JP2652936B2 - Silicon nitride sintered body and method for producing the same - Google Patents
Silicon nitride sintered body and method for producing the sameInfo
- Publication number
- JP2652936B2 JP2652936B2 JP4119854A JP11985492A JP2652936B2 JP 2652936 B2 JP2652936 B2 JP 2652936B2 JP 4119854 A JP4119854 A JP 4119854A JP 11985492 A JP11985492 A JP 11985492A JP 2652936 B2 JP2652936 B2 JP 2652936B2
- Authority
- JP
- Japan
- Prior art keywords
- phase
- sintering
- temperature
- sintered body
- silicon nitride
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Ceramic Products (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、高温大気中における強
度および靭性の優れた高密度窒化珪素質焼結体とその製
造方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-density silicon nitride sintered body having excellent strength and toughness in a high-temperature atmosphere and a method for producing the same.
【0002】[0002]
【従来の技術】窒化珪素は共有結合性の強い物質であ
り、強度、硬度、耐熱性、化学的安定性等において優れ
た特性を有することから、構造部材、特に熱機関として
例えばガスタービンエンジン部材等への適用が検討され
ている。2. Description of the Related Art Silicon nitride is a substance having a strong covalent bond and has excellent properties such as strength, hardness, heat resistance and chemical stability. Application to such applications is under consideration.
【0003】エンジンの高効率化に伴い、1400℃以
上の温度での利用が期待されており、この条件下におい
て使用可能な高強度、高靭性、かつ高耐酸化性の材料が
望まれている。[0003] With the increase in the efficiency of the engine, utilization at a temperature of 1400 ° C or higher is expected, and a material having high strength, high toughness and high oxidation resistance that can be used under these conditions is desired. .
【0004】窒化珪素は単味では焼結が困難であるた
め、一般に種々の添加物を加えて焼結されている。Since it is difficult to sinter silicon nitride alone, it is generally sintered with various additives.
【0005】例えば酸化イットリウム(Y2O3)と酸化
アルミニウム(Al2O3)を添加した系では、耐熱衝撃
性においては優れたものが得られているが、耐熱性、機
械的強度、靭性に劣っている場合があった。For example, in a system to which yttrium oxide (Y 2 O 3 ) and aluminum oxide (Al 2 O 3 ) are added, excellent heat shock resistance is obtained, but heat resistance, mechanical strength and toughness are obtained. Was sometimes inferior.
【0006】耐熱性を向上させることを目的として、特
開昭56―59674号公報に開示されている焼結体中
にメリライト鉱物相(Y2O3・Si3N4化合物)を生成
させた窒化珪素焼結体、および特開昭62―20286
4号公報に開示されている酸化ジルコニウム(Zr
O2)+酸化イットリウム(Y2O3)+酸化珪素(Si
O2)を添加し、焼結体中にZrO2を析出させた窒化珪
素焼結体が試みられており、高温強度の向上等に効果が
認められることが知られている。For the purpose of improving heat resistance, a melilite mineral phase (Y 2 O 3 .Si 3 N 4 compound) was formed in a sintered body disclosed in Japanese Patent Application Laid-Open No. 56-59674. Silicon nitride sintered body and Japanese Patent Laid-Open No. 62-20286
No. 4 discloses a zirconium oxide (Zr
O 2 ) + yttrium oxide (Y 2 O 3 ) + silicon oxide (Si
O 2 ) has been added, and a silicon nitride sintered body in which ZrO 2 is precipitated in the sintered body has been tried, and it is known that the effect of improving the high-temperature strength is recognized.
【0007】また、特開昭62―246865号公報に
開示されている希土類酸化物、Zr02を含む焼結体で
粒界相にJ相(Si2N2O・2Y2O3)固溶体が存在す
る窒化珪素焼結体が試みられており、耐熱性、耐酸化
性、静的疲労特性の向上に効果が認められることが知ら
れている。Furthermore, rare earth oxides as disclosed in JP-A-62-246865, J phase in the grain boundary phase in the sintered body containing Zr0 2 (Si 2 N 2 O · 2Y 2 O 3) is a solid solution An existing silicon nitride sintered body has been tried, and it is known that the effect is recognized in improving heat resistance, oxidation resistance, and static fatigue properties.
【0008】また、特開平3―153574号公報で
は、より高温強度特性を向上させる目的で、サイアロン
の焼結助剤としてHfO2を添加し、粒界相としてY2H
f2O7を生成させたα’―β’サイアロンを開示してい
る。In Japanese Patent Application Laid-Open No. 3-153574, HfO 2 is added as a sialon sintering aid and Y 2 H is used as a grain boundary phase in order to further improve the high temperature strength characteristics.
Disclosed are α'-β 'sialons that produced f 2 O 7 .
【0009】ところが、上記材料では、高温即時破断強
度は優れるものの、高温強度を維持したまま靭性および
耐酸化性を飛躍的に改善するには至っていないため、よ
り厳しい使用環境下、特に高温燃焼炎中において粒子の
衝突等の生じる構造部材へ適用するに当たっては信頼性
に欠ける等の問題点があった。[0009] However, although the above materials have excellent high-temperature instantaneous breaking strength, they have not been able to dramatically improve toughness and oxidation resistance while maintaining high-temperature strength. When applied to a structural member in which collision of particles or the like occurs, there is a problem that reliability is lacking.
【0010】従って、高温強度の向上に加えて耐酸化性
および靭性の向上した材料が要望されている。Therefore, there is a need for a material having improved oxidation resistance and toughness in addition to improved high-temperature strength.
【0011】[0011]
【発明が解決しようとする課題】本発明は上記の如き課
題を解決するために行われたものである。SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems.
【0012】本発明の目的は、高温酸化性雰囲気下であ
っても機械的強度の低下が小さい等の耐熱性を有し、し
かも高い靭性を有する窒化珪素質焼結体とその製造方法
を提供することにある。An object of the present invention is to provide a silicon nitride sintered body having heat resistance such as a small decrease in mechanical strength even in a high-temperature oxidizing atmosphere and having high toughness, and a method for producing the same. Is to do.
【0013】[0013]
【課題を解決するための手段】本発明の窒化珪素質焼結
体は、窒化珪素(Si3N4)を主成分とし、粒界にY2
Hf2O7相およびY5N(SiO4)3相が存在すること
を特徴とするものである。The silicon nitride sintered body of the present invention contains silicon nitride (Si 3 N 4 ) as a main component, and has a Y 2 grain boundary.
Hf 2 O 7 phase and Y 5 N (SiO 4 ) 3 phase are present.
【0014】その製造方法としては、酸化イットリウム
(Y2O3)3〜10重量%,酸化ハフニウム(Hf
O2)0.1〜3重量%,酸化珪素(SiO2)1〜5重
量%及び残部が窒化珪素(Si3N4)からなる混合粉末
を成形し、該成形体を窒素ガス雰囲気中にて1700〜
2000℃の温度範囲で焼結し、以下の少なくとも1つ
の手段により粒界相としてY2Hf2O7相およびY5N
(SiO4)3相を結晶化させることを特徴とするもので
ある。The manufacturing method is as follows: yttrium oxide (Y 2 O 3 ) 3 to 10% by weight, hafnium oxide (Hf
O 2 ) is formed into a mixed powder consisting of 0.1 to 3% by weight, silicon oxide (SiO 2 ) 1 to 5% by weight and the balance silicon nitride (Si 3 N 4 ), and the formed body is placed in a nitrogen gas atmosphere. 1700
Sintered in a temperature range of 2000 ° C., and as a grain boundary phase, a Y 2 Hf 2 O 7 phase and a Y 5 N
(SiO 4 ) It is characterized in that three phases are crystallized.
【0015】粒界相としてY2Hf2O7相およびY5N
(SiO4)3相を結晶化させるためには、焼結の降温過
程において5℃/分以下の降温速度で冷却するか、降温
過程で1500〜1700℃、2時間以上保持の熱処
理、あるいは焼結後、窒素雰囲気中にて1500〜17
00℃、2時間以上保持の再加熱処理、の少なくとも1
つの処理を行うようにする。As a grain boundary phase, a Y 2 Hf 2 O 7 phase and a Y 5 N
In order to crystallize the (SiO 4 ) 3 phase, cooling is performed at a cooling rate of 5 ° C./min or less during the cooling step of sintering, or at 1500 to 1700 ° C. for 2 hours or more during the cooling step. After sintering, in a nitrogen atmosphere 1500 to 17
At least one of a reheating treatment at 00 ° C. for 2 hours or more.
To perform two processes.
【0016】本発明における焼結体の粒界相としては、
高靭性化、および高耐酸化性化の観点から、Y2Hf2O
7相、および、Y5N( SiO4)3相が粒界相として存在
することが好ましい。As the grain boundary phase of the sintered body in the present invention,
From the viewpoint of toughness and oxidation resistance, YTwoHfTwoO
7Phase and YFiveN ( SiOFour)ThreePhase exists as grain boundary phase
Is preferred.
【0017】Y2Hf2O7相およびY5N(SiO4)3相
のみが存在するのではなくY2Si2O7相、Y2Si3N4
O3もしくはガラス相などが若干量存在してもよい。Not only the Y 2 Hf 2 O 7 phase and the Y 5 N (SiO 4 ) 3 phase exist, but also the Y 2 Si 2 O 7 phase and the Y 2 Si 3 N 4 phase.
Some amount of O 3 or glass phase may be present.
【0018】ここでY2Hf2O7結晶相は、粉末X線回
折法により同定されJCPDSカード24―1406で
示されるY2O3・2HfO2と同じ型の回折線を持ち、
高温大気中で安定な結晶相である。Here, the Y 2 Hf 2 O 7 crystal phase has the same type of diffraction line as Y 2 O 3 .2HfO 2 identified by the powder X-ray diffraction method and indicated by JCPDS card 24-1406.
A crystalline phase that is stable in a high-temperature atmosphere.
