100 mm each, and there is almost no change. With just one pipe. Then, in this case, for example, the evaporator 1 has an evaporating temperature of 9 ° C. and makes cold water of 12 ° C.
35 ° C on the side of the condenser 2 at a distance of 2 km for heat transport
, And can be sufficiently cooled. In this case, the refrigerant is pressure-differentiated by a liquid pump from a saturation pressure of 35 ° C. and sent to an evaporator. The refrigerant is compressed by a refrigerator from a saturation pressure of 9 ° C., and the gas passes through a double pipe to a condenser. The blower 9
Is disposed in the bypass pipe 8, the feed pressure thereof can be arbitrarily varied, which is preferable.

【0014】従って本考案によれば地域熱供給の熱源プ
ラントから各ビルへの地域導管の小型化が出来る。又逆
に蒸発器1側を冷熱源とした場合に凝縮器2側より温度
負荷を得る事が出来、例えばゴミ償却場の排熱を利用し
て暖房負荷も容易に得る事が出来る。
Therefore, according to the present invention, it is possible to reduce the size of the regional conduit from the heat source plant for district heat supply to each building. Conversely, when the evaporator 1 side is used as a cold heat source, a temperature load can be obtained from the condenser 2 side, and a heating load can be easily obtained by using, for example, exhaust heat from a garbage depreciation area.

【0015】[0015]

【効果】以上記載した如く本考案によれば、熱抵抗や熱
損失が生じる事なく長距離の熱輸送を可能とする。又本
考案によれば、例え冷媒管が破損した場合においてもフ
ロン若しくはアンモニア等の環境に有害な冷媒が外気に
放散される事のない長距離熱輸送装置を提供し得る。等
の種々の著効を有す。
As described above, according to the present invention, heat transport over a long distance can be performed without generating heat resistance or heat loss. Further, according to the present invention, it is possible to provide a long-distance heat transport device in which a refrigerant harmful to the environment such as chlorofluorocarbon or ammonia is not diffused to the outside air even if the refrigerant pipe is broken. And so on.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本考案の基本構成を示す熱輸送装置の概略図FIG. 1 is a schematic diagram of a heat transport device showing a basic configuration of the present invention.

【図2】流速が同じ状態で独立配管にした場合と、二重
管構成を取った場合の両冷媒管の断面口径の差異を示
す。
FIG. 2 shows a difference in cross-sectional diameter between both refrigerant pipes when an independent pipe is used at the same flow rate and when a double pipe configuration is used.

【符号の説明】[Explanation of symbols]

1 蒸発器 2 凝縮器 3 受液器 4 第一の冷媒管 5 第二の冷媒管7 膨張弁 8 バイパス管 9 ブロワ 10 液ポンプREFERENCE SIGNS LIST 1 evaporator 2 condenser 3 receiver 4 first refrigerant pipe 5 second refrigerant pipe 7 expansion valve 8 bypass pipe 9 blower 10 liquid pump

───────────────────────────────────────────────────── フロントページの続き (72)考案者 大竹 将申 東京都千代田区内幸町一丁目1番3号 東京電力株式会社内 (72)考案者 川村 邦明 茨城県北相馬郡守谷町みずき野一丁目13 番8号 (72)考案者 松田 潤二 千葉県習志野市藤崎二丁目6番2号 (72)考案者 佐久間 誠一 神奈川県川崎市多摩区菅仙谷二丁目12番 14号 (72)考案者 神村 岳 茨城県北相馬郡守谷町松前台三丁目28番 6号 審査官 千壽 哲郎 (56)参考文献 特開 平2−68497(JP,A) (58)調査した分野(Int.Cl.7,DB名) F28D 15/02 F24F 5/00 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Masanori Otake 1-3-1 Uchisaiwai-cho, Chiyoda-ku, Tokyo Within Tokyo Electric Power Company (72) Inventor Kuniaki Kawamura 1-13-1, Mizukino, Moriyacho, Kitasoma-gun, Ibaraki Prefecture No. 8 (72) Inventor Junji Matsuda 2-6-1 Fujisaki, Narashino-shi, Chiba Prefecture (72) Inventor Seiichi Sakuma 2--12-14, Sugaseya, Tama-ku, Kawasaki-shi, Kanagawa Prefecture (72) Gakumi Takeshi Kamimura Kita, Ibaraki Prefecture 3-28-6 Matsumaedai, Moriya-machi, Soma-gun Examiner Tetsuro Senju (56) References JP-A-2-68497 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) F28D 15/02 F24F 5/00

