Nothing Special   »   [go: up one dir, main page]

JP2693009B2 - Metal flaw detector - Google Patents

Metal flaw detector

Info

Publication number
JP2693009B2
JP2693009B2 JP2076170A JP7617090A JP2693009B2 JP 2693009 B2 JP2693009 B2 JP 2693009B2 JP 2076170 A JP2076170 A JP 2076170A JP 7617090 A JP7617090 A JP 7617090A JP 2693009 B2 JP2693009 B2 JP 2693009B2
Authority
JP
Japan
Prior art keywords
signal
excitation
reception
phase
received
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2076170A
Other languages
Japanese (ja)
Other versions
JPH03274456A (en
Inventor
隆男 山岸
勝美 森原
茂 藤原
俊英 河部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Tokyo Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd, Tokyo Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2076170A priority Critical patent/JP2693009B2/en
Publication of JPH03274456A publication Critical patent/JPH03274456A/en
Application granted granted Critical
Publication of JP2693009B2 publication Critical patent/JP2693009B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は金属材探傷装置に係わり、特に埋設ガス配
管、化学プラント配管、熱交換器配管等の管路の保守、
管理をリモートフィールド渦流法で行なう金属材探傷装
置に関する。
TECHNICAL FIELD The present invention relates to a metal material flaw detector, and particularly to maintenance of pipelines such as buried gas pipes, chemical plant pipes, heat exchanger pipes, and the like.
The present invention relates to a metal material flaw detector for controlling by a remote field eddy current method.

[従来の技術及び発明が解決しようとする課題] 従来から、リモートフィールド渦流法を用いて、金属
材の探傷を行うには、励磁コイルと一つ又はそれ以上の
受信コイルを管径の2倍程度以上離して管軸方向に配置
して構成したプローブを信号伝送用のケーブルに取り付
け、管路内に挿入し、励磁コイルに励磁信号を印加す
る。
[Prior Art and Problems to be Solved by the Invention] Conventionally, in order to detect a flaw in a metal material by using a remote field eddy current method, an exciting coil and one or more receiving coils are doubled in diameter. A probe configured by arranging it in the tube axis direction at a distance of about a certain distance or more is attached to a cable for signal transmission, inserted in a tube, and an exciting signal is applied to an exciting coil.

印加される励磁信号を比較的低い周波数(数10Hz〜数
100Hz)で、電圧は数V〜数10Vが設けられる。
The applied excitation signal has a relatively low frequency (several 10 Hz to several
At 100 Hz), a voltage of several V to several tens of V is provided.

励磁信号により発生した電磁波は、供試管路の肉厚を
通過するものと、管路内を伝播するものにわけられ、管
路内を伝播する電磁波は管路を導波管と考えたときの遮
断周波数よりはるかに低い周波数であるから、急激に減
衰してほとんど伝播しない。
The electromagnetic waves generated by the excitation signal are divided into those that pass through the wall thickness of the test pipe and those that propagate inside the pipe. The electromagnetic waves that propagate inside the pipe are Since the frequency is much lower than the cutoff frequency, it is rapidly attenuated and hardly propagates.

一方、管路の肉厚を通過するものは間接伝播波と呼ば
れ、管外を管路に沿って伝播し、ゆっくり減衰し、同時
に一部は管路肉厚を再度通過し、管路内に浸透して受信
コイルに検知される。
On the other hand, what passes through the wall thickness of the pipeline is called indirect propagation wave, and propagates along the pipeline outside the pipe and is slowly attenuated, while at the same time, it partially passes through the wall thickness again and Permeates into and is detected by the receiving coil.

受信コイルにより検知された信号(以下、受信信号と
いう)は管路肉厚を2度通過していることから非常に微
弱(数μV〜数10μV)であり、管路肉厚通過による表
皮効果の影響で位相変化を受ける。リモートフィールド
渦流法においては、管路肉厚とのリニアリティーのよい
位相変化を情報として用いることが多い。
The signal detected by the receiving coil (hereinafter referred to as the received signal) is extremely weak (several μV to several tens of μV) because it passes through the pipe wall thickness twice, and the skin effect due to the passage of the pipe wall thickness It is affected by the phase change. In the remote field eddy current method, the phase change with good linearity with the pipe wall thickness is often used as information.

前記受信信号の振幅、位相情報はいわゆるロックイン
アンプ等の測定器により測定可能であり、又差動アン
プ、バンドパスフィルタ、位相比較器等の公知技術によ
り測定器を構成することも可能である。
The amplitude and phase information of the received signal can be measured by a measuring device such as a so-called lock-in amplifier, or the measuring device can be configured by a known technique such as a differential amplifier, a band pass filter, a phase comparator. .

以上述べたごとく、リモートフィールド渦流法におけ
る受信信号は、非常に微弱なので、通常はプローブ部に
おいて増幅した後でプローブを接続したケーブルで管路
外に設けた測定器へ送出される。このように微弱信号を
増幅すればケーブル外よりのノイズに対処でき、かつレ
ベルの高い励磁信号を同一ケーブルに収容することがで
きる。
As described above, since the received signal in the remote field eddy current method is very weak, it is usually amplified in the probe section and then sent to the measuring instrument provided outside the conduit with the cable connecting the probe. By thus amplifying the weak signal, noise from outside the cable can be dealt with, and a high level excitation signal can be accommodated in the same cable.

しかしながら、プローブ部に増幅器を配置するとプロ
ーブの寸法が大きくなり、かつ剛性が増加し、小管径へ
の適用、受信コイル数の増加等の設計条件に対処できな
い。又、この設計条件を満足させるためのプローブ部の
コスト上昇、故障要因の増加等を惹起し、プローブ部の
設計自由度を防げることになる。このため受信信号を増
幅器、ネットワーク等で処理しないで送受する方法が望
ましいが、信号レベルが非常に小さいため、ケーブル外
部及び励磁信号よりの誘導、即ち外乱を受け、本来の受
信信号に外乱信号が重畳され、信号評価が困難となる等
の難点がある。ケーブル外部よりの外乱については、い
わゆるシールドされた伝送ペア線を用いること等の公知
技術によりケーブル長が数10m程度までであれば、前記
難点に対応できるが、励磁信号による誘導、即ち外乱に
対しては対処できない。特に、受信コイルを2ケ以上設
け、多芯ケーブルで受信信号を送受する場合は励磁信号
による誘導、即ち外乱のレベルが多芯ケーブルの位置に
より異なり、同一の欠陥であってもそれぞれの受信コイ
ルによって検出感度が異なるため、正常な探傷データが
得られない。
However, when the amplifier is arranged in the probe section, the size of the probe becomes large and the rigidity increases, and it is not possible to deal with design conditions such as application to a small pipe diameter and an increase in the number of receiving coils. Further, the cost of the probe portion for satisfying this design condition is increased, the number of failure factors is increased, and the degree of freedom in designing the probe portion can be prevented. For this reason, it is desirable to send and receive the received signal without processing it with an amplifier, network, etc., but since the signal level is very small, the signal received from the outside of the cable and the excitation signal, that is, the disturbance, causes a disturbance signal in the original received signal. There is a problem that the signals are superimposed and the signal evaluation becomes difficult. Regarding disturbances from the outside of the cable, the above problems can be dealt with if the cable length is up to several tens of meters by a known technique such as using a so-called shielded transmission pair wire, but induction by an excitation signal, that is, against disturbance Can not deal with. In particular, when two or more receiving coils are provided and the receiving signal is transmitted and received by the multi-core cable, the level of the induction, that is, the disturbance, due to the excitation signal varies depending on the position of the multi-core cable, and even if the same defect is present, each receiving coil is different. Normal detection data cannot be obtained because the detection sensitivity differs depending on the type.

励磁信号線と受信信号線を別ケーブルとすれば励信コ
イルによる誘導、即ち外乱を除去できるが、2条のケー
ブルを管路に挿入することは装置構成上望ましいことで
ない。又、ケーブル構造により励磁信号の誘導、即ち外
乱を減少させる方法もあるが、特別なケーブルを用いる
とケーブルのコストが増加する等の難点がある。
If the excitation signal line and the reception signal line are separate cables, induction by the excitation coil, that is, disturbance can be removed, but it is not desirable in terms of device configuration to insert two cables into the conduit. Also, there is a method of inducing an excitation signal, that is, a method of reducing disturbance by a cable structure, but there is a drawback that the cost of the cable increases if a special cable is used.