【0019】また、Y5N(SiO4)3相は、JCPD
Sカード30―1462で示される10Y2O3・9Si
O2・Si3N4と同じ型のX線回折線を持ち、高温酸化
雰囲気中にて安定な高融点のN―apatite結晶相
である。The Y 5 N (SiO 4 ) 3 phase is JCPD
10Y 2 O 3 · 9Si represented by the S card 30-1462
It has the same type of X-ray diffraction lines as O 2 .Si 3 N 4 and is a high melting point N-apatite crystal phase that is stable in a high-temperature oxidizing atmosphere.
【0020】本発明においては、焼結助剤としてY2O3
を用いるが、Y2O3は、Si3 N 4 の焼結時にα相からβ
相への結晶相転移をその融液中で促進させる機能を持
ち、更にSi3N4の柱状相の成長を助長することにより
高温強度及び靭性を向上させる。In the present invention, Y 2 O 3 is used as a sintering aid.
Y 2 O 3 is converted from α phase to β during sintering of Si 3 N 4.
It has the function of promoting the crystal phase transition to the phase in the melt, and further enhances the high-temperature strength and toughness by promoting the growth of the columnar phase of Si 3 N 4 .
【0021】また、本発明においては、Y2O3は焼結後
の降温過程もしくは再加熱処理中にSi3N4およびSi
O2と反応し、Y5N(SiO4)3相を生成する。[0021] In the present invention, Y 2 O 3 is in the cooling process or reheat treatment after sintering Si 3 N 4 and Si
Reacts with O 2 to form Y 5 N (SiO 4 ) 3 phase.
【0022】Y2O3の添加量が10重量%を超えると、
得られた焼結体の高温での機械的強度および耐酸化性が
低下するので、10重量%以下とする。When the addition amount of Y 2 O 3 exceeds 10% by weight,
Since the mechanical strength and oxidation resistance at a high temperature of the obtained sintered body are reduced, the content is set to 10% by weight or less.
【0023】また3重量%より少ないと融液が不十分
で、相対密度で95%以下と十分な緻密化がなされない
ため好ましくない。If the content is less than 3% by weight, the melt is insufficient, and the relative density is not more than 95%, which is not preferable because sufficient densification cannot be achieved.
【0024】従ってその添加量としては3〜10重量%
の範囲とし、特に十分に高い機械的強度、靭性を得るた
めには4〜7重量%の範囲であることがより好ましい。Therefore, the amount of addition is 3 to 10% by weight.
In order to obtain a sufficiently high mechanical strength and toughness, the range is more preferably 4 to 7% by weight.
【0025】HfO2は上記Y2O3と共に焼結時に液相
を形成するが、焼結の冷却過程において高融点であるY
2Hf2O7相として焼結体の粒界相に析出させることに
より、優れた高温特性を得ることができる。HfO 2 forms a liquid phase together with Y 2 O 3 during sintering.
By precipitating in the grain boundary phase of the sintered body as a 2 Hf 2 O 7 phase, excellent high-temperature characteristics can be obtained.
【0026】また、HfO2を添加することは粒界相へ
のY5N(SiO4)3相の生成を促進する効果を持つ。The addition of HfO 2 has the effect of promoting the formation of a Y 5 N (SiO 4 ) 3 phase in the grain boundary phase.
【0027】本発明では焼結助剤としてHfO2を0.
1〜3重量%含むが、0.1重量%より少ない、もしく
は、3重量%より多いと十分な高温強度が得られない。In the present invention, HfO 2 is used as a sintering additive in an amount of 0.1%.
If the content is less than 0.1% by weight or more than 3% by weight, sufficient high-temperature strength cannot be obtained.
【0028】SiO2は、焼結時に上記Y2O3とHfO2
とで形成する融液の融点を下げる効果を持ち、緻密化を
促進すると共に、焼結後の降温過程もしくは再加熱処理
においては、Si3N4およびY2O3と反応し、高温大気
中にて安定な高融点のY5N(SiO4)3相を生成する
ため、強度が高温まで維持される。SiO 2 is formed by sintering the above Y 2 O 3 and HfO 2
Has the effect of lowering the melting point of the melt formed by the above, promotes densification, and reacts with Si 3 N 4 and Y 2 O 3 in the cooling step or reheating treatment after sintering, and , A stable high-melting point Y 5 N (SiO 4 ) 3 phase is generated, so that the strength is maintained up to a high temperature.
【0029】本発明では焼結助剤としてSiO2が1〜
5重量%含まれるが、5重量%より多く添加すると高温
での機械的強度が低下し、また1重量%より少ないと十
分緻密な焼結体が得られない。In the present invention, SiO 2 is used as a sintering aid in an amount of 1 to 2 .
Although the content is 5% by weight, if it is added more than 5% by weight, the mechanical strength at high temperature decreases, and if it is less than 1% by weight, a sufficiently dense sintered body cannot be obtained.
