JP2653248B2 - Vehicle frame members and side members - Google Patents
Vehicle frame members and side membersInfo
- Publication number
- JP2653248B2 JP2653248B2 JP40940290A JP40940290A JP2653248B2 JP 2653248 B2 JP2653248 B2 JP 2653248B2 JP 40940290 A JP40940290 A JP 40940290A JP 40940290 A JP40940290 A JP 40940290A JP 2653248 B2 JP2653248 B2 JP 2653248B2
- Authority
- JP
- Japan
- Prior art keywords
- side member
- ridge
- concave
- load
- convex
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Body Structure For Vehicles (AREA)
Description
【0001】[0001]
【産業上の利用分野】この発明は車両衝突時等のエネル
ギ吸収量を増大することのできる車両用骨格部材、並び
にサイドメンバに関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a skeletal member for a vehicle and a side member capable of increasing the amount of energy absorption at the time of a vehicle collision or the like.
【0002】[0002]
【従来の技術】従来の車両用骨格部材としては例えば図
17に示すサイドメンバ101がある。2. Description of the Related Art As a conventional frame member for a vehicle, for example, there is a side member 101 shown in FIG.
【0003】このサイドメンバ101は例えば図18の
ように閉断面構造を呈した一般形状のものである。ま
た、図19に示すような蛇腹形状のサイドメンバ102
もある(類似構造のものとして実開昭60−66745
号公報参照)。そして、例えば車両の正面衝突時にバン
パー103側からサイドメンバ101へ衝突荷重が入力
されるとサイドメンバ101の変形等によって衝突エネ
ルギを吸収するようになっている。しかしながら、図1
8のような一般形状のサイドメンバ101では衝突時に
どのように変形をするかが予測できないため、十分なエ
ネルギ吸収を行なうにはサイドメンバ101自体が大型
化する恐れがあった。The side member 101 is of a general shape having a closed sectional structure as shown in FIG. Further, a bellows-shaped side member 102 as shown in FIG.
There is also a similar structure (Japanese Utility Model Application No. 60-66745).
Reference). For example, when a collision load is input from the bumper 103 side to the side member 101 during a frontal collision of the vehicle, the collision energy is absorbed by deformation of the side member 101 or the like. However, FIG.
Since it is not possible to predict how the side member 101 having a general shape such as 8 deforms at the time of a collision, there is a possibility that the side member 101 itself becomes large in order to sufficiently absorb energy.
【0004】また、図19に示すサイドメンバ102で
は蛇腹形状であるため、衝突時の潰れ変形が予測でき、
吸収しうる衝突エネルギも予測し得るが、変形が容易な
ために大きさの割りには全体のエネルギ吸収量が少な
く、十分なエネルギ吸収を行なうためにはやはり大型化
する恐れがあった。Further, since the side member 102 shown in FIG. 19 has a bellows shape, crush deformation at the time of collision can be predicted.
Although the collision energy that can be absorbed can be predicted, the entire energy absorption amount is small for the size because the deformation is easy, and the size may be increased in order to sufficiently absorb the energy.
【0005】そこでこの発明は、潰れ変形状態を特定で
き、吸収エネルギの設定が容易で、小型化を図ることが
できる車両用骨格部材、並びにサイドメンバの提供を目
的とする。Accordingly, an object of the present invention is to provide a vehicle skeletal member and a side member which can specify a collapsed deformation state, can easily set an absorbed energy, and can be reduced in size.
【0006】[0006]
【課題を解決するための手段】上記課題を解決するため
にこの発明は、上下左右壁部で構成され角部を有する閉
断面構造の車両用骨格部材において、前記上下左右壁部
の互いに向い合う両壁部とこの両壁部で挾まれた少なく
とも一方の壁部との一方に凹条を設け、他方に凸条を設
け、前記凹条が前記角部を通って前記凸条に連続するこ
とを特徴とする。SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention relates to a vehicle frame member having a closed cross-sectional structure having upper, lower, left and right wall portions and having corner portions, wherein the upper, lower, left and right wall portions face each other. A concave streak is provided on one of the two wall portions and at least one wall portion sandwiched between the two wall portions, and a convex streak is provided on the other, and the concave streak is continuous with the convex streak through the corner portion. It is characterized by.