[発明の目的] 本発明による金属材探傷装置は、上述した難点に鑑み
なされたもので、通常の1本の多芯ケーブルを用い受信
信号に含まれている励磁信号による誘導、即ち外乱信号
を除去して分解能の良い探傷信号が得られる金属材探傷
装置を提供することを目的とする。
[Object of the Invention] The metallic material flaw detector according to the present invention has been made in view of the above-mentioned drawbacks, and uses an ordinary single multicore cable to induce an induction signal included in a received signal, that is, a disturbance signal. It is an object of the present invention to provide a metallic material flaw detector which can be removed to obtain a flaw detection signal with good resolution.

[課題を解決するための手段] 本発明による金属材探傷装置は、基準信号を発生する
基準信号発生器と、基準信号を所定の電力に増幅し、交
流電力を供給する電力増幅器と、交流電力により励磁信
号が印加され供試金属材にリモートフィールド渦流を発
生させる励磁コイルと、励磁コイルから所定の間隔離れ
て設けられリモートフィールド渦流を受信し複数の受信
信号を出力する複数の受信コイルと、励磁コイルに励磁
信号を印加する励磁信号伝送ペア線及び複数の受信コイ
ルから複数の受信信号を出力する複数の受信信号伝送ペ
ア線で構成された1本の多芯ケーブルと、多芯ケーブル
内で励磁信号によりそれぞれ誘導を受けた複数の受信信
号に対し、励磁コイルに印加する励磁信号から予じめ定
められた位相角で移相し予じめ定められた振幅に調整さ
れた誘導補正信号を減算し誘導を受けたそれぞれの受信
信号から誘導補正信号が減算された受信信号を出力する
複数の回路と、誘導補正信号が減算された受信信号と基
準信号の位相を比較し複数の探傷データを出力する複数
の位相比較器とを備えたものである。
[Means for Solving the Problems] A metallic material flaw detector according to the present invention includes a reference signal generator that generates a reference signal, a power amplifier that amplifies the reference signal to a predetermined power and supplies AC power, and AC power. An exciting coil that applies an exciting signal to generate a remote field eddy current in the metal under test, and a plurality of receiving coils that are provided separately from the exciting coil for a predetermined period and that receive the remote field eddy current and output a plurality of received signals, In a multi-core cable composed of an excitation signal transmission pair line for applying an excitation signal to an excitation coil and a plurality of reception signal transmission pair lines for outputting a plurality of reception signals from a plurality of reception coils, and in a multi-core cable For a plurality of received signals respectively induced by the excitation signal, a phase shift is performed at a predetermined phase angle from the excitation signal applied to the excitation coil, and a predetermined vibration is applied. A plurality of circuits that output a reception signal obtained by subtracting the guidance correction signal from each reception signal that has received the guidance by subtracting the guidance correction signal adjusted to the width, and the reception signal from which the guidance correction signal is subtracted and the reference signal. A plurality of phase comparators that compare phases and output a plurality of flaw detection data are provided.

[実施例] 以下、本発明による金属材探傷装置の好ましい実施例
を第1図にしたがって詳述する。
[Embodiment] A preferred embodiment of the metallic material flaw detector according to the present invention will be described in detail below with reference to FIG.

第1図においてEQnは(説明のためnを1……9とす
る)は受信信号処理装置である。受信信号処理装置EQ1
は受信信号処理部2、外乱信号形成部8、信号出力部11
で構成される。
In FIG. 1, EQn (for the sake of explanation, n is 1 ... 9) is a received signal processing device. Received signal processor EQ 1
Is a received signal processing unit 2, a disturbance signal forming unit 8, a signal output unit 11
It consists of.