Claims (1)

(57)【実用新案登録請求の範囲】(57) [Scope of request for utility model registration] 【請求項1】 蒸発器と、凝縮器と、蒸発器より凝縮器
側に冷媒ガスの移動を行う第一の冷媒管と、凝縮器より
蒸発器側へ冷媒液の移動を行う第二の冷媒管を具えてな
る熱輸送装置において、 第一の冷媒管のガス移動を蒸発器出口側に設けたブロワ
用いて行い、一方第二の冷媒管の液移動を液ポンプを
用いて行うと共に、前記両冷媒管が第二の冷媒管の周囲
に第一の冷媒管が位置する二重管で構成した事を特徴と
する熱輸送装置
An evaporator, a condenser, a first refrigerant pipe for moving refrigerant gas from the evaporator to the condenser side, and a second refrigerant for moving refrigerant liquid from the condenser to the evaporator side. In a heat transport device comprising a pipe, a blower provided with gas movement of a first refrigerant pipe on an evaporator outlet side.
It performed using, whereas the liquid movement of the second refrigerant pipe performs by using a liquid pump, the two refrigerant tube is constituted by a double pipe in which the first refrigerant tube located around the second refrigerant pipe Heat transport device characterized by
JP1993018652U 1993-03-19 1993-03-19 Heat transport device Expired - Fee Related JP2603282Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1993018652U JP2603282Y2 (en) 1993-03-19 1993-03-19 Heat transport device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1993018652U JP2603282Y2 (en) 1993-03-19 1993-03-19 Heat transport device

Publications (2)

Publication Number Publication Date
JPH0674862U JPH0674862U (en) 1994-10-21
JP2603282Y2 true JP2603282Y2 (en) 2000-03-06

Family

ID=11977554

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1993018652U Expired - Fee Related JP2603282Y2 (en) 1993-03-19 1993-03-19 Heat transport device

Country Status (1)

Country Link
JP (1) JP2603282Y2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5959152B2 (en) * 2011-02-21 2016-08-02 株式会社豊田中央研究所 Heat transport equipment
JP6087359B2 (en) * 2011-09-09 2017-03-01 セルン − ヨーロピアン オーガナイゼーション フォー ニュークリア リサーチCERN − European Organization for Nuclear Research Mini cooling system and method for accurate temperature control
WO2018055944A1 (en) * 2016-09-26 2018-03-29 株式会社デンソー Equipment temperature control device

Also Published As

Publication number Publication date
JPH0674862U (en) 1994-10-21

Similar Documents

Publication Publication Date Title
US7891575B2 (en) Method and apparatus for thermal storage using heat pipes
KR910006677A (en) Adsorptive heat storage device and system including same
BR0113684A (en) Reversibly steam compression system, and, reversibly heat exchanger
JP2001023703A (en) Battery temperature adjustment device
MX9307298A (en) IMPROVEMENTS IN REFRIGERATION APPARATUS AND AIR CONDITIONING USING A CRYOGEN.
JP2004184074A (en) Structure of meandering pipe crossing flow type heat exchanger
JP2000220978A (en) Cooling storage heat exchanger
JP2009036415A (en) Heat pump cycle system using geo-heat
US4437321A (en) Absorption cooling and heating system
WO2002065034A1 (en) Inter-region thermal complementary system by distributed cryogenic and thermal devices
JP2603282Y2 (en) Heat transport device
JP2008164237A (en) Heat pump system
US4007777A (en) Switchable heat pipe assembly
JPH09194817A (en) Heat transfer medium and circulating system thereof
CN116447503A (en) Heat insulation device of liquid hydrogen storage tank
JP2000171126A (en) Cold heat storage cooling system
CN103765127A (en) A method for chilling a building
CN105723167B (en) Pipeline configuration, cooling device and refrigerant vapour carrying method using pipeline configuration
JPH02130334A (en) Air conditioner
JPH0820139B2 (en) Heat storage type heat pump device
JPS6226605Y2 (en)
US20050011210A1 (en) Multifunctional energy-adjustable net control air conditioner
JPH0410522Y2 (en)
JPH0446343B2 (en)
EP1224426B1 (en) Cooling apparatus

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees