Nothing Special   »   [go: up one dir, main page]

JP2690365B2 - Fine movement mechanism in optical fiber fusion splicer - Google Patents

Fine movement mechanism in optical fiber fusion splicer

Info

Publication number
JP2690365B2
JP2690365B2 JP21399089A JP21399089A JP2690365B2 JP 2690365 B2 JP2690365 B2 JP 2690365B2 JP 21399089 A JP21399089 A JP 21399089A JP 21399089 A JP21399089 A JP 21399089A JP 2690365 B2 JP2690365 B2 JP 2690365B2
Authority
JP
Japan
Prior art keywords
optical fiber
movement mechanism
fine movement
fusion splicer
fiber fusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP21399089A
Other languages
Japanese (ja)
Other versions
JPH0377901A (en
Inventor
好章 塩谷
啓司 大阪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP21399089A priority Critical patent/JP2690365B2/en
Publication of JPH0377901A publication Critical patent/JPH0377901A/en
Application granted granted Critical
Publication of JP2690365B2 publication Critical patent/JP2690365B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Mechanical Coupling Of Light Guides (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は光ファイバの融着接続の際の光ファイバの軸
合せ等μm単位以下での位置制御に用いる微動機構に関
するものである。
Description: TECHNICAL FIELD The present invention relates to a fine movement mechanism used for position control in a unit of μm or less such as axial alignment of optical fibers when fusion splicing the optical fibers.

(従来の技術及び解決しようとする課題) 対向する光ファイバを融着接続するとき、その接続部
の損失増を抑制するため、これら光ファイバ端部の軸心
を微調整して精密に一致させた後、端面を突合せて融着
接続する必要がある。
(Prior art and problems to be solved) When fusion-splicing opposing optical fibers, in order to suppress an increase in loss at the splicing portions, fine adjustment of the axial centers of these optical fiber ends is performed so that they accurately match. After that, it is necessary to butt the end faces and perform fusion splicing.

従来のこのような微調整の機構としては、例えば特開
昭63−108308号公報に示された光ファイバ融着接続用軸
合せ装置がある。ここに開示された技術は第3図に示す
ように、支点(11)に対して一端を駆動側(12)とし、
他端を被駆動側(13)とした挺子の原理を利用したもの
である。
As a conventional fine adjustment mechanism, for example, there is an optical fiber fusion splicing alignment device disclosed in Japanese Patent Laid-Open No. 63-108308. As shown in FIG. 3, the technique disclosed here has one end on the driving side (12) with respect to the fulcrum (11),
This is based on the principle of the boom with the other end being the driven side (13).

このため移動量の比を大きくとるためには装置が大型
になるという問題があり、又直線運動の要求される融着
接続における軸合せ等にあっては、支点(11)と被駆動
側(13)との距離(x1)を大きくしないと、被駆動側
(13)が円弧運動となって二次元的に移動するため、装
置が大型化になるという問題点があった。
For this reason, there is a problem that the device becomes large in order to increase the ratio of the movement amount, and in the axial alignment in the fusion splicing which requires linear motion, the fulcrum (11) and the driven side ( Unless the distance (x 1 ) from the point 13) is increased, the driven side (13) moves in an arc and moves two-dimensionally, which causes a problem that the device becomes large.

(課題を解決するための手段) 本発明は上述の問題点を解消した光ファイバ融着接続
機における微動機構を提供するもので、その特徴は、直
線運動部と一端が支持され上記直線運動部の左右に設け
た金属の弾性変形を利用した移動部と、前記直線運動部
の上方に設けたステージにより構成され、直線運動部の
動きを縮小させ微小領域での位置制御を可能としたこと
にある。
(Means for Solving the Problems) The present invention provides a fine movement mechanism in an optical fiber fusion splicer which solves the above-mentioned problems, and is characterized by the linear movement portion and one end supported by the linear movement portion. It is composed of a moving part using elastic deformation of metal provided on the left and right sides of the and a stage provided above the linear motion part to reduce the movement of the linear motion part and enable position control in a minute area. is there.

第1図は本発明の微動機構の基本構成図である。図面
に示すように、直線運動部(1)と、上記直線運動部
(1)の右側には一端が支点A(3)に支持された金属
の弾性変形を利用した移動部A(2)が設けられてお
り、直線運動部(1)の左側には一端が支点B(5)に
支持された金属の弾性変形を利用した移動部B(4)が
設けられており、前記直線運動部(1)の上方にはステ
ージ(6)が設けられている。
FIG. 1 is a basic configuration diagram of the fine movement mechanism of the present invention. As shown in the drawing, a linear motion part (1) and a moving part A (2) utilizing elastic deformation of metal supported at a fulcrum A (3) at one end on the right side of the linear motion part (1). On the left side of the linear motion section (1), there is provided a moving section B (4) utilizing elastic deformation of metal, one end of which is supported by a fulcrum B (5). A stage (6) is provided above 1).

このように直線運動部(1)、移動部(2)(4)及
びステージ(6)を一体に構成した本発明の微動機構の
直線運動部(1)に矢印(a)の方向に水平方向の力が
作用した場合、ステージ(6)は垂直方向に近似直線運
動を行なう。
As described above, the linear motion part (1), the moving parts (2) and (4), and the stage (6) are integrally formed, and the linear motion part (1) of the fine movement mechanism of the present invention has a horizontal direction in the direction of the arrow (a). Is applied, the stage (6) makes an approximate linear motion in the vertical direction.

(作用) 第2図(イ)〜(ハ)は本発明の微動機構の作用の説
明図である。
(Operation) FIGS. 2A to 2C are explanatory views of the operation of the fine movement mechanism of the present invention.

直線運動部(1)に水平方向(矢印a)の力が加わる
と、第2図(イ)のように移動部A(2)は上方へ弾性
変形し、ステージ(6)は支点A(3)を中心として円
弧運動を行なおうとする。この際、同図(ロ)のよう
に、ステージ(6)は支点B(5)により水平方向の移
動は規制されて垂直方向への力がステージ(6)に作用
し、同図(ハ)のようにステージ(6)は垂直方向へ移
動する。
When a horizontal force (arrow a) is applied to the linear motion part (1), the moving part A (2) is elastically deformed upward as shown in FIG. 2 (a), and the stage (6) is supported by the fulcrum A (3). ) Is the center of an arc motion. At this time, the stage (6) is restricted from moving in the horizontal direction by the fulcrum B (5) as shown in (b) of the figure, and a vertical force acts on the stage (6). The stage (6) moves vertically as shown in FIG.

この時の移動量は移動部の変形が弾性変形内であれ
ば、その厚さにより任意に移動量の比率を決めるこどか
でき、装置の大型化をはからなくてもよい。
If the deformation of the moving portion is within the elastic deformation, the moving amount at this time can be arbitrarily determined depending on the thickness of the moving portion, and the size of the apparatus need not be increased.

(実施例) 第4図は本発明の微動機構を光ファイバ融着接続機の
軸合せ機構に適用した具体例の構成図である。なお、第
1図と同一記号は同一部位をあらわしている。
(Embodiment) FIG. 4 is a configuration diagram of a specific example in which the fine movement mechanism of the present invention is applied to an axis alignment mechanism of an optical fiber fusion splicer. The same symbols as those in FIG. 1 represent the same parts.

ステージ(6)上には光ファイバ(9)を位置決めし
たV溝台(8)を設置する。バネ(7)により直線運動
部(1)に水平方向の力を加えることにより、第2図に
ついて説明した作用により、光ファイバ(9)は垂直方
向に微小量動くこどができる。
On the stage (6), a V-groove base (8) on which an optical fiber (9) is positioned is installed. By applying a horizontal force to the linear motion part (1) by the spring (7), the optical fiber (9) can move a small amount in the vertical direction by the action described with reference to FIG.

その結果は第5図Aに示す通りで、入力側水平方向の
変位と出力側垂直方向の変位(A)の比率は1/20となっ
た。又入力側の水平方向の変位と出力側の水平方向の変
位(B)の比率は1/1000であり、略直線運動とみなすこ
とができる。
The results are shown in FIG. 5A, and the ratio of the horizontal displacement on the input side to the vertical displacement (A) on the output side was 1/20. The ratio of the horizontal displacement on the input side to the horizontal displacement (B) on the output side is 1/1000, which can be regarded as a substantially linear motion.

(発明の効果) 以上説明したように本発明の微動機構によれば、移動
部の変形が弾性変形内であればその厚さにより任意に移
動量の比率を決めることができるので、装置の大型化を
必要とせずに大きな比率を得ることができる。従ってμ
m単位以下での位置制御が必要な光ファイバ融着接続機
の光ファイバの軸合せ機構として利用するとき極めて効
果的である。
(Effect of the Invention) As described above, according to the fine movement mechanism of the present invention, if the deformation of the moving portion is within the elastic deformation, the ratio of the moving amount can be arbitrarily determined by the thickness of the moving portion. Larger ratios can be obtained without the need for Therefore μ
It is extremely effective when used as an optical fiber axis alignment mechanism of an optical fiber fusion splicer that requires position control in m units or less.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の微動機構の基本構成図であり、第2図
(イ)〜(ハ)はその作用の説明図である。 第3図は従来の光ファイバの軸合せ機構の概要説明図で
ある。 第4図は本発明の微動機構を光ファイバの融着接続機の
軸合せ機構に適用した具体例の構成図である。 第5図は本発明の微動機構の実施例における入力水平方
向変位と出力垂直方向変位及び出力水平方向変位の特性
図である。 1…直線運動部、2、4…移動部、3、5…支点、6…
ステージ、7…バネ、8…V溝台、9…光ファイバ。
FIG. 1 is a basic configuration diagram of the fine movement mechanism of the present invention, and FIGS. 2 (a) to 2 (c) are explanatory diagrams of its action. FIG. 3 is a schematic explanatory view of a conventional optical fiber axial alignment mechanism. FIG. 4 is a configuration diagram of a specific example in which the fine movement mechanism of the present invention is applied to an axial alignment mechanism of an optical fiber fusion splicer. FIG. 5 is a characteristic diagram of the input horizontal displacement, the output vertical displacement, and the output horizontal displacement in the embodiment of the fine movement mechanism of the present invention. 1 ... Linear motion part, 2, 4 ... Moving part, 3, 5 ... Support point, 6 ...
Stage, 7 ... Spring, 8 ... V groove stand, 9 ... Optical fiber.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】直線運動部と一端が支持され上記直線運動
部の左右に設けた金属の弾性変形を利用した移動部と、
前記直線運動部の上方に設けたステージにより構成さ
れ、直線運動部の動きを縮小させ微小領域での位置制御
を可能としたことを特徴とする光ファイバ融着接続機に
おける微動機構。
1. A linear moving part and a moving part, one end of which is supported, which is provided on the left and right of the linear moving part and which utilizes elastic deformation of metal.
A fine movement mechanism in an optical fiber fusion splicer, comprising a stage provided above the linear movement unit, which enables the movement of the linear movement unit to be reduced and position control in a minute region.
JP21399089A 1989-08-18 1989-08-18 Fine movement mechanism in optical fiber fusion splicer Expired - Lifetime JP2690365B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21399089A JP2690365B2 (en) 1989-08-18 1989-08-18 Fine movement mechanism in optical fiber fusion splicer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21399089A JP2690365B2 (en) 1989-08-18 1989-08-18 Fine movement mechanism in optical fiber fusion splicer

Publications (2)

Publication Number Publication Date
JPH0377901A JPH0377901A (en) 1991-04-03
JP2690365B2 true JP2690365B2 (en) 1997-12-10

Family

ID=16648431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21399089A Expired - Lifetime JP2690365B2 (en) 1989-08-18 1989-08-18 Fine movement mechanism in optical fiber fusion splicer

Country Status (1)

Country Link
JP (1) JP2690365B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030081931A (en) * 2002-04-15 2003-10-22 박상훈 roller skates board

Also Published As

Publication number Publication date
JPH0377901A (en) 1991-04-03

Similar Documents

Publication Publication Date Title
US20050052723A1 (en) Electrostatic comb drive actuator, and optical controller using the electrostatic comb drive actuator
US4152190A (en) Thermal fusion splicers for optical fibers
JP2690365B2 (en) Fine movement mechanism in optical fiber fusion splicer
EP0174428B1 (en) Apparatus for fusion splicing optical fibers
JP3122559B2 (en) Optical fiber alignment device
JP2000298239A (en) Z-axial micromotion mechanism for microscope
JP2519233B2 (en) Multi-fiber batch switch for optical fiber
JPH0833499B2 (en) Optical fiber axis alignment device
JPH0812304B2 (en) Aligning device for multi-fiber optical fiber
JP3166802B2 (en) Multi-core optical fiber cable splicer
JP3256341B2 (en) Multi-core optical fiber alignment device
JP3640534B2 (en) Drive device
JPH0232602B2 (en)
JP2796879B2 (en) Device for guiding and manipulating elements moving parallel to one axis and optical device including the same
JPH0784141A (en) Clamping device for optical fibers
JP3225992B2 (en) Multi-core optical fiber alignment mechanism
JPH04275074A (en) Piezoelectric driver
JP4033116B2 (en) Optical switch device
JP2756176B2 (en) Optical connector bonding equipment
JPS6114577B2 (en)
JPS6294803A (en) Fine adjusting table for optical fiber connection
JP2975520B2 (en) Optical fiber alignment device
JPS6016884Y2 (en) Optical fiber fusion splicer
JPS63161539A (en) Driver for objective lens
JP2005115096A (en) Optical switching device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080829

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080829

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20090829

EXPY Cancellation because of completion of term