受信信号処理部2は差動増幅器3、ローパスフィルタ
4、受信アンプ5、バンドパスフィルタ6で構成され、
第2図に示すケーブルCBLの受信信号伝送ペア線P1が接
続された端子T1、T2を介して差動増幅器3に後述する
受信信号f1が入力される。差動増幅器3に入力された
受信信号f1はローパスフィルタ4で高周波成分を除去
し、受信アンプ5で増幅してバンドパスフィルタ6に送
出される。このバンドパスフィルタ6から出力された受
信信号には第2図に示す多芯ケーブルCBLの受信信号伝
送ペア線Pnの位置に応じた後述の励磁信号伝送ペア線P
0の励磁信号による誘導、即ち外乱信号が含まれてい
る。
The reception signal processing unit 2 includes a differential amplifier 3, a low pass filter 4, a reception amplifier 5, and a band pass filter 6,
A reception signal f 1 described later is input to the differential amplifier 3 via the terminals T 1 and T 2 to which the reception signal transmission pair line P 1 of the cable CBL shown in FIG. 2 is connected. The received signal f 1 input to the differential amplifier 3 has its high-frequency component removed by the low-pass filter 4, amplified by the receiving amplifier 5, and sent to the band-pass filter 6. The received signal output from the band pass filter 6 includes an excitation signal transmission pair line P described later according to the position of the reception signal transmission pair line Pn of the multi-core cable CBL shown in FIG.
Induction by an excitation signal of 0 , that is, a disturbance signal is included.

外乱信号形成部8は減衰器9と移相器10で構成され、
端子T3を介して入力された基準信号を減衰器9で適当
に減衰させ、前述の第2図に示す受信信号伝送ペア線Pn
の位置に応じた位相ずれに相当する位相角を移相器10で
移相し、移相信号を生成する。
The disturbance signal forming unit 8 includes an attenuator 9 and a phase shifter 10,
The reference signal input via the terminal T 3 is appropriately attenuated by the attenuator 9, and the received signal transmission pair line Pn shown in FIG.
The phase shifter 10 shifts the phase angle corresponding to the phase shift corresponding to the position of, to generate a phase shift signal.

信号出力部11は演算回路12、波形整形器13、位相比較
器14およびローパスフィルタ15で構成され、外乱信号形
成部8の移相器10から出力される移相信号と受信信号処
理部2のバンドパスフィルタ6から出力される受信信号
を演算回路12で演算し、受信信号から外乱信号を形成す
る移相信号を除去し波形整形器13を介して位相比較器14
へ送出する。位相比較器14は端子T4から入力される基
準信号の位相と波形整形器13から出力される外乱信号を
除去された受信信号の位相を比較し、比較に応じてロー
パスフィル15を介して端子T5から探傷信号を出力す
る。
The signal output unit 11 includes an arithmetic circuit 12, a waveform shaper 13, a phase comparator 14, and a low-pass filter 15. The signal output unit 11 outputs the phase shift signal output from the phase shifter 10 of the disturbance signal forming unit 8 and the reception signal processing unit 2. The reception signal output from the band pass filter 6 is calculated by the calculation circuit 12, the phase shift signal forming the disturbance signal is removed from the reception signal, and the phase comparator 14 via the waveform shaper 13
Send to The phase comparator 14 compares the phase of the reference signal input from the terminal T 4 with the phase of the received signal from which the disturbance signal output from the waveform shaper 13 has been removed, and the terminal compares with the low-pass fill 15 according to the comparison. A flaw detection signal is output from T 5 .

基準信号を出力する基準信号発生器20は基準信号と同
相の励磁信号を電力増幅器21を経由してプローブPRBの
励磁コイルPCに交流電力として送出する。励磁コイルPC
は管路内に発生したリモートフィールド渦流を受信コイ
ルSC1〜SC9へ送出する。
A reference signal generator 20 that outputs a reference signal sends an excitation signal in phase with the reference signal to the excitation coil PC of the probe PRB as AC power via the power amplifier 21. Excitation coil PC
Sends the remote field vortex generated in the pipe to the receiving coils SC 1 to SC 9 .

受信コイルSC1〜SC9は受信信号伝送ペア線P1〜P9
介して受信信号処理回路EQ1〜EQ9のそれぞれの端子
1、T2へ受信信号を出力する。
Receiver coil SC 1 to SC 9 outputs the respective received signal to the terminal T 1, T 2 via the received signal transmission wire pair P 1 to P 9 reception signal processing circuit EQ 1 ~EQ 9.

なお、第2図に示す多芯ケーブルCBLは、伝送ペア線
0〜P9を有し、中心索条CB1と外皮CB2で構成された通
常の20芯ケーブルである。
The multi-core cable CBL shown in FIG. 2 is an ordinary 20-core cable having transmission pair wires P 0 to P 9 and composed of a central cord CB 1 and an outer cover CB 2 .

