Nothing Special   »   [go: up one dir, main page]

JP2676158B2 - Diaphragm for electroacoustic transducer - Google Patents

Diaphragm for electroacoustic transducer

Info

Publication number
JP2676158B2
JP2676158B2 JP31240288A JP31240288A JP2676158B2 JP 2676158 B2 JP2676158 B2 JP 2676158B2 JP 31240288 A JP31240288 A JP 31240288A JP 31240288 A JP31240288 A JP 31240288A JP 2676158 B2 JP2676158 B2 JP 2676158B2
Authority
JP
Japan
Prior art keywords
diaphragm
resin
mixed
fluorine resin
acrylic resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP31240288A
Other languages
Japanese (ja)
Other versions
JPH02158298A (en
Inventor
倫也 安田
三千三 佐伯
健一郎 豊福
輝夫 土井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Onkyo Corp
Original Assignee
Onkyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Onkyo Corp filed Critical Onkyo Corp
Priority to JP31240288A priority Critical patent/JP2676158B2/en
Publication of JPH02158298A publication Critical patent/JPH02158298A/en
Application granted granted Critical
Publication of JP2676158B2 publication Critical patent/JP2676158B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Diaphragms For Electromechanical Transducers (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、天然繊維または合成繊維の織布からなる振
動板基布を所定の形状に成形してなる、いわゆるソフト
ドーム振動板に関する。
TECHNICAL FIELD The present invention relates to a so-called soft dome diaphragm, which is formed by molding a diaphragm base cloth made of a woven cloth of natural fibers or synthetic fibers into a predetermined shape.

[従来の技術] 電気音響変換器のドーム振動板として、天然繊維また
は合成繊維の織布からなる振動板基布を所定のドーム状
に成形してなる、いわゆるソフトドーム振動板が公知で
あるが、このタイプの振動板は、振動に対して形状を維
持できる程度の柔軟な弾力性と、共振を抑制する大きな
振動損失率(一般に、tanδが約0.06以上のものが多用
されている)を有する材料が用いられている。
[Prior Art] As a dome diaphragm of an electroacoustic transducer, a so-called soft dome diaphragm is known, which is formed by forming a diaphragm base cloth made of a woven fabric of natural fibers or synthetic fibers into a predetermined dome shape. , This type of diaphragm has a flexible elasticity that can maintain its shape against vibration and a large vibration loss rate that suppresses resonance (generally, tan δ of about 0.06 or more is often used). Material is used.

また、アルミニウム、チタンなどの金属からなるハー
ドドーム振動板と同様に高音域用に用いられており、振
動板のドーム部とエツジ部の変形によるボイスコイルボ
ビンの傾きや異常共振により、ボイスコイルボビンと磁
気空隙を形成するプレート部とが接触し、異常音が発生
しやすいため、温度、湿度や熱による変形が小さいこと
が要求される。
In addition, it is used for the high frequency range like the hard dome diaphragm made of metal such as aluminum and titanium, and the voice coil bobbin and the magnetic coil are magnetized due to the tilt and abnormal resonance of the voice coil bobbin due to the deformation of the dome and edge of the diaphragm. Since the plate portion forming the void is in contact with each other and abnormal noise is easily generated, it is required that the deformation due to temperature, humidity or heat is small.

これらの要求に対して、従来、綿、絹などの天然繊維
の織布からなる振動板基布にフエノール樹脂、エポキシ
樹脂、メラミン樹脂などの形状付与材を含浸し、ドーム
状に成形した構造のものや、ポリエステル、ナイロンな
どの熱可塑性高分子繊維の織布からなる振動板基布の表
面にアクリル樹脂、ウレタン樹脂などの振動ロス材樹脂
の被膜を形成し、その後、加熱加圧してドーム状に成形
した構造のものが公知である。
To meet these demands, a diaphragm base fabric made of a woven fabric of natural fibers such as cotton and silk has been conventionally impregnated with a shape-imparting material such as a phenol resin, an epoxy resin, or a melamine resin, and formed into a dome shape. A diaphragm made of a woven fabric of thermoplastic polymer fibers such as polyester and nylon. A film of vibration loss material resin such as acrylic resin and urethane resin is formed on the surface of the base fabric, and then heated and pressed to form a dome shape. It is well known that the structure is molded into.

しかしながら、前者は天然繊維を用いているため吸湿
変形が大きく、また、後者は、耐吸湿性の点では前者に
比べて優れているが未だ充分ではなく、かつ、熱変形が
大きいという問題点がある。そして、後者の振動ロス材
樹脂としてアクリル樹脂を用いた構造のものにおいて
も、特に、車載用、楽器用などの用途では耐湿、耐熱、
耐油性などの点で不十分である。
However, the former has a large hygroscopic deformation due to the use of natural fibers, and the latter is superior to the former in terms of moisture absorption resistance but is not yet sufficient, and has a problem of large thermal deformation. is there. And, even in the latter structure using acrylic resin as the vibration loss material resin, especially in vehicle, musical instrument, etc., moisture resistance, heat resistance,
Insufficient in oil resistance.

また、後者のものは、加熱加圧成形条件が高温(約19
5〜205℃)であり、振動ロス材樹脂(アクリル樹脂)が
成形金型に粘着するので、この成形金型にフツ素樹脂、
シリコン樹脂などの離型剤を成形毎に塗布しなければな
らず、量産性の点で問題があり、かつ、離型剤の振動ロ
ス材樹脂表面への転写移行が生じて、第8図に示すよう
な構造の動電型スピーカーではボイスコイル6のリード
部6aの接着不良が生じる、などの問題点がある。
In the latter case, the heating and pressure molding conditions are high (about 19
Since the vibration loss material resin (acrylic resin) adheres to the molding die, fluorine resin,
Since a mold release agent such as a silicone resin must be applied for each molding, there is a problem in mass productivity, and transfer of the mold release agent to the vibration loss material resin surface occurs. The electrodynamic speaker having the structure as shown has a problem that the lead portion 6a of the voice coil 6 is poorly adhered.

そこで、近年、特開昭59−6558号公報、特開昭61−22
5998号公報、特開昭61−267499号公報などにおいて、耐
湿、耐熱、耐油性の向上を目的として、第8図に示すよ
うに、基布1の表面にアクリル樹脂層3を介してフツ素
樹脂被膜4を形成した構造のもの、あるいは、基布の表
面にアクリル樹脂層を介することなく直接にフツ素樹脂
被膜を形成した構造のものが提案されている。
Therefore, in recent years, JP-A-59-6558 and JP-A-61-22 have been proposed.
In Japanese Patent No. 5998 and Japanese Patent Laid-Open No. 61-267499, for the purpose of improving moisture resistance, heat resistance and oil resistance, as shown in FIG. 8, fluorine is provided on the surface of the base fabric 1 with an acrylic resin layer 3 interposed therebetween. There has been proposed a structure having a resin film 4 formed therein, or a structure having a fluorine resin film formed directly on the surface of a base fabric without an acrylic resin layer interposed therebetween.

[発明が解決しようとする課題] しかしながら、上記フツ素樹脂被膜は、耐熱性があつ
て、金型離型性が良好で製造上の利点があるが、化学的
に比較的に不活性であるため、他の部材との接着性はほ
とんどない。
[Problems to be Solved by the Invention] However, the fluorine resin coating has heat resistance and good mold releasability, which is advantageous in manufacturing, but it is relatively chemically inert. Therefore, it has almost no adhesiveness with other members.

したがつて、実際の電気音響変換器、たとえば、動電
型スピーカーにおいては、次のような問題点がある。
Therefore, an actual electroacoustic transducer, for example, an electrodynamic speaker has the following problems.

第8図に示すように、ボイスコイルボビン5に巻装し
たボイスコイル6のリード部6aは振動板のエツジ部7を
通つて外側へ導出しなければならないが、このエツジ部
7の表面にはフツ素樹脂被膜4が形成されているため、
ボイスコイル6のリード部6aが接着できないという問題
点がある。そこで、エツジ部7とボイスコイル6のリー
ド部6aとの接着を可能にするためには、振動板が熱変形
しない程度の低温酸素プラズマ処理を施すなど、フツ素
樹脂被膜4の表面を活性化して、接着性を付与しなけれ
ばならず、したがつて、実用的でなく、コストアツプの
要因となる。
As shown in FIG. 8, the lead portion 6a of the voice coil 6 wound around the voice coil bobbin 5 must be led out to the outside through the edge portion 7 of the diaphragm. Since the base resin coating 4 is formed,
There is a problem that the lead portion 6a of the voice coil 6 cannot be bonded. Therefore, in order to enable the bonding between the edge portion 7 and the lead portion 6a of the voice coil 6, the surface of the fluorine resin coating film 4 is activated by applying a low temperature oxygen plasma treatment such that the diaphragm is not thermally deformed. Therefore, the adhesiveness must be imparted, which is not practical and causes a cost increase.

また、振動板の表裏両面にフツ素樹脂被膜を形成した
構造のものにおいては、ボイスコイルボビン5の接着す
らできないという問題点があり、上記と同様の処理をし
なければならない。
Further, in the structure in which the fluorine resin coating is formed on both front and back surfaces of the diaphragm, there is a problem that the voice coil bobbin 5 cannot be even adhered, and the same processing as above must be performed.

そして、前者の基布1の表面にアクリル樹脂層3を介
してフツ素樹脂被膜4を形成した構造のものは、振動板
の重量が増大し、音圧放射能率が低く実用的でないの
で、実際は、フツ素樹脂被膜4をできるだけ薄くしてい
る。そのため、水分が表面の薄いフツ素樹脂被膜4を透
過し、内部のアクリル樹脂層3および基布1に透湿し
て、振動板の変形やアクリル樹脂層3の軟化が生じる。
これによつて、大入力時に振動板の異常共振が起こり、
また、初期ステイフネスが経時変化して、スピーカーの
初期特性を維持できないという問題点がある。
The former one having a structure in which the fluorine resin coating film 4 is formed on the surface of the base fabric 1 via the acrylic resin layer 3 increases the weight of the diaphragm and has a low sound pressure radioactivity, which is not practical. The fluorine resin coating 4 is made as thin as possible. Therefore, the moisture permeates the thin fluorine resin coating 4 on the surface and permeates the acrylic resin layer 3 and the base cloth 1 inside, so that the vibration plate is deformed and the acrylic resin layer 3 is softened.
Due to this, abnormal resonance of the diaphragm occurs at high input,
There is also a problem that the initial characteristics of the speaker cannot be maintained because the initial stability changes with time.

また、後者の基布の表面に直接フツ素樹脂の被膜を形
成した構造のものにおいては、振動損失率tanδが約0.0
35〜0.045と小さく、ソフトドーム振動板の特徴である
不要な振動の抑制が不十分となる問題点がある。
In the latter structure having a fluorine resin coating directly on the surface, the vibration loss rate tan δ is about 0.0
It is as small as 35 to 0.045, and there is a problem that the unnecessary vibration, which is a feature of the soft dome diaphragm, is insufficiently suppressed.

[課題を解決するための手段] 本発明は、 振動板基布の表面に直接または振動ロス材樹脂層を
介して振動ロス材樹脂とフツ素樹脂との混合組成物層を
形成してなる、 上記振動ロス材樹脂とフツ素樹脂との混合組成物層
に無機質粉末を混在してなる、ことを特徴とする。
[Means for Solving the Problem] The present invention comprises a mixed composition layer of a vibration loss material resin and a fluorine resin formed directly on the surface of a vibration plate base cloth or through a vibration loss material resin layer. An inorganic powder is mixed in the mixed composition layer of the vibration loss material resin and the fluorine resin.

[作用] 第1の発明は、振動板基布の表面に形成されたアク
リル樹脂とフツ素樹脂と混合組成物層において、振動ロ
ス材として機能するアクリル樹脂組成物の中に高温多湿
下においてもステイフネスの変化が小さいフツ素樹脂組
成物が混在しているため、高温多湿下においても振動板
のステイフネスの変化が小さく、本発明の振動板を組み
込んだスピーカーは振動系のf0、高域限界周波数付近の
特性変化がほとんどなく、また、高温多湿下においても
振動板の変形が小さくなる。
[Operation] In the first aspect of the invention, in the mixed composition layer of the acrylic resin, the fluorine resin and the acrylic resin composition formed on the surface of the diaphragm base fabric, the acrylic resin composition functioning as a vibration loss material is used even under high temperature and high humidity. Since the fluororesin composition having a small change in the stayness is mixed, the change in the stayness of the diaphragm is small even under high temperature and high humidity, and the speaker incorporating the diaphragm of the present invention has a f0 of the vibration system and a high limit frequency. There is almost no characteristic change in the vicinity, and the deformation of the diaphragm is small even under high temperature and high humidity.

第2の発明は、上記振動ロス材樹脂とフツ素樹脂と
混合組成物層に無機質粉末を混在しているため、第9図
に示すように、無機質粉末の混在により、振動板基布の
コーテイング表面が凹凸状になり金型表面との接触面積
が小さくなるため、金型離型性が良好となり、従来のよ
うに金型に成形毎に離型剤を塗布する必要がなく、連続
自動成形が可能となり、また、金型離型性が良好かつ均
一となるため、成形された振動板を金型からはずすとき
に、振動板の変形がなくなり、さらに、振動板のステイ
フネスを増大することができる。
In the second aspect of the present invention, since the vibration loss material resin, the fluorine resin, and the inorganic powder are mixed in the mixed composition layer, as shown in FIG. 9, by mixing the inorganic powder, the coating of the diaphragm base cloth is performed. Since the surface becomes uneven and the contact area with the mold surface is small, the mold releasability is good and continuous automatic molding without the need to apply a mold release agent to the mold every time as in the past. In addition, since the mold releasability is good and uniform, when the molded diaphragm is removed from the mold, the diaphragm is not deformed, and the stability of the diaphragm can be increased. it can.

[実施例] 以下、本発明の代表的な実施例を説明する。[Examples] Representative examples of the present invention will be described below.

まず、本実施例と従来例との比較を容易にするため
に、振動ロス材樹脂組成物として下記のA、BおよびC
液を調製した。
First, in order to facilitate the comparison between this example and the conventional example, the following vibration loss material resin compositions A, B and C were used.
A liquid was prepared.

A液(アクリル樹脂組成物): メチルアクリレート30部とブチルアクリレート70部を
混合したアクリル酸エステル共重合物のエマルジヨン液
(樹脂濃度35wt%)85部と、架橋促進剤としてトリメチ
ロールメラミン3部を添加し、混合してエマルジヨン液
を調製する。
Solution A (acrylic resin composition): 85 parts of emulsion solution (resin concentration 35 wt%) of acrylic acid ester copolymer mixed with 30 parts of methyl acrylate and 70 parts of butyl acrylate, and 3 parts of trimethylolmelamine as a crosslinking accelerator. Add and mix to prepare emulsion solution.

そして、このA液に、アンモニア水を加え、撹拌増粘
して、粘度約7000CPSのコーテイング用A液を調製す
る。
Ammonia water is added to the solution A and the viscosity is increased by stirring to prepare a coating solution A having a viscosity of about 7,000 CPS.

B液(アクリル樹脂とフツ素樹脂との混合組成物): A液に、C7F17の骨格をもつフツ素樹脂液(樹脂濃度2
5wt%)12部を添加し、混合してエマルジヨン液を調製
した。
Solution B (mixture composition of acrylic resin and fluorine resin): Solution A with fluorine resin solution having a skeleton of C 7 F 17 (resin concentration 2
(5 wt%) 12 parts were added and mixed to prepare an emulsion solution.

C液(フツ素樹脂組成物): イソプロピルアルコール3部と水87部の液にフツ素樹
脂液(樹脂濃度25wt%)10部を混合して、フツ素樹脂が
懸濁したコーテイング用C液を調製した。
Liquid C (fluorine resin composition): 3 parts of isopropyl alcohol and 87 parts of water were mixed with 10 parts of the fluorine resin liquid (resin concentration: 25 wt%) to prepare a coating C liquid in which the fluorine resin was suspended. Prepared.

ついで、経100本−緯81本/インチ、52g/m2のポリエ
ステル繊維を平織した基布を用意する。
Then, a base cloth prepared by plain weaving polyester fibers of 100 warps to 81 wefts / inch and 52 g / m 2 is prepared.

(実施例1)(第1図) B液(アクリル樹脂とフツ素樹脂と混合組成物)を基
布1にドクターナイフコーテイング法によりコーテイン
グした後、約130℃−5分間、熱風乾燥器中で乾燥、造
膜して、表面にアクリル樹脂とフツ素樹脂の混合組成物
層2を形成した振動板基布を製作した。この振動板基布
の重さは68.2g/m2であつた。
(Example 1) (Fig. 1) Liquid B (acrylic resin, fluorine resin and mixed composition) was coated on a base cloth 1 by a doctor knife coating method, and then at about 130 ° C for 5 minutes in a hot air dryer. After drying and film formation, a diaphragm base fabric having a surface on which a mixed composition layer 2 of an acrylic resin and a fluorine resin was formed was manufactured. The diaphragm base fabric weighed 68.2 g / m 2 .

ついで、この振動板基布を金型温度195〜205℃、プレ
ス圧200kg/cm2、型締時間12秒の成形条件で加熱加圧
し、ドーム状に成形して、直径25mm、深さ6.5mmの振動
板を完成した。
Then, this diaphragm base fabric is heated and pressed under the molding conditions of a mold temperature of 195 to 205 ° C, a press pressure of 200 kg / cm 2 and a mold clamping time of 12 seconds, and is molded into a dome shape to have a diameter of 25 mm and a depth of 6.5 mm. Completed the diaphragm.

(実施例2)(第2図) A液(アクリル樹脂組成物)を基布1に(実施例1)
と同一方法でコーテイングした後、同一条件で乾燥、造
膜して、アクリル樹脂組成物層3を形成して、重さは6
3.3g/m2の基布を製作した。
(Example 2) (Fig. 2) Liquid A (acrylic resin composition) was used as the base fabric 1 (Example 1).
After coating with the same method as above, drying and film formation under the same conditions to form the acrylic resin composition layer 3, and the weight is 6
A base fabric of 3.3 g / m 2 was produced.

さらに、このアクリル樹脂組成物層3の表面にB液
(アクリル樹脂とフツ素樹脂の混合組成物)を(実施例
1)と同一方法でコーテイングした後、同一条件で乾
燥、造膜して、アクリル樹脂とフツ素樹脂の混合組成物
層2を形成した振動板基布を製作した。なお、A液、B
液のコーテイング量は、重量比で(実施例1)の各々1/
2とした。
Further, liquid B (a mixed composition of acrylic resin and fluorine resin) was coated on the surface of the acrylic resin composition layer 3 by the same method as in (Example 1), and then dried and film-formed under the same conditions. A diaphragm base cloth having a mixed composition layer 2 of an acrylic resin and a fluorine resin was manufactured. Liquid A, B
The coating amount of the liquid is 1 / each of the weight ratio (Example 1).
And 2.

この振動板基布の重さは68.9g/m2であつた。The diaphragm base fabric weighed 68.9 g / m 2 .

ついで、この振動板基布を(実施例1)と同一条件で
加熱加圧し、ドーム状に成形して、直径25mm、深さ6.5m
mの振動板を完成した。
Next, this diaphragm base fabric is heated and pressed under the same conditions as in (Example 1) to form a dome shape, diameter 25 mm, depth 6.5 m.
Completed the m diaphragm.

本実施例の比較列として、次のものを製作した。 The following was manufactured as a comparative column of this example.

(比較例1)(第3図) A液(アクリル樹脂組成物)を基布1に(実施例1)
と同一方法でコーテイングした後、同一条件で乾燥、造
膜して、表面にアクリル樹脂組成物層3を形成した振動
板基布を製作した。この振動板基布の重さは68.3g/m2
あつた。
(Comparative Example 1) (Fig. 3) Liquid A (acrylic resin composition) was used as the base fabric 1 (Example 1).
After being coated by the same method as above, it was dried and film-formed under the same conditions to manufacture a diaphragm base cloth having the acrylic resin composition layer 3 formed on the surface thereof. The diaphragm base fabric weighed 68.3 g / m 2 .

ついで、この振動板基布を(実施例1)と同一条件で
加熱加圧し、ドーム状に成形して、直径25mm、深さ6.5m
mの振動板を完成した。
Next, this diaphragm base fabric is heated and pressed under the same conditions as in (Example 1) to form a dome shape, diameter 25 mm, depth 6.5 m.
Completed the m diaphragm.

(比較例2)(第4図) (比較例1)の表面に、すなわち、アクリル樹脂組成
物層3の表面にC液(フツ素樹脂組成物)をスプレー法
により吹き付けた後、約130℃−3分間、熱風乾燥器中
で乾燥、造膜して、表面にアクリル樹脂組成物層3を介
してフツ素樹脂組成物層4を形成した振動板基布を製作
した。この振動板基布の重さは68.9g/m2であつた。
(Comparative Example 2) (FIG. 4) After spraying the liquid C (fluorine resin composition) on the surface of (Comparative Example 1), that is, the surface of the acrylic resin composition layer 3 by a spray method, the temperature is about 130 ° C. A diaphragm base fabric having a fluorine resin composition layer 4 formed on the surface through an acrylic resin composition layer 3 was manufactured by drying in a hot air drier for 3 minutes to form a film. The diaphragm base fabric weighed 68.9 g / m 2 .

ついで、この振動板基布を(実施例1)と同一条件で
加熱加圧し、ドーム状に成形して、直径25mm、深さ6.5m
mの振動板を完成した。
Next, this diaphragm base fabric is heated and pressed under the same conditions as in (Example 1) to form a dome shape, diameter 25 mm, depth 6.5 m.
Completed the m diaphragm.

次に、これらの各実施例、比較例において、高温多湿
度試験を行い、ドーム部の頂部のステイフネスを、 温度25℃−湿度60%RHの条件下に96時間放置 温度43℃−湿度92%RHの条件下に96時間放置 の条件で測定し、それぞれの変化率を求めた。
Next, in each of these Examples and Comparative Examples, a high temperature and high humidity test was performed, and the top dome of the dome portion was left standing for 96 hours at a temperature of 25 ° C and a humidity of 60% RH. It was measured under the condition of RH for 96 hours, and the change rate of each was obtained.

ステイフネスの測定方法は、第5図に示すように、振
動板を治具上に載置し、頂部を押さえて、2mm変位する
に要する力を測定した。
As for the method of measuring the stiffness, as shown in FIG. 5, a diaphragm was placed on a jig, the top was pressed, and the force required to displace 2 mm was measured.

測定結果は次の通り。 The measurement results are as follows.

以上の測定結果によると、(実施例1)はステイフネ
スの変化率が5.6%と低く、他の比較例に比べて約1/3で
あり、また、(実施例2)の変化率が9.9%であり、他
の比較例に比べて約1/1.5〜1.8であることが確認でき
る。
According to the above measurement results, the rate of change in the stability of (Example 1) was as low as 5.6%, which was about 1/3 of that of the other comparative examples, and the rate of change of (Example 2) was 9.9%. It can be confirmed that it is about 1 / 1.5-1.8 as compared with other comparative examples.

これは、基布1の表面に形成されたアクリル樹脂とフ
ツ素樹脂の混合組成物層2において、振動ロス材として
機能するアクリル樹脂組成物の中に高温多湿下において
もステイフネスの変化が小さいフツ素樹脂組成物が混在
しているためである。
This is because in the mixed composition layer 2 of the acrylic resin and the fluorine resin formed on the surface of the base cloth 1, the acrylic resin composition functioning as a vibration loss material has a small change in the stability even under high temperature and high humidity. This is because the base resin composition is mixed.

また、(実施例1)と(比較例2)を同一仕様のスピ
ーカーに組み込んで、高温多湿度試験前後の音圧周波数
特性および振動系のf0を示すアドミタンス特性を測定し
た。
In addition, (Example 1) and (Comparative Example 2) were incorporated into a speaker having the same specifications, and the sound pressure frequency characteristics before and after the high temperature and high humidity test and the admittance characteristics showing f0 of the vibration system were measured.

測定結果によると、(実施例1)では第6図実線に示
すように振動系のf0、高域限界周波数付近の特性変化が
ほとんどないのに対して、(比較例2)では第7図実線
に示すように振動系のf0が約25Hz低下し、高域において
高域限界周波数が約700Hz低下し、かつ、音圧力も約2dB
低下した。
According to the measurement results, in (Example 1), as shown by the solid line in FIG. 6, there is almost no characteristic change in the vicinity of f0 and the high limit frequency of the vibration system, whereas in (Comparative example 2), the solid line in FIG. As shown in, the f0 of the vibration system is reduced by about 25 Hz, the high limit frequency is reduced by about 700 Hz in the high range, and the sound pressure is also about 2 dB.
Dropped.

(実施例3)(第9図) メチルアクリレート30部とブチルアクリレート70部を
混合したアクリル酸エステル共重合物のエマルジヨン液
(樹脂濃度35wt%)130部と、フツ素樹脂液(樹脂濃度2
5wt%)12部とを混合撹拌し、これに無機質粉末として3
2wt%酸化チタン粉末懸濁液50部を添加、混合してコー
テイング用D液を調製する。
(Example 3) (FIG. 9) 130 parts of emulsion solution (resin concentration 35 wt%) of acrylic acid ester copolymer mixed with 30 parts of methyl acrylate and 70 parts of butyl acrylate, and fluorine resin solution (resin concentration 2)
5 wt%) 12 parts by mixing and stirring, and as an inorganic powder,
50 parts of 2 wt% titanium oxide powder suspension is added and mixed to prepare coating liquid D.

そして、このD液を基布1に(実施例1)と同一方法
でコーテイングした後、同一条件で乾燥、造膜して、表
面にアクリル樹脂とフツ素樹脂の混合組成物層2に酸化
チタンの粉末8が混在する振動ロス材層を形成した振動
板基布を製作した。
Then, this liquid D was coated on the base cloth 1 by the same method as in (Example 1), dried and film-formed under the same conditions, and titanium oxide was formed on the surface of the mixed composition layer 2 of acrylic resin and fluorine resin. A vibrating plate base cloth having a vibrating loss material layer in which the powder 8 of FIG.

すなわち、(実施例1)において、アクリル樹脂とフ
ツ素樹脂の混合組成物層2に酸化チタンの粉末8を混在
させたものである。
That is, in (Example 1), the titanium oxide powder 8 was mixed in the mixed composition layer 2 of the acrylic resin and the fluorine resin.

ついで、この振動板基布を(実施例1)と同一条件で
加熱加圧し、ドーム状に成形して振動板を完成した。
Next, this diaphragm base fabric was heated and pressed under the same conditions as in (Example 1) and molded into a dome shape to complete the diaphragm.

(実施例4)(第10図) (実施例2)において、基布1のアクリル樹脂組成物
層3の表面にD液を(実施例3)と同一方法でコーテイ
ングした後、同一条件で乾燥、造膜して、表面にアクリ
ル樹脂とフツ素樹脂の混合組成物層2に酸化チタンの粉
末8が混在する振動ロス材層を形成した振動板基布を製
作した。
(Example 4) (Fig. 10) In (Example 2), liquid D was coated on the surface of the acrylic resin composition layer 3 of the base fabric 1 by the same method as (Example 3), and then dried under the same conditions. Then, a diaphragm base fabric was formed by forming a film on the surface of which a vibration loss material layer in which the titanium oxide powder 8 was mixed in the mixed composition layer 2 of acrylic resin and fluorine resin was formed.

すなわち、(実施例2)において、アクリル樹脂とフ
ツ素樹脂と混合組成物層2に酸化チタンの粉末8を混在
させたものである。
That is, in (Example 2), the titanium oxide powder 8 was mixed in the acrylic resin / fluorine resin / mixed composition layer 2.

ついで、この振動板基布を(実施例1)と同一条件で
加熱加圧し、ドーム状に成形して振動板を完成した。
Next, this diaphragm base fabric was heated and pressed under the same conditions as in (Example 1) and molded into a dome shape to complete the diaphragm.

なお、D液の調製時に酸化チタン粉末液とフツ素樹脂
液とを混合した後に、アクリル樹脂液を混合すれば、酸
化チタン粉末表面のフツ素樹脂濃度が他の部分より濃く
なり、吸湿性防止効果がなお一層向上する。
If the acrylic resin liquid is mixed after mixing the titanium oxide powder liquid and the fluorine resin liquid when preparing the liquid D, the fluorine resin concentration on the surface of the titanium oxide powder becomes higher than that of other portions, and the hygroscopic property is prevented. The effect is further improved.

(実施例5)(第11図) (実施例2)において、基布1の表面に、A液(アク
リル樹脂組成物)に無機質粉末として32wt%酸化チタン
粉末液を添加、混合したコーテイング用E液を(実施例
1)と同一方法でコーテイングした後、同一条件で乾
燥、造膜して、表面に酸化チタンの粉末8が混在するア
クリル樹脂組成物層3を形成し、さらに、このアクリル
樹脂組成物層3の表面にD液(酸化チタンの粉末8を混
在させたアクリル樹脂とフツ素樹脂の混合組成物)を
(実施例1)と同一方法でコーテイングした後、同一条
件で乾燥、造膜して、酸化チタンの粉末8を混在させた
アクリル樹脂とフツ素樹脂の混合組成物層2を形成して
振動板基布とし、これを(実施例1)と同一条件で加熱
加圧し、ドーム状に成形して振動板を完成した。
(Embodiment 5) (Fig. 11) In (Embodiment 2), 32 wt% titanium oxide powder liquid as an inorganic powder was added to and mixed with liquid A (acrylic resin composition) on the surface of the base fabric 1 for coating E After coating the liquid in the same manner as in (Example 1), drying and film formation under the same conditions to form an acrylic resin composition layer 3 containing titanium oxide powder 8 mixed on the surface, and further, this acrylic resin Liquid D (a mixed composition of acrylic resin and fluorine resin mixed with titanium oxide powder 8) was coated on the surface of the composition layer 3 by the same method as in (Example 1), and then dried and produced under the same conditions. A film is formed to form a mixed composition layer 2 of an acrylic resin and a fluorine resin in which titanium oxide powder 8 is mixed to form a diaphragm base cloth, which is heated and pressed under the same conditions as in (Example 1), The diaphragm was completed by forming it into a dome shape.

次に、これらの各実施例において、高温多湿度試験を
行い、ドーム部の頂部のステイフネスを、 常温常湿(試験前) 温度43℃−湿度92%RHの条件下に96時間放置 の条件で測定し、それぞれの変化率を求めた。
Next, in each of these examples, a high temperature and high humidity test was conducted, and the top part of the dome was left to stand for 96 hours under the conditions of room temperature and normal humidity (before the test), temperature 43 ° C and humidity 92% RH. It measured and calculated each change rate.

ステイフネスの測定方法は、(実施例1)、(実施例
2)と同様である。
The method of measuring the stiffness is the same as in (Example 1) and (Example 2).

測定結果は次の通り。 The measurement results are as follows.

以上の測定結果によると、実施例3、実施例5は比較
例1に比べて、振動板のステイフネスが約25%程度増大
し、かつ、湿度によるステイフネスの変化率も各々12.1
%、8.9%であり、比較例1の18.3%に比べて低くなつ
ている。
According to the above measurement results, in Example 3 and Example 5, the stability of the diaphragm is increased by about 25% as compared with Comparative Example 1, and the rate of change of the stability due to humidity is 12.1 each.
%, 8.9%, which is lower than 18.3% of Comparative Example 1.

このステイフネスの増大は、振動ロス材樹脂とフツ素
樹脂との混合組成物層または振動ロス材樹脂層に酸化チ
タン粉末が混在しているためである。
The increase in the stability is because the titanium oxide powder is mixed in the mixed composition layer of the vibration loss material resin and the fluorine resin or the vibration loss material resin layer.

なお、上記の各実施例および比較例について、成形時
の離型性を検討してみると、 (比較例1) 金型に融着するので、金型に離型剤を塗
布する必要があつた。
When the mold releasability at the time of molding is examined for each of the above-mentioned Examples and Comparative Examples, (Comparative Example 1), since it is fused to the mold, it is necessary to apply a mold release agent to the mold. It was

(比較例2) 金型離型性が良好で、離型剤の塗布が不
要であつた。
(Comparative Example 2) The mold releasability was good, and application of a mold release agent was unnecessary.

(実施例1および2) 離型剤の塗布は不要であるが、
離型時に振動板が変形しないよう離型力を調製する必要
があつた。
(Examples 1 and 2) It is not necessary to apply a release agent,
It was necessary to adjust the release force so that the diaphragm would not deform during release.

(実施例3、4および5) 金型離型性が良好で、離型
剤の塗布が不要であつた。
(Examples 3, 4, and 5) The mold releasability was good, and it was unnecessary to apply a mold release agent.

このように、特に、(実施例3、4および5)におい
ては、無機質粉末の混在により、第9図に示すように振
動板基布のコーテイング表面が凹凸状になり金型表面と
の接触面積が小さくなるため、金型離型性が良好とな
り、従来のように金型に成形毎に離型剤を塗布する必要
がなく、連続自動成形が可能となり、また、金型離型性
が良好かつ均一となるため、成形された振動板を金型か
らはずすときに、振動板の変形がなくなる。
As described above, particularly in (Examples 3, 4 and 5), the mixing of the inorganic powder causes the coating surface of the diaphragm base cloth to become uneven as shown in FIG. 9, resulting in a contact area with the mold surface. Is smaller, the mold releasability becomes better, and continuous automatic molding is possible without the need to apply a mold release agent to the mold each time as in the past, and the mold releasability is good. In addition, since it becomes uniform, when the molded diaphragm is removed from the mold, the diaphragm is not deformed.

また、(実施例3)〜(実施例5)において、無機質
粉末として酸化チタン粉末の代わりに酸化ケイ素粉末を
用いても同等である。
Further, in (Example 3) to (Example 5), the same is true even if silicon oxide powder is used instead of titanium oxide powder as the inorganic powder.

[発明の効果] 第1の発明:振動板基布の表面に直接または振動ロ
ス材樹脂層を介して振動ロス材樹脂とフツ素樹脂との混
合組成物層を形成してなる振動板には、上記振動ロス材
樹脂層に温度、湿度に対してスチフネス変化の小さいフ
ツ素樹脂を混入したので、高温多湿下においても振動板
のステイフネスの変化が小さく、本発明の振動板を組み
込んだスピーカーは振動系のf0、高域限界周波数付近の
特性変化がほとんどなく、経時変化の小さい品質の安定
したスピーカーを提供することができる。また、高温多
湿下においても振動板のステイフネスの変化が小さいの
で、振動板の変形によるボイスコイルボビンの傾きや異
常共振による異常音の発生を抑圧でき、さらに、表面層
にフツ素樹脂が混在し、耐水性の点で優れているので、
特に、水滴、油の付着の度合いが大きい自動車のドアマ
ウントスピーカーや屋外使用の楽器用スピーカーなどの
用途に適している、などの効果がある。
[Effects of the Invention] First invention: a diaphragm having a mixed composition layer of a vibration loss material resin and a fluorine resin formed directly or through a vibration loss material resin layer on the surface of a diaphragm base fabric. Since the vibration loss material resin layer is mixed with fluorine resin having a small stiffness change with respect to temperature and humidity, the change in the stiffness of the diaphragm is small even under high temperature and high humidity, and the speaker incorporating the diaphragm of the present invention is It is possible to provide a stable speaker of quality with little change over time, with almost no characteristic changes near the f0 and high limit frequencies of the vibration system. Further, since the change in the stiffness of the diaphragm is small even under high temperature and high humidity, it is possible to suppress the occurrence of abnormal sound due to the inclination of the voice coil bobbin and the abnormal resonance due to the deformation of the diaphragm, and the fluorine resin is mixed in the surface layer. Because it is excellent in water resistance,
In particular, it is suitable for applications such as automobile door-mounted speakers and outdoor-use musical instrument speakers, which have a large degree of water droplets and oil adhesion.

第2の発明:上記振動ロス材樹脂とフツ素樹脂との混合
組成物層に無機質粉末を混在してなることを特徴とする
振動板においては、第1の発明の効果に加えて、振動板
のステイフネスを増大することができるので、大入力時
に振動板の異常共振が起こりにくく、耐入力性が向上
し、かつ、高域限界周波数が拡大し、さらに、振動ロス
材樹脂とフツ素樹脂との混合組成物層に無機質粉末が混
在しているため、振動板基布のコーテイング表面が凹凸
状になり金型表面との接触面積が小さくなり、かつ、金
型と成形した振動板との離型性が良好となり、従来のよ
うに金型に成形毎に離型剤を塗布する必要がなく、連続
自動成形が可能となり、量産性が向上するのみならず、
成形加工コストも低減でき、また、金型離型性が良好か
つ均一となるため、成形された振動板を金型からはずす
ときに、振動板の変形がなくなり、設計とおりの形状が
実現できるので、成形時の変形や異常な形状による異常
な共振が除去でき、理想的な振動姿態が実現でき、か
つ、大入力時の異常共振も抑圧でき、耐入力性も向上す
る、などの効果がある。
2nd invention: In addition to the effect of 1st invention, in the diaphragm characterized by mixing inorganic powder in the mixed composition layer of said vibration loss material resin and fluorine resin, in addition to the effect of 1st invention, a diaphragm Therefore, the abnormal resonance of the diaphragm is unlikely to occur at the time of a large input, the input resistance is improved, and the high frequency limit is expanded, and the vibration loss material resin and the fluorine resin are Since the inorganic powder is mixed in the mixed composition layer of, the coating surface of the vibration plate base cloth becomes uneven, the contact area with the mold surface becomes small, and the separation between the mold and the molded diaphragm is made. The moldability is good, there is no need to apply a mold release agent to the mold every time molding is required, continuous automatic molding is possible, and not only mass productivity is improved,
Molding cost can be reduced, and the mold releasability is good and uniform, so when the molded diaphragm is removed from the mold, the diaphragm does not deform and the shape as designed can be realized. It is possible to eliminate abnormal resonance due to deformation and abnormal shape during molding, realize ideal vibration mode, suppress abnormal resonance at high input, and improve input resistance. .

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明に係る第1の発明の電気音響変換器用振
動板の代表的な実施例(第1の実施例)の構造を示す
図、第2図は同、第2の実施例の構造を示す図、第3
図、第4図は第1、第2の比較例の構造を示す図、第5
図はステイフネスの測定方法を示す概略図、第6図は湿
度試験前後の第1の実施例を組み込んだスピーカーの音
圧周波数特性およびをアドミタンス特性を示す図、第7
図湿度試験前後のは第2の比較例を組み込んだスピーカ
ーの音圧周波数特性およびをアドミタンス特性を示す
図、第8図は従来の電気音響変換器用振動板(第2の比
較例に相当)の構造を示す図、第9図は本発明に係る第
2の発明の電気音響変換器用振動板の代表的な実施例
(第3の実施例)の構造を示す図、第10図、第11図は
同、第4、第5の実施例の構造を示す図である。
FIG. 1 is a diagram showing the structure of a typical embodiment (first embodiment) of the diaphragm for electroacoustic transducers of the first invention according to the present invention, and FIG. 2 is the same as the second embodiment. Figure showing the structure, 3rd
FIGS. 4 and 5 are views showing the structures of the first and second comparative examples, and FIG.
FIG. 7 is a schematic diagram showing a method for measuring the stayness, FIG. 6 is a diagram showing sound pressure frequency characteristics and a admittance characteristic of a speaker incorporating the first embodiment before and after a humidity test.
Fig. 8 shows the sound pressure frequency characteristics and the admittance characteristics of the speaker incorporating the second comparative example before and after the humidity test. Fig. 8 shows the conventional electroacoustic transducer diaphragm (corresponding to the second comparative example). FIG. 9 is a diagram showing the structure, FIG. 9 is a diagram showing the structure of a typical embodiment (third embodiment) of the diaphragm for an electroacoustic transducer according to the second invention, FIG. 10, FIG. FIG. 11 is a view showing the structures of the fourth and fifth embodiments of the same.

フロントページの続き (56)参考文献 特開 昭59−6558(JP,A) 特開 昭61−267499(JP,A) 特開 昭54−74726(JP,A) 特開 昭61−225998(JP,A) 特開 昭63−261988(JP,A) 特開 昭61−114696(JP,A) 特開 昭60−100899(JP,A) 特開 昭54−86321(JP,A) 実開 昭54−100717(JP,U)Continuation of the front page (56) Reference JP-A-59-6558 (JP, A) JP-A-61-267499 (JP, A) JP-A-54-74726 (JP, A) JP-A-61-225998 (JP , A) JP 63-261988 (JP, A) JP 61-114696 (JP, A) JP 60-100899 (JP, A) JP 54-86321 (JP, A) 54-100717 (JP, U)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】振動板基布(1)の表面に直接または振動
ロス材樹脂層(3)を介して振動ロス材樹脂とフツ素樹
脂との混合組成物層(2)を形成してなることを特徴と
する電気音響変換器用振動板。
1. A mixed composition layer (2) of a vibration loss material resin and a fluorine resin is formed directly or through a vibration loss material resin layer (3) on the surface of a diaphragm base fabric (1). A diaphragm for an electroacoustic transducer, which is characterized in that
【請求項2】上記振動ロス材樹脂とフツ素樹脂との混合
組成物層(2)に無機質粉末(8)を混在してなること
を特徴とする請求項1に記載の電気音響変換器用振動
板。
2. The vibration for an electroacoustic transducer according to claim 1, wherein an inorganic powder (8) is mixed in the mixed composition layer (2) of the vibration loss material resin and the fluorine resin. Board.
JP31240288A 1988-12-10 1988-12-10 Diaphragm for electroacoustic transducer Expired - Lifetime JP2676158B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31240288A JP2676158B2 (en) 1988-12-10 1988-12-10 Diaphragm for electroacoustic transducer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31240288A JP2676158B2 (en) 1988-12-10 1988-12-10 Diaphragm for electroacoustic transducer

Publications (2)

Publication Number Publication Date
JPH02158298A JPH02158298A (en) 1990-06-18
JP2676158B2 true JP2676158B2 (en) 1997-11-12

Family

ID=18028808

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31240288A Expired - Lifetime JP2676158B2 (en) 1988-12-10 1988-12-10 Diaphragm for electroacoustic transducer

Country Status (1)

Country Link
JP (1) JP2676158B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009118895A1 (en) * 2008-03-28 2009-10-01 パイオニア株式会社 Acoustic converter diaphragm and acoustic converter
JP4756393B2 (en) * 2008-05-28 2011-08-24 オンキヨー株式会社 Speaker diaphragm and electrodynamic speaker using the same
GB2538809B (en) * 2015-05-29 2021-08-25 B & W Group Ltd Loudspeaker diaphragm

Also Published As

Publication number Publication date
JPH02158298A (en) 1990-06-18

Similar Documents

Publication Publication Date Title
JP3199559B2 (en) Speaker damper and method of manufacturing the same
EP0632675B1 (en) Diaphragm-edge integral moldings for speakers, acoustic transducers comprising same and method for fabricating same
US5259036A (en) Diaphragm for dynamic microphones and methods of manufacturing the same
US4377617A (en) Loudspeaker diaphragm and process for producing same
JP2676158B2 (en) Diaphragm for electroacoustic transducer
JP2788998B2 (en) Laminated materials for vibration parts and speaker vibration parts
JPH04331600A (en) Diaphragm for electroacoustic converter and production thereof
EP0406832B1 (en) Method of manufacturing an acustic diaphragm
JP3241514B2 (en) Method for manufacturing speaker vibration member
JP3211566B2 (en) Speaker diaphragm and manufacturing method thereof
JPS6349991Y2 (en)
JP2945421B2 (en) Diaphragm for electroacoustic transducer and method of manufacturing the same
JPS5810039B2 (en) Vibration plate for headphones
JPS5942519B2 (en) How to attach voice coil bobbin and cone for speaker
JPH1042390A (en) Edge for speaker
JP3547655B2 (en) Method for manufacturing speaker edge
JP3046138B2 (en) Manufacturing method of diaphragm for electroacoustic transducer
JPH06153292A (en) Edge material for speaker and free edge cone for speaker
JPH0373200B2 (en)
JPS6011520B2 (en) speaker diaphragm
JP3142703B2 (en) Speaker diaphragm and manufacturing method thereof
JP2527903Y2 (en) Speaker dust cap
JP2519981Y2 (en) Speaker edge
JPS6342639Y2 (en)
JPH11187481A (en) Diaphragm for electroacoustic transducer

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20090725