【0030】本発明において使用されるSi3N4粉末
は、α型の結晶構造をもつSi3N4粉末が焼結性の点か
ら好ましいが、β型あるいは非晶質Si3N4粉末が含ま
れていてもかまわない。The Si 3 N 4 powder used in the present invention is Si 3 N 4 powder having an α-type crystal structure is preferable from the viewpoint of sintering property, beta type or amorphous Si 3 N 4 powder It may be included.
【0031】焼結時に十分に高い密度とするためには、
平均粒径1μm以下の微粒子であることが望ましい。In order to obtain a sufficiently high density during sintering,
Fine particles having an average particle diameter of 1 μm or less are desirable.
【0032】焼結助剤として添加するY2O3、Hf
O2、SiO2も均質かつ高密度の焼結体を得るためには
平均粒径が2μm以下の微粒子であることが好ましい。Y 2 O 3 , Hf added as a sintering aid
O 2 and SiO 2 are also preferably fine particles having an average particle size of 2 μm or less in order to obtain a homogeneous and high-density sintered body.
【0033】本発明の方法においては、これらの各成分
の混合は精製水、アセトンもしくはエタノール等の溶媒
を用い、Si3N4もしくはSiCのポット及びボールを
用いて遊星型混合機もしくはポットミル混合機にて行な
う。このように調整された混合粉末を加圧成形し所望の
形状の成形体とする。In the method of the present invention, these components are mixed using a solvent such as purified water, acetone or ethanol, and a planetary mixer or a pot mill mixer using Si 3 N 4 or SiC pots and balls. Perform at The mixed powder thus adjusted is subjected to pressure molding to obtain a molded body having a desired shape.
【0034】この成形体を窒素ガス雰囲気中にて170
0〜2000℃の温度範囲で焼結し、焼結体を得る。焼
結方法としては、常圧焼結法、ガス圧焼結法、熱間静水
圧プレス焼結法、ホットプレス焼結法を用いることが可
能であり、更に一種もしくは複数の焼結法を組み合わせ
ることも可能である。The molded body was cooled to 170 in a nitrogen gas atmosphere.
Sintering is performed in a temperature range of 0 to 2000 ° C. to obtain a sintered body. As the sintering method, it is possible to use a normal pressure sintering method, a gas pressure sintering method, a hot isostatic press sintering method, a hot press sintering method, and further combine one or more sintering methods. It is also possible.
【0035】焼結時の雰囲気はSi3N4の高温での分解
を抑制するために窒素ガス雰囲気であることが好まし
い。The atmosphere during sintering is preferably a nitrogen gas atmosphere in order to suppress the decomposition of Si 3 N 4 at high temperatures.
【0036】Si3N4は窒素ガス1気圧下では約185
0℃以上で分解が生じるため、1850℃以上にて焼結
を行う場合は、窒素ガス圧を焼結温度におけるSi3N4
の臨界分解圧力以上に設定するようにする。Si 3 N 4 is approximately 185 at 1 atm of nitrogen gas.
Since decomposition occurs at 0 ° C. or higher, when sintering at 1850 ° C. or higher, the nitrogen gas pressure is set to Si 3 N 4 at the sintering temperature.
Is set to be equal to or higher than the critical decomposition pressure.
【0037】ここで窒素ガスとは実質的にN2ガスのこ
とであるが、Ar等のその他の不活性ガスが含まれても
かまわない。Here, the nitrogen gas is substantially N 2 gas, but may contain other inert gas such as Ar.
【0038】焼結は1700〜2000℃の温度範囲に
て行われるが、1700℃未満ではSi3N4のβ粒の成
長が不十分であり高い靭性が得られず、また、降温過程
もしくは再加熱処理中で粒界相としてY5N(SiO4)
3相が得られにくい。The sintering is performed at a temperature in the range of 1700 to 2000 ° C., but if the temperature is lower than 1700 ° C., the growth of β grains of Si 3 N 4 is insufficient and high toughness cannot be obtained. Y 5 N (SiO 4 ) as grain boundary phase during heat treatment
It is difficult to obtain three phases.
【0039】2000℃超では生成するβ―Si3N4針
状の粒成長が著しく、強度が低下する。When the temperature exceeds 2000 ° C., the β-Si 3 N 4 needle-like grains formed grow remarkably, and the strength decreases.
【0040】また焼結の際には、焼結助剤からなる液相
中にSi3N4が溶解し再析出することで結晶相転移が生
じるとともに、緻密化し焼結が進行するが、この溶解・
再析出過程で、融液中へのSi3N4の固溶限界があるた
め、30分以上の保持が好ましい。In sintering, Si 3 N 4 is dissolved and re-precipitated in a liquid phase composed of a sintering aid, thereby causing a crystal phase transition and densification and sintering. Dissolution
In the reprecipitation process, since there is a limit of solid solution of Si 3 N 4 in the melt, it is preferable to hold for 30 minutes or more.