[発明の作用] このように構成された金属材探傷装置において、受信
信号f1〜f9にはケーブルCBLの受信信号伝送ペア線P1
〜P9の位置に相当した励磁信号伝送ペア線P0に基づく
固有の励磁信号による誘導信号、即ち外乱信号が第3図
に示すように発生する。位相θnは予かじめ測定でき、
かつ各外乱信号の位相差は最大でも15°程度で各外乱信
号の位相は励磁信号の電圧によって殆ど変化しない。
又、外乱信号の振幅のみが励磁信号の電圧に比例して変
化するので、本来のリモートフィールド渦流による受信
信号を確実に演算でき、高精度の探傷が可能となる。
[Operation of the Invention] In the metal flaw detector having the above-described configuration, the received signals f 1 to f 9 are received signal transmission pair line P 1 of the cable CBL.
An induction signal, that is, a disturbance signal, is generated by the unique excitation signal based on the excitation signal transmission pair line P 0 corresponding to the positions of P 9 to P 9 , as shown in FIG. Phase θn can be pre-measured,
Moreover, the phase difference of each disturbance signal is about 15 ° at the maximum, and the phase of each disturbance signal hardly changes depending on the voltage of the excitation signal.
Further, since only the amplitude of the disturbance signal changes in proportion to the voltage of the excitation signal, it is possible to reliably calculate the received signal due to the original remote field eddy current and to perform flaw detection with high accuracy.

[発明の効果] 本発明の金属材探傷装置によれば、基準信号を発生す
る基準信号発生器と、基準信号を所定の電力に増幅し、
交流電力を供給する電力増幅器と、交流電力により励磁
信号が印加され供試金属材にリモートフィールド渦流を
発生させる励磁コイルと、励磁コイルから所定の間隔離
れて設けられリモートフィールド渦流を受信し複数の受
信信号を出力する複数の受信コイルと、励磁コイルに励
磁信号を印加する励磁信号伝送ペア線及び複数の受信コ
イルから複数の受信信号を出力する複数の受信信号伝送
ペア線で構成された1本の多芯ケーブルと、多芯ケーブ
ル内で励磁信号によりそれぞれ誘導を受けた複数の受信
信号に対し、励磁コイルに印加する励磁信号から予じめ
定められた位相角で移相し予じめ定められた振幅に調整
された誘導補正信号を減算し誘導を受けたそれぞれの受
信信号から誘導補正信号が減算された受信信号を出力す
る複数の回路と、誘導補正信号が減算された受信信号と
基準信号の位相を比較し複数の探傷データを出力する複
数の位相比較器とを備えたことにより、通常の1本の多
芯ケーブルを用い受信信号に含まれている励磁信号によ
る誘導、即ち外乱信号を除去して分解能の良い探傷信号
が得られる。
[Effect of the Invention] According to the metallic material flaw detector of the present invention, a reference signal generator that generates a reference signal, and amplifies the reference signal to a predetermined power,
A power amplifier that supplies AC power, an excitation coil that applies an excitation signal by AC power to generate a remote field eddy current in the metal under test, and a remote field eddy current that is separated from the excitation coil for a predetermined period and receives multiple remote field eddy currents. One composed of a plurality of reception coils that output reception signals, an excitation signal transmission pair line that applies an excitation signal to the excitation coil, and a plurality of reception signal transmission pair lines that output a plurality of reception signals from the plurality of reception coils The multi-core cable and the multiple reception signals respectively induced by the excitation signal in the multi-core cable are phase-shifted and predetermined by the phase angle predetermined from the excitation signal applied to the excitation coil. A plurality of circuits for subtracting the induction correction signal adjusted to the amplitude and outputting the reception signal obtained by subtracting the induction correction signal from each reception signal that has been induced, By including a plurality of phase comparators that compare the phases of the received signal from which the derivation correction signal is subtracted and the reference signal and output a plurality of flaw detection data, the normal received signal is included in the received signal using a single multicore cable. The flaw detection signal with high resolution can be obtained by removing the disturbance signal induced by the excitation signal.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明による金属材探傷装置の一実施例を示す
ブロック図、第2図は第1図の実施例に用いるケーブル
の構成図、第3図は第2図のケーブルにおける外乱信号
の測定値を示す特性図である。 PC……励磁コイル SC1〜SC9……受信コイル f1〜f9……複数の受信信号 CBL……1本の多芯ケーブル P0……励磁信号伝送ペア線 P1〜P9……複数の受信信号伝送ペア線 9、10、12……受信信号を出力する複数の回路 (9……減衰器) (10……複数の移相器) (12……複数の演算回路) 14……複数の位相比較器 20……基準信号発生器 21……電力増幅器
FIG. 1 is a block diagram showing an embodiment of a metallic material flaw detector according to the present invention, FIG. 2 is a configuration diagram of a cable used in the embodiment of FIG. 1, and FIG. 3 is a disturbance signal of the cable of FIG. It is a characteristic view which shows a measured value. PC: Excitation coil SC 1 to SC 9 …… Reception coil f 1 to f 9 …… Multiple reception signals CBL …… One multi-core cable P 0 …… Excitation signal transmission pair line P 1 to P 9 …… Multiple reception signal transmission pair lines 9, 10, 12 ... Multiple circuits that output reception signals (9 ... attenuators) (10 ... multiple phase shifters) (12 ... multiple arithmetic circuits) 14 ... … Multiple phase comparators 20 …… Reference signal generator 21 …… Power amplifier