【0007】また、上下左右壁部で構成され角部を有す
る閉断面構造であり、先端にバンパを取付けたサイドメ
ンバにおいて、前記上下左右壁部の先端側で互いに向い
合う両壁部とこの両壁部で挾まれた少なくとも一方の壁
部との一方に閉断面周方向の凹条を設け、他方に閉断面
周方向の凸条を設け、前記凹条が前記角部を通って前記
凸条に連続することを特徴とする。Further, the side member has a closed cross-sectional structure composed of upper, lower, left and right wall portions and having a corner portion. At least one of the walls sandwiched by the walls is provided with a concave groove having a closed cross-section in the circumferential direction, and the other is provided with a convex ridge having a closed cross-section in the circumferential direction. It is characterized by being continuous.
【0008】[0008]
【作用】まず車両用骨格部材では圧縮方向の入力荷重が
あると壁部に設けられた凹条及び凸条に応力集中が起
り、凸条は外側へ突出するように変形し、角部を通る凹
条を引張り込んでくる。従って、角部での潰れ変形は促
進され、凹条及び凸条を中心に車両用骨格部材の壁部は
潰れ変形する。First, in a vehicle frame member, when an input load in the compression direction is applied, stress concentration occurs in the concave and convex ridges provided on the wall, and the convex ridge is deformed so as to protrude outward and passes through the corner. Pull in the ridge. Therefore, the crushing deformation at the corners is promoted, and the wall portion of the vehicle skeletal member is crushed and deformed centering on the concave and convex ridges.
【0009】また、サイドメンバでは車両衝突時にバン
パからサイドメンバへ衝突荷重が入力されると先端側に
設けられた凹条及び凸条を中心に潰れ変形を起すことが
できる。Further, when a collision load is input from the bumper to the side member at the time of a vehicle collision, the side member can be crushed and deformed mainly on the concave and convex ridges provided on the front end side.
【0010】[0010]
【実施例】以下この発明の実施例を説明する。Embodiments of the present invention will be described below.
【0011】図1はこの発明の一実施例に係る車両用骨
格部材としてサイドメンバ1の先端側を示した斜視図で
ある。同図のようにサイドメンバ1は上下左右壁部3,
5,7で構成され、角部9を有する閉断面構造となって
いる。上下壁部3及び右壁部7はチャンネル材状に一体
に形成され、上下壁部3の端部に結合フランジ11が設
けられ、この結合フランジ11に、左壁部5の上下がス
ポット溶接等により結合されている。FIG. 1 is a perspective view showing a distal end side of a side member 1 as a vehicle frame member according to an embodiment of the present invention. As shown in FIG.
5, 7, and has a closed cross-sectional structure having a corner portion 9. The upper and lower wall portions 3 and the right wall portion 7 are integrally formed in the shape of a channel material, and a coupling flange 11 is provided at an end of the upper and lower wall portions 3. Are connected by
【0012】このようなサイドメンバ1の上下左右壁部
の互いに向い合う両壁部として、例えば上下壁部3には
閉断面周方向の凹条13が設けられている。また、両壁
部に挾まれた少なくとも一方の壁部、例えば右壁部7に
は閉断面周方向の凸条15が設けられている。凹条13
は前記角部9を通って前記凸条15に連続し、凹条13
及び凸条15は上下壁部3及び右壁部7においてサイド
メンバ1の閉断面周方向に連続した構成となっている。
したがって、凹条13は角部9を斜めに削り取るような
形状となっている。これら凹条13及び凸条15のサイ
ドメンバ1先端からの距離は、右壁部7の高さ寸法を先
端からとった点線の位置内となっている。根拠は後述す
る。As the upper and lower left and right wall portions of the side member 1 facing each other, for example, the upper and lower wall portions 3 are provided with concave grooves 13 having a closed cross-section circumferential direction. Also, at least one of the walls sandwiched between the two walls, for example, the right wall 7, is provided with a ridge 15 having a closed cross-sectional circumferential direction. Dent 13
Is continuous with the ridge 15 through the corner 9 and the ridge 13
The ridge 15 has a configuration in which the upper and lower walls 3 and the right wall 7 are continuous in the closed section circumferential direction of the side member 1.
Therefore, the concave stripe 13 has a shape such that the corner 9 is cut off obliquely. The distance between the concave ridge 13 and the convex ridge 15 from the tip of the side member 1 is within the position indicated by the dotted line where the height of the right wall portion 7 is taken from the tip. The basis will be described later.