【0041】また、粒界相としてY2Hf2O7相および
Y5N(SiO4)3相を結晶化させるためには、焼結の
降温過程で5℃/分以下の降温速度で冷却するか、降温
過程で1500〜1700℃、2時間以上保持の熱処
理、あるいは焼結後、窒素雰囲気中にて1500〜17
00℃、2時間以上保持の再加熱処理の少なくとも1つ
を行うようにする。In order to crystallize the Y 2 Hf 2 O 7 phase and the Y 5 N (SiO 4 ) 3 phase as the grain boundary phase, the sintering is cooled at a cooling rate of 5 ° C./min or less during the cooling process. Heat treatment at 1500 to 1700 ° C. for 2 hours or more during the temperature decreasing process, or sintering, and then 1500 to 17 ° C. in a nitrogen atmosphere.
At least one of reheating treatments held at 00 ° C. for 2 hours or more is performed.
【0042】降温過程でY2Hf2O7相およびY5N(S
iO4)3相を析出させる場合の降温速度は5℃/分以下
が好ましいが、更に望ましくは2℃/分以下である。During the cooling process, the Y 2 Hf 2 O 7 phase and the Y 5 N (S
iO 4 ) When the three phases are precipitated, the temperature decreasing rate is preferably 5 ° C / min or less, more preferably 2 ° C / min or less.
【0043】降温速度が5℃/分より速い場合はY5N
(SiO4)3相が十分生成しない。また、降温過程の際
の保持温度、および、再加熱処理の際の温度が1500
℃未満、1700℃超の場合も同様にY5N(SiO4)
3相が十分に生成しない。When the cooling rate is higher than 5 ° C./min, Y 5 N
(SiO 4 ) Three phases are not sufficiently formed. Further, the holding temperature in the temperature decreasing process and the temperature in the reheating process are set to 1500.
When the temperature is lower than 1 ° C. and higher than 1700 ° C., Y 5 N (SiO 4 )
Insufficient formation of three phases.
【0044】本発明の窒化珪素質焼結体の製造方法は、
Y2O33〜10重量%,HfO20.1〜3重量%,S
iO21 〜5重量%及び残部がSi3N4からなる混合粉
末を成形し、該成形体を窒素ガス雰囲気中で1700〜
2000℃の温度範囲で焼結し、降温過程あるいは再加
熱処理により粒界相としてY2Hf2O7相およびY5N
(SiO4)3結晶相を生成させるものであるが、これら
条件の組み合わせにより初めて本課題が達成された。The method for producing a silicon nitride based sintered body of the present invention comprises:
YTwoOThree3 to 10% by weight, HfOTwo0.1-3% by weight, S
iOTwo1 ~ 5% by weight and the balance is SiThreeNFourMixed powder consisting of
A powder is formed, and the formed body is placed in a nitrogen gas atmosphere at 1700 to 1700.
Sintering in the temperature range of 2000 ° C, cooling down or reheating
Y as grain boundary phase by heat treatmentTwoHfTwoO7Phase and YFiveN
(SiOFour)ThreeIt produces a crystalline phase.
This task was achieved for the first time by a combination of conditions.
【0045】[0045]
【作用】本発明により得られる焼結体は、Si3N4の平
均結晶粒度が1〜3μm程度と大きくかつ柱状結晶粒が
絡み合った組織を呈し、また粒界に高融点のY2Hf2O
7相が析出しており、さらに粒界結晶相として融点が高
く高温酸化雰囲気中で安定なY5N(SiO4)3結晶相
が共存することにより、高い強度を高温まで維持したま
ま高い靭性を有し、抗折強さが大気中1400℃にて5
00MPa以上の高強度でかつ靭性値KICが5MPam
1/2以上の高靭性を有する。The sintered body obtained according to the present invention has a structure in which the average crystal grain size of Si 3 N 4 is as large as about 1 to 3 μm and columnar crystal grains are entangled, and a high melting point Y 2 Hf 2 O
Seven phases are precipitated, and the coexistence of a stable Y 5 N (SiO 4 ) 3 crystal phase in a high-temperature oxidizing atmosphere with a high melting point as a grain boundary crystal phase enables high toughness while maintaining high strength up to high temperatures. Having a flexural strength of 5 at 1400 ° C. in the atmosphere.
High strength of 00MPa or more and toughness value K IC of 5MPam
Has high toughness of 1/2 or more.
【0046】特に高い坑折強度および靭性を有する焼結
体を得るためには、ガス圧焼結法、熱間静水圧プレス焼
結法、もしくはホットプレス法の加圧焼結法を用いるこ
とが好ましい。In order to obtain a sintered body having particularly high bending strength and toughness, it is necessary to use a gas pressure sintering method, a hot isostatic press sintering method, or a pressure sintering method of a hot press method. preferable.
【0047】後述する実施例に示されているように14
00℃における坑折強さが700MPaを示す焼結体、
もしくはKICが7MPam1/2と極めて高い焼結体が得
られている。As shown in the embodiment described later, 14
A sintered body having a bending strength at 700C of 700 MPa;
Alternatively, a sintered body having an extremely high K IC of 7 MPam 1/2 is obtained.
【0048】また複雑形状の焼結体を得るためには、ガ
ス圧焼結法、熱間静水圧プレス焼結法を用いることが好
ましい。In order to obtain a sintered body having a complicated shape, it is preferable to use a gas pressure sintering method or a hot isostatic press sintering method.
【0049】次に本発明の実施例を比較例と共に説明す
る。Next, examples of the present invention will be described together with comparative examples.
【0050】[0050]
【0051】[0051]
【実施例1】Si3N4(平均粒径0.5μm、α化率9
7%以上)にY2O3粉末(平均粒径0.3μm)、Hf
O2粉末(平均粒径1μm)、及びSiO2粉末(平均粒
径0.1μm)を第1表に示す所定量(重量%)添加
し、溶媒としてアセトンを用いてSi3N4製ボールミル
で24時間混練した。Example 1 Si 3 N 4 (average particle size 0.5 μm, α conversion 9
7% or more), Y 2 O 3 powder (average particle size 0.3 μm), Hf
O 2 powder (average particle diameter 1 μm) and SiO 2 powder (average particle diameter 0.1 μm) were added in predetermined amounts (% by weight) shown in Table 1, and the mixture was mixed with a ball mill made of Si 3 N 4 using acetone as a solvent. Kneaded for 24 hours.
【0052】次いで得られた混合粉末を用いて、成形
後、常圧焼結を行った。成形条件としては金型1軸成形
圧100MPa、冷間静水圧による加圧200MPaと
し、50mm×50mm×10mmの板状体を得た。Next, using the obtained mixed powder, after forming, normal pressure sintering was performed. The molding conditions were a uniaxial molding pressure of 100 MPa and a pressure of 200 MPa by cold isostatic pressure to obtain a 50 mm × 50 mm × 10 mm plate.
【0053】常圧焼結条件としては、1気圧窒素雰囲気
中1700〜1800℃にて4時間保持とした。The normal-pressure sintering was performed at 1700 to 1800 ° C. for 4 hours in a 1-atmosphere nitrogen atmosphere.
【0054】粒界相の結晶化の条件としては、焼結後の
降温過程の徐冷を利用する場合には、降温速度を5℃/
分以下とし、降温過程にて保持する場合は1550〜1
650℃にて4時間保持とし、焼結後に再加熱処理を施
す場合は1500〜1700℃にて8時間保持とした。As a condition for crystallization of the grain boundary phase, when slow cooling in the cooling step after sintering is used, the cooling rate is 5 ° C. /
Minutes or less, and 1550 to 1 when the temperature is maintained during the cooling process.
The temperature was held at 650 ° C. for 4 hours, and when sintering was performed, the temperature was held at 1500 to 1700 ° C. for 8 hours.
【0055】本発明により得られた各焼結体の特性を焼
結助剤の添加量、常圧焼結温度、結晶化条件、Y2Hf2
O7相およびY5N(SiO4)3相の有無と共に第1表に
示す。The characteristics of each sintered body obtained according to the present invention were determined by the amount of a sintering aid added, normal pressure sintering temperature, crystallization conditions, Y 2 Hf 2
Table 1 shows the presence or absence of the O 7 phase and the Y 5 N (SiO 4 ) 3 phase.
【0056】強度については、JIS R1601およ
び、JIS R1604に準拠し室温及び大気中140
0℃にて3点曲げ試験を行い坑折強さとして測定した。The strength was measured at room temperature and atmospheric pressure in accordance with JIS R1601 and JIS R1604.
A three-point bending test was performed at 0 ° C., and the bending strength was measured.
【0057】1400℃での試験に際しては、大気中で
の酸化劣化を考慮し、予め1400℃大気中に24時間
保持した試験片を用いた。At the time of the test at 1400 ° C., a test piece previously held in the air at 1400 ° C. for 24 hours was used in consideration of the oxidative deterioration in the air.
【0058】靭性については室温にてJIS R160
7のSEPB法により破壊靭性値KICを測定した。また
焼結体の結晶相はX線回折法を用いて分析した。Regarding toughness, JIS R160 at room temperature
7, the fracture toughness value K IC was measured by the SEPB method. The crystal phase of the sintered body was analyzed using an X-ray diffraction method.
【0059】なお、本発明の範囲以外の条件にて作製さ
れた焼結体の特性値を併せて第1表に比較例として示
す。Table 1 also shows, as comparative examples, the characteristic values of the sintered bodies produced under conditions outside the scope of the present invention.
【0060】第1表に示すように、本発明の実施例によ
るものは坑折強さ、靭性共に優れるが、比較例に該当す
る試料では本発明の実施例と比べて特に高温坑折強さが
劣ることが確認された。As shown in Table 1, the samples according to the examples of the present invention are excellent in both the bending strength and the toughness, but the samples corresponding to the comparative examples are particularly higher in the high-temperature bending strength than the examples of the present invention. Was confirmed to be inferior.
【0061】本発明の場合、何れも、Y2Hf2O7相お
よびY5N(SiO4)3結晶相の存在がX線回折法によ
り確認された。In the case of the present invention, the presence of the Y 2 Hf 2 O 7 phase and the Y 5 N (SiO 4 ) 3 crystal phase were confirmed by the X-ray diffraction method.