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山岸 隆男 大阪府大阪市中央区平野町4丁目1番2 号 大阪瓦斯株式会社内 (72)発明者 森原 勝美 大阪府大阪市中央区平野町4丁目1番2 号 大阪瓦斯株式会社内 (72)発明者 藤原 茂 広島県呉市西中央2丁目1番12号 中国 エックス線株式会社開発事業部内 (72)発明者 河部 俊英 広島県呉市西中央2丁目1番12号 中国 エックス線株式会社開発事業部内 (56)参考文献 特開 昭63−221240(JP,A) 特開 昭63−298052(JP,A) 特開 昭62−172259(JP,A) ─────────────────────────────────────────────────── ─── Continued front page (72) Inventor Takao Yamagishi 4-1-2 Hirano-cho, Chuo-ku, Osaka-shi, Osaka Within Osaka Gas Co., Ltd. (72) Inventor Katsumi Morihara 4-chome, Hirano-cho, Chuo-ku, Osaka-shi, Osaka 1-2 No. 2 in Osaka Gas Co., Ltd. (72) Inventor Shigeru Fujiwara 2-12-12 Nishi-chuo, Kure-shi, Hiroshima Prefecture China X-ray Co., Ltd. Development Division (72) Inventor Toshihide Kawabe 2 Nishi-chuo, Kure-shi, Hiroshima Prefecture No. 1-12, China X-ray Co., Ltd. (56) Reference JP-A-63-221240 (JP, A) JP-A-63-298052 (JP, A) JP-A-62-172259 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】基準信号を発生する基準信号発生器(20)
と、前記基準信号を所定の電力に増幅し、交流電力を供
給する電力増幅器(21)と、前記交流電力により励磁信
号が印加され供試金属材にリモートフィールド渦流を発
生させる励磁コイル(PC)と、前記励磁コイルから所定
の間隔離れて設けられ前記リモートフィールド渦流を受
信し複数の受信信号(f1〜f9)を出力する複数の受信
コイル(SC1〜SC9)と、前記励磁コイルに前記励磁信号
を印加する励磁信号伝送ペア線(P0)及び前記複数の
受信コイルから前記複数の受信信号を出力する複数の受
信信号伝送ペア線(P1〜P9)で構成された1本の多芯
ケーブル(CBL)と、前記多芯ケーブル内で前記励磁信
号によりそれぞれ誘導を受けた前記複数の受信信号に対
し、前記励磁コイルに印加する前記励磁信号から予じめ
定められた位相角で移相し予じめ定められた振幅に調整
された誘導補正信号を減算し誘導を受けたそれぞれの受
信信号から前記誘導補正信号が減算された受信信号を出
力する複数の回路(9、10、12…)と、前記誘導補正信
号が減算された受信信号と前記基準信号の位相を比較し
複数の探傷データを出力する複数の位相比較器(14…)
とを備えたことを特徴とする金属材探傷装置。
1. A reference signal generator (20) for generating a reference signal.
And a power amplifier (21) that amplifies the reference signal to a predetermined power and supplies AC power, and an excitation coil (PC) that applies an excitation signal by the AC power to generate a remote field eddy current in the metal under test. When a plurality of receiving coils for outputting provided apart a predetermined distance from the exciting coil to receive the remote field eddy current plurality of received signals (f 1 ~f 9) (SC 1 ~SC 9), the excitation coil 1 composed of an excitation signal transmission pair line (P 0 ) for applying the excitation signal and a plurality of reception signal transmission pair lines (P 1 to P 9 ) for outputting the plurality of reception signals from the plurality of reception coils. A multi-core cable (CBL), and a predetermined phase from the excitation signal applied to the excitation coil, with respect to the plurality of reception signals respectively induced by the excitation signal in the multi-core cable A plurality of circuits (9, 10) for phase-shifting the received signal and subtracting the induction correction signal adjusted to a predetermined amplitude and subtracting the induction correction signal from each of the reception signals that have been induced. , 12 ...), and a plurality of phase comparators (14 ...) Comparing the phases of the received signal from which the induction correction signal is subtracted and the reference signal and outputting a plurality of flaw detection data.
A metal material flaw detection device characterized by comprising:
JP2076170A 1990-03-26 1990-03-26 Metal flaw detector Expired - Fee Related JP2693009B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2076170A JP2693009B2 (en) 1990-03-26 1990-03-26 Metal flaw detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2076170A JP2693009B2 (en) 1990-03-26 1990-03-26 Metal flaw detector