【0013】図2は前記サイドメンバ1が先端から圧縮
荷重を受けたときの潰れ変形を経時的に示したもので、
図2の上段は図1と同じ状態の斜視図であり、(a)〜
(c)へ経時的に潰れ変形している状態を示している。
同図中段のものは平面から見た状態を模式的に示したも
ので、下段のものは中段において点線の四角で囲んだR
の領域を拡大して示したものである。FIG. 2 shows the crush deformation when the side member 1 is subjected to a compressive load from the tip thereof with time.
The upper part of FIG. 2 is a perspective view of the same state as FIG.
(C) shows a state in which it is crushed and deformed with time.
The one in the middle of the figure schematically shows a state seen from a plane, and the one in the bottom is an R surrounded by a dotted-line square in the middle.
Area is shown in an enlarged manner.
【0014】また図3は図2上段のものを更に模式化し
て示したものである。従って図2上段及び図3で示すよ
うに、(a)の変形前の状態において先端に衝突荷重を
受けると荷重は凹条13及び凸条15に集中して(b)
のように凸条15が外側へ突出するように変形する。こ
の変形により、角部9において凹条13が凸条15の変
形方向へ引張り込まれ、角部9の潰れ変形も進行する。
軽微の衝突であれば図2、図3の(b)のような凹条1
3及び凸条15の変形によって十分なエネルギ吸収が行
なわれる。更に大きな衝突荷重が加わるとサイドメンバ
1の変形は図2、図3の(c)にまで至り、凹条13及
び凸条15を中心にサイドメンバ1が先端側で潰れ変形
する。従って潰れ変形箇所が特定でき、サイドメンバ1
の変形が予測できて吸収エネルギの設定も容易となる。
また、凸条15が外側へ突出し、角部9において凹条1
3を引張り込むような変形をするので蛇腹に比べて十分
なエネルギ吸収ができ、全体としてサイドメンバ1を小
型化することができる。FIG. 3 is a schematic diagram of the upper part of FIG. Therefore, as shown in the upper part of FIG. 2 and FIG. 3, when a collision load is applied to the tip in the state before the deformation of (a), the load concentrates on the concave ridge 13 and the convex ridge 15 (b).
Thus, the ridge 15 is deformed so as to protrude outward. Due to this deformation, the concave stripe 13 is pulled in the corner 9 in the direction in which the convex stripe 15 is deformed, and the corner 9 is crushed and deformed.
In the case of a minor collision, the concave streak 1 as shown in FIGS.
Sufficient energy absorption is performed by the deformation of the ridges 3 and the ridges 15. When an even greater collision load is applied, the deformation of the side member 1 reaches up to (c) in FIGS. 2 and 3, and the side member 1 is crushed and deformed on the tip side around the concave ridge 13 and the convex ridge 15. Therefore, the crush deformation portion can be specified, and the side member 1
Can be predicted, and the setting of the absorbed energy becomes easy.
Also, the ridge 15 protrudes outward, and the ridge 1 is formed at the corner 9.
3 is deformed such that it pulls in, so that sufficient energy absorption can be performed as compared with the bellows, and the side member 1 can be downsized as a whole.
【0015】次に上記実施例の理論的根拠について説明
する。Next, the theoretical basis of the above embodiment will be described.
【0016】(1)最大発生荷重の比較 ここでは本発明のサイドメンバ1を凹条及び凸条を設け
ていない図4のサイドメンバ101との比較において述
べる。(1) Comparison of Maximum Generated Load Here, the side member 1 of the present invention will be described in comparison with the side member 101 of FIG.
【0017】(1,1 )基本サイドメンバ(図4)の最大
発生荷重 ここで、 a,b,c:部材の断面寸法(b>a) t:板厚、 λ:座屈ピッチ E:ヤング率 ν:ポアソン比 σy :降伏応力、 Et :降伏後の応力歪曲線の傾き とすると(1,1) Maximum generated load of the basic side member (FIG. 4) where a, b, c: sectional dimensions of the member (b> a) t: plate thickness, λ: buckling pitch E: young Rate ν: Poisson's ratio σ y : yield stress, Et : slope of stress-strain curve after yield
【0018】[0018]
【数1】 (Equation 1)
【0019】 最大発生応力 σmax =σcr 0.43・σy 0.57 (σcr<σy のとき) (角部屈伏時) σmax =σcr (σcr>σy のとき) となる。The maximum generated stress σ max = σ cr 0.43 · σ y 0.57 (when σ cr <σ y ) (when the corner is bent) σ max = σ cr (when σ cr > σ y ).
【0020】(1.2 )本実施例サイドメンバ(図1)の最
大発生荷重 (1.21)壁面座屈 ここで部材の断面寸法は図4のものと同一とする。ま
た、 e:突条の高さ P:圧縮荷重 δ:Pにより生じる壁面のたわみ とする。(1.2) Maximum generated load of the side member (FIG. 1) of this embodiment (1.21) Wall buckling Here, the sectional dimensions of the members are the same as those in FIG. Also, e: height of the ridge P: compression load δ: deflection of the wall surface caused by P
【0021】サイドメンバ1の軸方向の圧縮荷重が加わ
ると、右壁部7には凸条15があるため、同壁部7の他
の部分より容易に座屈する。凸条15による荷重低減効
果は、凸条15の高さeをもつ右壁部7に生じるたわみ
δの微分方程式を解くことにより得られる。When a compressive load is applied to the side member 1 in the axial direction, the right wall 7 has the ridges 15 so that it buckles more easily than other portions of the wall 7. The load reducing effect of the ridge 15 can be obtained by solving the differential equation of the deflection δ generated in the right wall 7 having the height e of the ridge 15.
【0022】[0022]
【数2】 (Equation 2)
【0023】上式右辺は右壁部7に働く曲げモーメン
ト、Dは曲げ剛性を表す。ここでxは軸方向、yは板厚
方向である。The right side of the above equation represents the bending moment acting on the right wall 7, and D represents the bending rigidity. Here, x is the axial direction and y is the thickness direction.
【0024】[0024]
【数3】 (Equation 3)
【0025】y=C1 sin kx+C2 cos kx+e+δY = C 1 sin kx + C 2 cos kx + e + δ
【0026】[0026]
【数4】 (Equation 4)
【0027】を得る。e=φ、突起のない場合の座屈荷
重をPcr(=Pmax )とすれば、Is obtained. If e = φ and the buckling load without protrusion is P cr (= P max ),
【0028】[0028]
【数5】 (Equation 5)
【0029】e>φでは荷重がPcrに近づくに従いδは
増加する。座屈の判定基準として、δ>eと仮定すれ
ば、本発明実施例の座屈荷重P’crは、When e> φ, δ increases as the load approaches P cr . Assuming that δ> e as a criterion for buckling, the buckling load P ′ cr of the present embodiment is
【0030】[0030]
【数6】 (Equation 6)
【0031】即ち、壁部7は凸条15の部分で凸条15
のない他の部分に比べ、たかだか4/9程度の荷重で座
屈する。凹条13をもつ上下壁部3についても同様であ
る。That is, the wall 7 is formed by the ridge 15
It buckles with a load of at most about 4/9 compared to other parts that do not have. The same applies to the upper and lower wall portions 3 having the concave stripes 13.
【0032】(1.22)角部屈伏 壁面突起だけをもつ部材では、壁面座屈の後、角部
屈伏を生じる。(1.22) Corner Depression In a member having only a wall surface projection, corner deflection occurs after wall buckling.
【0033】[0033]
【数7】 (Equation 7)
【0034】 角部が削られている部材では、壁面座
屈と同時に角は変形する。In a member having a sharpened corner, the corner is deformed simultaneously with buckling of the wall surface.
【0035】σ’max =σ’cr 従って本発明の最大発生荷重は、Σ ′ max = σ ′ cr Therefore, the maximum generated load of the present invention is:
【0036】[0036]
【数8】 (Equation 8)
【0037】と考えられる。It is considered that:
【0038】(1.3) 計算による最大発生荷重低減効果と
有限要素法の解析結果との比較 (1.31)計算結果 断面寸法等を a=50mm b=70mm c=20mm t=1.6mm E=21000kgf/mm2 Et=250kgf/mm2 ν=0.30 σy =22.0kgf/mm2 σmax =32.3kgf/mm2 σ’max =14.4kgf/mm2 Pmax =14.47ton (静的) P’max =6.45ton (静的) ∴ P’max =0.45Pmax となる。このように本願の最大荷重P’max は従来のメ
ンバに比べ45%程度の低い値となっているため、極め
てつぶれ易く、ピークを発生することがなく、確実につ
ぶれることができる。(1.3) Comparison between the maximum generated load reduction effect by calculation and the analysis result of the finite element method (1.31) Calculation result: A = 50 mm b = 70 mm c = 20 mm t = 1.6 mm E = 21000 kgf / mm 2 Et = 250 kgf / mm 2 ν = 0.30 σ y = 22.0 kgf / mm 2 σ max = 32.3 kgf / mm 2 σ ′ max = 14.4 kgf / mm 2 P max = 14.47 ton (static ) P ′ max = 6.45ton (static) ∴P ′ max = 0.45P max The maximum load P 'max of the present application as because it has a low value of about 45% compared with the conventional member, very easily crushed, without generating a peak, it is possible to reliably collapse.
【0039】(1.32)有限要素法の解析結果 図5は変形前のサイドメンバ1を模式的に示した斜視図
であり、図6は有限要素に分割したサイドメンバ1が衝
突荷重を受けて変形した後の状態の斜視図である。図7
(a)は有限要素に分割したサイドメンバ1の潰れ変形
状態を示す側面図であり、図7(b)は潰れ変形後のサ
イドメンバ1の側面図である。図8は凹条及び凸条を有
しない他の構造のサイドメンバ101の変形状態を示す
図7に対応した側面図である。(1.32) Analysis Result of Finite Element Method FIG. 5 is a perspective view schematically showing the side member 1 before deformation, and FIG. 6 shows that the side member 1 divided into finite elements is deformed by receiving a collision load. It is a perspective view of the state after performing. FIG.
FIG. 7A is a side view showing a crushed deformation state of the side member 1 divided into finite elements, and FIG. 7B is a side view of the side member 1 after the crush deformation. FIG. 8 is a side view corresponding to FIG. 7 showing a deformed state of the side member 101 having another structure having no concave and convex stripes.
【0040】サイドメンバ1の先端の壁部3,7に設置
された凹条13、凸条15により確実にこの部分から圧
潰が始まっている。本構造を持たないサイドメンバ10
1では圧潰が中央付近から始まっているために大きな曲
げモーメントが働いて折れ曲がりを生じている。The ridges 13 and the ridges 15 provided on the walls 3 and 7 at the end of the side member 1 reliably start crushing from this portion. Side member 10 without this structure
In No. 1, since the crushing starts near the center, a large bending moment acts to cause bending.
【0041】ここで、解析の諸条件 図中、サイドメンバ1,101の平均断面寸法 70×50mm 板厚1.2mm 衝突速度35mph ( 56km/h) 材質:鉄 E=21000kgf/mm2 、ν=0.3、σy =22kgf/mm2 Et=250kgf/mm2 とすると、図9で示すようにPmax =23.3ton 、P’max =10.0ton ∴P’max =0.43Pmax 従って上記計算結果と略一致していることがわかる。[0041] Here, in conditions view of the analysis, the average cross-sectional dimension 70 × 50 mm thickness 1.2mm collision speed 35mph side member 1,101 (56km / h) Material: iron E = 21000kgf / mm 2, ν = 0.3, when σ y = 22kgf / mm 2 Et = 250kgf / mm 2, P max = 23.3ton as shown in Figure 9, P 'max = 10.0ton ∴P'max = 0.43P max Therefore It can be seen that the result substantially matches the above calculation result.
【0042】また、この発明実施例のサイドメンバ1の
角部9は先端部以外では直線的であるため、圧潰中の平
均圧潰荷重も安定して高い値を保っている。Further, since the corner 9 of the side member 1 according to the embodiment of the present invention is linear except at the tip, the average crushing load during crushing also keeps a high value stably.
【0043】(2)凹条及び凸条を設置すべき位置 図10は圧潰中にサイドメンバ1に働く曲げモーメント
を単純化したものである。サイドメンバ1がある点を関
節として折れ曲がる時の先端回りの曲げモーメントは次
式のようになる。(2) Positions at Which Concave and Protrusions Should be Installed FIG. 10 shows a simplified bending moment acting on the side member 1 during crushing. The bending moment around the tip when the side member 1 is bent with a certain point as a joint is as follows.
【0044】M=PHsin θ ここでPは荷重、Hはサイドメンバ位置先端から関節ま
での距離、θは関節での荷重方向の傾斜角である。衝突
時にサイドメンバ1は様々な方向から負荷入力を受け、
θは変化するので折れ曲がりを防ぐためにはPとHとを
小さくすることが望ましい。すなわち最大発生荷重Pm
axは極力低い値にし、その時の関節(最初に圧潰する
壁面)の位置はサイドメンバ1の最も先端の壁面にする
ことが望ましい。M = PHsin θ where P is the load, H is the distance from the tip of the side member position to the joint, and θ is the inclination angle of the joint in the load direction. During a collision, the side member 1 receives load inputs from various directions,
Since θ changes, it is desirable to reduce P and H in order to prevent bending. That is, the maximum generated load Pm
It is desirable that ax be set to a value as low as possible, and that the position of the joint (the first crushed wall surface) be the most distal wall surface of the side member 1.
【0045】さらに述べると、図11は最初に圧潰する
壁面の位置、即ち凹条13及び凸条15を設置すべき位
置を示している。薄肉構造物の壁面の座屈波長λは図式
で表わされる。More specifically, FIG. 11 shows the position of the wall surface to be crushed first, that is, the position where the concave ridge 13 and the convex ridge 15 are to be set. The buckling wavelength λ of the wall surface of the thin structure is represented by a diagram.
【0046】[0046]
【数9】 (Equation 9)
【0047】ここでEt は降伏後の応力−歪み曲線の傾
きである。Here, Et is the slope of the stress-strain curve after yielding.
【0048】上式から折り畳まれる壁面の長さは通常の
鋼板で0.7b<λ<bの範囲にある。凹条13及び凸
条15は先端から長辺分bの範囲に設置されているので
この発明実施例により圧潰を誘発される壁面は必ず凹条
13及び凸条15の壁面となる。凹条13及び凸条15
による最大発生荷重Pmax の低減効果を最も有効に働か
せるためにはbの範囲の中でも先端から0.5λの位置
がよい。From the above formula, the length of the wall to be folded is in the range of 0.7b <λ <b for a normal steel plate. Since the concave ridges 13 and the convex ridges 15 are provided in the range of the long side b from the tip, the wall surface that is crushed by the embodiment of the present invention is always the wall surface of the concave ridges 13 and the convex ridges 15. Concave ridge 13 and convex ridge 15
In order to make the effect of reducing the maximum generated load Pmax by the most effective, the position of 0.5λ from the tip is good in the range of b.
【0049】図12は他の実施例を示すものでこの実施
例では上下壁部3に凸条15を設け、右壁部7に凹条1
3を設けている。そして衝突荷重を受けると、凸条15
が外側へ突出し、上記と略同様な変形を行なわれること
ができる。FIG. 12 shows another embodiment. In this embodiment, the ridges 15 are provided on the upper and lower walls 3 and the ridges 1 are provided on the right wall 7.
3 are provided. When a collision load is applied, the ridge 15
Project outward, and a deformation substantially similar to the above can be performed.
【0050】なお、同様に左壁部5にも凹条又は凸条を
設けることができるものである。Similarly, the left wall 5 can be provided with a concave or a convex stripe.
【0051】図13、図14はサイドメンバ1をバンパ
17との関係で示すものである。すなわち、サイドメン
バ1の先端はファーストクロスメンバ19に結合されて
おり、凹条13及び凸条15はサイドメンバ1の取付部
の後端Aから略0.5bだけ後の位置に設けられてい
る。そして、サイドメンバ1の先端にはバンパ17のス
ティ17aが固定されている。衝突時に図15の矢印F
のように荷重を受けると、上記したようにサイドメンバ
1は変形するが、サイドメンバ1の先端部分はファース
トクロスメンバ19等によって拘束されているため、純
粋に蛇腹状に変形する部分は取付部の後端A以降とな
る。そしてこの実施例ではファーストクロスメンバ19
の後端Aから略0.5bだけ後の位置に凹条13及び凸
条15が設けられているため、サイドメンバ1は必ずこ
の部分から圧潰し始める。このように圧潰開始の位置が
サイドメンバ1の先端に近いので曲げモーメントは小さ
くなっている。従って上記実施例と同様に一定の位置で
潰れ変形が起り、十分なエネルギ吸収を行なうことがで
きる。FIGS. 13 and 14 show the side member 1 in relation to the bumper 17. That is, the tip of the side member 1 is connected to the first cross member 19, and the concave ridge 13 and the convex ridge 15 are provided at a position approximately 0.5b behind the rear end A of the mounting portion of the side member 1. . The stay 17a of the bumper 17 is fixed to the tip of the side member 1. Arrow F in FIG. 15 at the time of collision
When the load is applied as described above, the side member 1 is deformed as described above. However, since the tip portion of the side member 1 is restrained by the first cross member 19 and the like, the purely bellows-shaped portion is attached to the mounting portion. After the rear end A. In this embodiment, the first cross member 19
Since the concave ridge 13 and the convex ridge 15 are provided at a position approximately 0.5b behind the rear end A, the side member 1 always starts crushing from this portion. Since the crushing start position is near the tip of the side member 1 as described above, the bending moment is small. Therefore, as in the above embodiment, crushing deformation occurs at a certain position, and sufficient energy absorption can be performed.
【0052】なおこの発明は上記実施例に限定されるも
のではない。例えば、車体骨格部材としてはリヤサイド
メンバ等に適用することもできる。又、前述の実施例で
は3つの面に凹凸を設けたが、4つの面に凹凸を設ける
こともできる。The present invention is not limited to the above embodiment. For example, the invention can be applied to a rear side member or the like as a vehicle body frame member. Further, in the above-described embodiment, three surfaces are provided with irregularities, but four surfaces may be provided with irregularities.
【0053】[0053]
【発明の効果】以上より明らかなようにこの発明の構成
によれば、凹条及び凸条を設ける簡単な構造により、潰
れ変形位置を特定することができ吸収エネルギの設定も
容易となる。また、十分なエネルギ吸収により小型化を
図ることもできる。As is clear from the above, according to the structure of the present invention, the crushing deformation position can be specified and the absorption energy can be easily set by the simple structure in which the concave and convex ridges are provided. Further, downsizing can be achieved by sufficient energy absorption.
【図1】この発明の一実施例に係る斜視図である。FIG. 1 is a perspective view according to an embodiment of the present invention.
【図2】作用説明図である。FIG. 2 is an operation explanatory view.
【図3】作用説明図である。FIG. 3 is an operation explanatory view.
【図4】凹条及び凸条なしの基本サイドメンバの最大発
生荷重を説明する斜視図である。FIG. 4 is a perspective view illustrating a maximum generated load of a basic side member without concave and convex stripes.
【図5】本発明実施例のサイドメンバを模式化した説明
図である。FIG. 5 is an explanatory view schematically illustrating a side member according to the embodiment of the present invention.
【図6】本発明実施例に有限要素法を適用した説明図で
ある。FIG. 6 is an explanatory diagram in which a finite element method is applied to the embodiment of the present invention.
【図7】本発明実施例に有限要素法を適用した説明図で
ある。FIG. 7 is an explanatory diagram in which the finite element method is applied to the embodiment of the present invention.
【図8】凹条及び凸条を有しないサイドメンバに有限要
素法を適用した場合の説明図である。FIG. 8 is an explanatory diagram in a case where the finite element method is applied to a side member having no concave and convex stripes.
【図9】解析結果のグラフである。FIG. 9 is a graph of an analysis result.
【図10】曲げモーメントの発生を説明する図である。FIG. 10 is a diagram illustrating generation of a bending moment.
【図11】凹条及び凸条を設ける位置の説明図である。FIG. 11 is an explanatory diagram of positions where concave and convex stripes are provided.
【図12】他の実施例に係る斜視図である。FIG. 12 is a perspective view according to another embodiment.
【図13】ファーストクロスメンバとの関係で示すサイ
ドメンバの斜視図である。FIG. 13 is a perspective view of a side member shown in relation to a first cross member.
【図14】ファーストクロスメンバ及びバンパとの関係
で示すサイドメンバの平面図である。FIG. 14 is a plan view of a side member shown in relation to a first cross member and a bumper.
【図15】作用説明図である。FIG. 15 is an operation explanatory view.
【図16】作用説明図である。FIG. 16 is an operation explanatory view.
【図17】車両全部の斜視図である。FIG. 17 is a perspective view of the entire vehicle.
【図18】従来のサイドメンバの斜視図である。FIG. 18 is a perspective view of a conventional side member.
【図19】従来のサイドメンバの斜視図である。FIG. 19 is a perspective view of a conventional side member.
1 サイドメンバ(車両用骨格部材) 3 上下壁部 5 左壁部 7 右壁部 9 角部 13 凹条 15 凸条 17 バンパ DESCRIPTION OF SYMBOLS 1 Side member (frame member for vehicles) 3 Upper and lower wall parts 5 Left wall part 7 Right wall part 9 Corner part 13 Concave strip 15 Convex strip 17 Bumper
Claims (2)
断面構造の車両用骨格部材において、前記上下左右壁部
の互いに向い合う両壁部とこの両壁部で挾まれた少なく
とも一方の壁部との一方に閉断面周方向の凹条を設け、
他方に閉断面周方向の凸条を設け、前記凹条が前記角部
を通って前記凸条に連続することを特徴とする車両用骨
格部材。1. A vehicle skeletal member having a closed cross-sectional structure having upper, lower, left and right wall portions and having corners, wherein at least one of the upper, lower, left and right wall portions facing each other and at least one of the two wall portions sandwiched therebetween. Provide a concave in the circumferential direction of the closed cross section on one side with the wall,
A skeletal member for a vehicle, wherein a ridge having a closed section circumferential direction is provided on the other side, and the ridge is continuous with the ridge through the corner.
断面構造であり、先端にバンパを取付けたサイドメンバ
において、前記上下左右壁部の先端側で互いに向い合う
両壁部とこの両壁部で挾まれた少なくとも一方の壁部と
の一方に閉断面周方向の凹条を設け、他方に閉断面周方
向の凸条を設け、前記凹条が前記角部を通って前記凸条
に連続することを特徴とするサイドメンバ。2. A side member having a closed cross-sectional structure having upper, lower, left and right wall portions and having a corner portion. In a side member having a bumper attached to a front end thereof, both side walls facing each other on the front end side of the upper, lower, left and right wall portions, and both sides thereof. At least one of the walls sandwiched by the walls is provided with a concave groove having a closed cross-section in the circumferential direction, and the other is provided with a convex ridge having a closed cross-section in the circumferential direction. Side members that are continuous with
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP40940290A JP2653248B2 (en) | 1990-12-28 | 1990-12-28 | Vehicle frame members and side members |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP40940290A JP2653248B2 (en) | 1990-12-28 | 1990-12-28 | Vehicle frame members and side members |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04231268A JPH04231268A (en) | 1992-08-20 |
JP2653248B2 true JP2653248B2 (en) | 1997-09-17 |
Family
ID=18518740
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP40940290A Expired - Lifetime JP2653248B2 (en) | 1990-12-28 | 1990-12-28 | Vehicle frame members and side members |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2653248B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0888953B1 (en) | 1997-06-30 | 2002-07-24 | Mazda Motor Corporation | Front body structure for vehicle |
JP3911134B2 (en) * | 2001-04-19 | 2007-05-09 | 新日本製鐵株式会社 | Spot welding method with excellent collision safety |
FR2855805B1 (en) * | 2003-06-06 | 2005-08-05 | Vallourec Vitry | STRUCTURE ELEMENT FOR VEHICLE CAPABLE OF IMPROVED SHOCK BEHAVIOR |
JP5168036B2 (en) * | 2008-09-09 | 2013-03-21 | 日産自動車株式会社 | Body frame |
DE102009057169A1 (en) * | 2009-12-05 | 2011-06-09 | Volkswagen Ag | Trough in a floor plate of a body |
ES2650456T3 (en) * | 2012-06-04 | 2018-01-18 | Nippon Steel & Sumitomo Metal Corporation | Vehicle chassis element structure with excellent impact resistance behavior |
-
1990
- 1990-12-28 JP JP40940290A patent/JP2653248B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH04231268A (en) | 1992-08-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3912422B2 (en) | Crash box | |
JP2595724B2 (en) | Manufacturing method of strength member | |
EP1676752B1 (en) | Bumper beam structure having support walls for center gusset | |
JPH08337183A (en) | Structure of strength member | |
US20070024069A1 (en) | Bumper beam for vehicle | |
JPH0522266U (en) | Front body structure of automobile | |
JP2010070133A (en) | Car body structure | |
JP2008222097A (en) | Vehicle body structure for automobile | |
JP6703322B1 (en) | Vehicle frame members and electric vehicles | |
JP2653248B2 (en) | Vehicle frame members and side members | |
JP2015189407A (en) | Vehicle body front part structure | |
JP2577487B2 (en) | Automotive bumper mounting structure | |
JPWO2009037787A1 (en) | Bumper structure | |
JP3840788B2 (en) | Bumper fixing structure to vehicle frame | |
JP3329086B2 (en) | Car hood | |
WO2019117111A1 (en) | Shock absorbing structure for vehicles | |
JP2002029342A (en) | Rear bumper structure for vehicle | |
JP3494254B2 (en) | Hood edge structure | |
JP3520959B2 (en) | Energy absorbing member for automotive frame structure made of extruded aluminum alloy with excellent axial crush characteristics | |
JP3241702B2 (en) | Energy absorbing structure for vehicles | |
JP4036234B2 (en) | Crash box | |
JPH04287741A (en) | Energy absorber of bumper for vehicle | |
JP2727680B2 (en) | How to determine bead placement | |
JP2017132314A (en) | Impact absorption structure of vehicle rear part | |
JP4285896B2 (en) | Energy absorbing member for automobile frame structure made of extruded aluminum alloy material with excellent axial crushing characteristics |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 19970422 |