【0062】[0062]
【表1】 [Table 1]
【0063】[0063]
【表2】 [Table 2]
【0064】[0064]
【表3】 [Table 3]
【0065】[0065]
【実施例2】前記実施例1と同様に混合粉末を成形後、
加圧焼結により焼結体を作製した。Example 2 After forming a mixed powder in the same manner as in Example 1,
A sintered body was produced by pressure sintering.
【0066】加圧焼結には、ガス圧焼結法、熱間静水圧
プレス法およびホットプレス法を用いた。For pressure sintering, a gas pressure sintering method, a hot isostatic pressing method and a hot pressing method were used.
【0067】ガス圧焼結の場合は、前記実施例1と同様
に常圧焼結法により焼結体を作製した後、窒素ガス雰囲
気中4MPaの気圧下で、温度1700〜1950℃、
保持時間2時間の条件で再焼結した。In the case of gas pressure sintering, a sintered body is prepared by the normal pressure sintering method in the same manner as in the first embodiment, and then at a temperature of 1700 to 1950 ° C. under a pressure of 4 MPa in a nitrogen gas atmosphere.
It was re-sintered under the condition of a holding time of 2 hours.
【0068】また、熱間静水圧プレス焼結の場合は、常
圧焼結法により作製された焼結体を窒素ガス雰囲気中1
00MPaの気圧下で、温度1800〜2000℃、保
持時間1時間の条件で再焼結した。In the case of hot isostatic press sintering, a sintered body produced by a normal pressure sintering method is used in a nitrogen gas atmosphere.
It was re-sintered under the pressure of 00 MPa at a temperature of 1800 to 2000 ° C. and a holding time of 1 hour.
【0069】ホットプレス焼結の場合は、混合粉末を黒
鉛ダイス中に装填し、1気圧窒素ガス雰囲気中、40M
Paの圧力下で1750〜1850℃、保持時間2時間
の条件にて焼結した。In the case of hot press sintering, the mixed powder is charged into a graphite die, and the mixture is placed in a 1 atm nitrogen gas atmosphere at 40 M
Sintering was performed under the conditions of 1750 to 1850 ° C. and a holding time of 2 hours under a pressure of Pa.
【0070】いずれの加圧焼結法を用いた場合も焼結
後、窒素雰囲気中大気圧にて1600℃、保持時間8時
間の再加熱処理を施した。In any of the pressure sintering methods, after sintering, a reheating treatment was performed in a nitrogen atmosphere at atmospheric pressure at 1600 ° C. for a holding time of 8 hours.
【0071】実施例1と同様に本発明の範囲外の条件に
て作製された焼結体の特性値を第2表に比較例として示
す。The characteristic values of the sintered bodies produced under the conditions outside the scope of the present invention as in Example 1 are shown in Table 2 as comparative examples.
【0072】実施例1と同様に焼結体の特性を焼結助剤
の添加量、焼結条件、Y2Hf2O7相、Y5N(Si
O4)3相の有無と共に第2表に示す。In the same manner as in Example 1, the characteristics of the sintered body were determined by adding the sintering aid, sintering conditions, Y 2 Hf 2 O 7 phase, Y 5 N (Si
Table 2 shows the presence or absence of O 4 ) 3 phases.
【0073】実施例1同様、本発明による焼結体の特性
は坑折強さ、靭性共に優れるが、比較例に該当する試料
では本発明の実施例と比べて特に高温坑折強さ及び靭性
が劣ることが確認された。As in Example 1, the characteristics of the sintered body according to the present invention are excellent in both the bending strength and the toughness, but the samples corresponding to the comparative examples are particularly higher in the high-temperature bending strength and the toughness than the examples of the present invention. Was confirmed to be inferior.
【0074】また本発明の場合、実施例1同様、何れも
Y2Hf2O7相およびY5N(SiO4)3相の存在がX線
回折法により確認された。In the case of the present invention, the presence of the Y 2 Hf 2 O 7 phase and the Y 5 N (SiO 4 ) 3 phase was confirmed by the X-ray diffraction method as in Example 1.
【0075】[0075]
【表4】 [Table 4]
【0076】[0076]
【表5】 [Table 5]
【0077】[0077]
【表6】 [Table 6]
【0078】[0078]
【発明の効果】本発明によれば、上記の如く耐熱性を十
分に備えた窒化珪素質焼結体において、機械的強度、靭
性をより優れたものとすることが可能となった。According to the present invention, a silicon nitride sintered body having sufficient heat resistance as described above can have higher mechanical strength and toughness.
【0079】このことにより信頼性の非常に優れた窒化
珪素質焼結体の作製が可能となり、その工業的有用性は
非常に大きい。This makes it possible to produce a highly reliable silicon nitride sintered body, and its industrial utility is extremely large.
Claims (2)
界にY2Hf2O7相およびY5N(SiO4)3相が存在す
ることを特徴とする窒化珪素質焼結体。1. A silicon nitride-based sintering method comprising silicon nitride (Si 3 N 4 ) as a main component and Y 2 Hf 2 O 7 phase and Y 5 N (SiO 4 ) 3 phase at grain boundaries. Union.
量%,酸化ハフニウム(HfO2)0.1〜3重量%,
酸化珪素(SiO2)1〜5重量%及び残部が窒化珪素
(Si3N4)からなる混合粉末を成形し、該成形体を窒
素ガス雰囲気中にて1700〜2000℃の温度範囲で
焼結し、以下の少なくとも1つの手段により粒界相とし
てY2Hf2O7相およびY5N(SiO4)3相を生成させ
ることを特徴とする窒化珪素質焼結体の製造方法。 焼結の降温過程における降温速度を5℃/分以下とす
る。 焼結の降温過程において、1500〜1700℃の温
度範囲において2時間以上保持する。 焼結後、窒素雰囲気中、1500〜1700℃の温度
範囲において2時間以上保持の再加熱処理を行う。2. Yttrium oxide (Y 2 O 3 ) 3 to 10% by weight, hafnium oxide (HfO 2 ) 0.1 to 3% by weight,
A mixed powder consisting of 1 to 5% by weight of silicon oxide (SiO 2 ) and the balance silicon nitride (Si 3 N 4 ) is formed, and the formed body is sintered in a nitrogen gas atmosphere at a temperature of 1700 to 2000 ° C. and, following Y 2 Hf 2 O 7 phase and Y 5 N production method of (SiO 4) 3 phase, characterized in that to produce silicon nitride sintered body as a grain boundary phase by at least one means. The cooling rate in the cooling step of sintering is set to 5 ° C./min or less. In the process of decreasing the temperature of the sintering, the temperature is kept in a temperature range of 1500 to 1700 ° C. for 2 hours or more. After the sintering, a reheating treatment is performed in a nitrogen atmosphere in a temperature range of 1500 to 1700 ° C. for 2 hours or more.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4119854A JP2652936B2 (en) | 1992-04-15 | 1992-04-15 | Silicon nitride sintered body and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4119854A JP2652936B2 (en) | 1992-04-15 | 1992-04-15 | Silicon nitride sintered body and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH05294732A JPH05294732A (en) | 1993-11-09 |
JP2652936B2 true JP2652936B2 (en) | 1997-09-10 |
Family
ID=14771919
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4119854A Expired - Fee Related JP2652936B2 (en) | 1992-04-15 | 1992-04-15 | Silicon nitride sintered body and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2652936B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9663407B2 (en) * | 2013-06-13 | 2017-05-30 | Kabushiki Kaisha Toshiba | Silicon nitride wear resistant member and method for producing silicon nitride sintered compact |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2684250B2 (en) * | 1991-03-05 | 1997-12-03 | 本田技研工業株式会社 | Silicon nitride sintered body and method for producing the same |
-
1992
- 1992-04-15 JP JP4119854A patent/JP2652936B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH05294732A (en) | 1993-11-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5312788A (en) | High toughness, high strength sintered silicon nitride | |
JP2842723B2 (en) | Silicon nitride-silicon carbide composite sintered body and method of manufacturing the same | |
US5759933A (en) | Gas pressure sintered silicon nitride having high strength and stress rupture resistance | |
JP2652936B2 (en) | Silicon nitride sintered body and method for producing the same | |
JP3152790B2 (en) | Method for producing silicon nitride based sintered body | |
JP3034100B2 (en) | Silicon nitride sintered body and method for producing the same | |
JP3124867B2 (en) | Silicon nitride sintered body and method for producing the same | |
JP3124863B2 (en) | Silicon nitride sintered body and method for producing the same | |
JP2534214B2 (en) | Silicon nitride sintered body and method for manufacturing the same | |
JPH09142935A (en) | Silicon nitride sintered compact and its production | |
JP2892246B2 (en) | Silicon nitride sintered body and method for producing the same | |
JP3124862B2 (en) | Method for producing silicon nitride based sintered body | |
JP3034106B2 (en) | Method for producing silicon nitride based sintered body | |
JP2534213B2 (en) | Method for producing silicon nitride based sintered body | |
JP2708136B2 (en) | Silicon nitride sintered body and method for producing the same | |
JP3207045B2 (en) | Method for producing silicon nitride based sintered body | |
JP2783720B2 (en) | Silicon nitride sintered body and method for producing the same | |
JP2694369B2 (en) | Silicon nitride sintered body | |
JPH09165264A (en) | Silicon nitride sintetred product and its production | |
JP3764497B2 (en) | Sialon sintered body | |
JPH0669905B2 (en) | Silicon nitride sintered body and method for manufacturing the same | |
JP2742622B2 (en) | Silicon nitride sintered body and method for producing the same | |
JP2736427B2 (en) | Silicon nitride sintered body and method for producing the same | |
JPH0559073B2 (en) | ||
JP2783702B2 (en) | Silicon nitride sintered body |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 19970415 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080523 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090523 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090523 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100523 Year of fee payment: 13 |
|
LAPS | Cancellation because of no payment of annual fees |