Publications (2)

Publication Number Publication Date
JPH03274456A JPH03274456A (en) 1991-12-05
JP2693009B2 true JP2693009B2 (en) 1997-12-17

Family

ID=13597616

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2076170A Expired - Fee Related JP2693009B2 (en) 1990-03-26 1990-03-26 Metal flaw detector

Country Status (1)

Country Link
JP (1) JP2693009B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH061262B2 (en) * 1986-01-24 1994-01-05 原電子測器株式会社 Eddy current flaw detector
DE3638936A1 (en) * 1986-11-14 1988-05-26 Kernforschungsz Karlsruhe METHOD AND DEVICE FOR DETECTING CORROSION OR THE LIKE
US4808927A (en) * 1987-02-19 1989-02-28 Atomic Energy Of Canada Limited Circumferentially compensating eddy current probe with alternately polarized receiver coil

Also Published As

Publication number Publication date
JPH03274456A (en) 1991-12-05

Similar Documents

Publication Publication Date Title
US6549011B2 (en) Conductor tracing system
JP3428734B2 (en) Metal tube flaw detector and metal tube flaw detection method
US5531099A (en) Underground conduit defect localization
EP0457809B1 (en) Conductor tracing system
US4906928A (en) Transient electromagnetic apparatus with receiver having digitally controlled gain ranging amplifier for detecting irregularities on conductive containers
US5210492A (en) Remote field eddy current flaw detector for metal pipes having a pair of receiver coils providing a differential offset amplitude signal
US4608534A (en) Eddy current probe for detecting localized defects in cylindrical components
JPH04340491A (en) Locating apparatus for buried substance
JPS59162474A (en) Electromagnetic surveying device for conductor
EP0228473B1 (en) Apparatus for non-destructively inspecting flaw of metal materials utilizing magnetic field
NO342173B1 (en) Method for measuring an impedance of an electric cable, a coupler arrangement and uses thereof
Bo et al. A novel fault locator based on the detection of fault generated high frequency transients
JP2693009B2 (en) Metal flaw detector
JP4406193B2 (en) Degradation diagnosis method for power cable and degradation diagnosis device for power cable
JP3152676B2 (en) Metal remote field eddy current flaw detector
JPS63313087A (en) Method for detecting buried metallic pipe or the like
JPS62172259A (en) Eddy current flaw detector
JPH07248314A (en) Probe for eddy-current flaw detection
JP5215987B2 (en) Cable search method and cable search device
SU857715A1 (en) Conductive consumption rate meter
JPH03220451A (en) Remote field vortex sensor
JPH04158257A (en) Flaw detector for metallic material
RU2150710C1 (en) Method for contactless detection and measurement of current losses at underground transmission lines
JPH0353583B2 (en)
JPH01219678A (en) Measuring apparatus of partial discharge

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees