Nothing Special   »   [go: up one dir, main page]

JP2641781B2 - 半導体素子分離領域の形成方法 - Google Patents

半導体素子分離領域の形成方法

Info

Publication number
JP2641781B2
JP2641781B2 JP2043394A JP4339490A JP2641781B2 JP 2641781 B2 JP2641781 B2 JP 2641781B2 JP 2043394 A JP2043394 A JP 2043394A JP 4339490 A JP4339490 A JP 4339490A JP 2641781 B2 JP2641781 B2 JP 2641781B2
Authority
JP
Japan
Prior art keywords
opening
isolation region
oxide film
film
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2043394A
Other languages
English (en)
Other versions
JPH03245554A (ja
Inventor
昭男 川村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Consejo Superior de Investigaciones Cientificas CSIC
Original Assignee
Consejo Superior de Investigaciones Cientificas CSIC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Consejo Superior de Investigaciones Cientificas CSIC filed Critical Consejo Superior de Investigaciones Cientificas CSIC
Priority to JP2043394A priority Critical patent/JP2641781B2/ja
Priority to US07/653,074 priority patent/US5096848A/en
Priority to KR1019910002803A priority patent/KR100195672B1/ko
Priority to EP91301459A priority patent/EP0443879B1/en
Priority to DE69132117T priority patent/DE69132117T2/de
Publication of JPH03245554A publication Critical patent/JPH03245554A/ja
Application granted granted Critical
Publication of JP2641781B2 publication Critical patent/JP2641781B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/76202Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using a local oxidation of silicon, e.g. LOCOS, SWAMI, SILO
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/308Chemical or electrical treatment, e.g. electrolytic etching using masks
    • H01L21/3083Chemical or electrical treatment, e.g. electrolytic etching using masks characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane
    • H01L21/3088Process specially adapted to improve the resolution of the mask
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/32Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers using masks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/76224Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using trench refilling with dielectric materials
    • H01L21/76232Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using trench refilling with dielectric materials of trenches having a shape other than rectangular or V-shape, e.g. rounded corners, oblique or rounded trench walls
    • H01L21/76235Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using trench refilling with dielectric materials of trenches having a shape other than rectangular or V-shape, e.g. rounded corners, oblique or rounded trench walls trench shape altered by a local oxidation of silicon process step, e.g. trench corner rounding by LOCOS
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S148/00Metal treatment
    • Y10S148/05Etch and refill

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Element Separation (AREA)
  • Local Oxidation Of Silicon (AREA)

Description

【発明の詳細な説明】 <産業上の利用分野> 本発明は、半導体集積回路を構成する各半導体素子を
電気的に分離する半導体素子分離領域の形成方法に関す
る。
<従来の技術> DRAM(ダイナミック・ランダム・アクセス・メモ
リ),SRAM(スタティック・ランダム・アクセス・メモ
リ)等に代表される超LSI(大規模集積回路)は、3年
に4倍の割合で容量が増大しており、DRAMでは256Kb、1
Mbが現在主に生産されている。また、今後の主流となる
4Mb、16Mbに関し鋭意検討が進められており、さらに
は、64Mb、256Mbと発展して行くものと予想される。
限られたチップ面積内でのこのような集積度の向上
は、集積回路を構成する各半導体素子の微細化によりも
たされたものである。例えば、現在1MbDRAMに使用され
ているMOS(メタル・オキサイド・セミコンダクタ)ト
ランジスタの最小寸法はおよそ1μm弱であり、今後0.
5μm,0.25μmとさらに微細化されて行くのは確実であ
る。同様に素子分離領域の縮小も高集積化には不可欠で
あり、その分離幅も1μm未満、さらには、0.5μm弱
に狭める必要が生じてきた。
一般に素子分離領域の形成には、選択酸化法と呼ばれ
る手段が用いられている。この方法は、シリコン基板を
覆うシリコン窒化膜をパターニング開口し、露出したシ
リコン基板表面を選択的に酸化して、絶縁膜であるシリ
コン酸化膜を形成するものである。
しかし、この方法は、選択酸化時に、シリコン窒化膜
で覆われている領域までシリコン基板の酸化が進行し
て、バーズビークと呼ばれるシリコン酸化膜の広がりが
生じるため、マスクサイズ通りの微細な分離領域を得る
ことができない。つまり、選択酸化法では、素子分離領
域の微細化に限度があり、今後の集積度の向上に対応す
ることができない。しかも、十分に絶縁特性を得るべく
一定の膜厚を有する酸化膜を得るためには、長時間の酸
化工程が必要であり、酸化による体積膨張のためにシリ
コン基板に応力がかかり、欠陥が発生して素子特性を劣
化させる問題もある。
このような問題を有する選択酸化法に代わる素子分離
法として、溝埋め込み分離法と呼ばれる方法が提案され
ている。この方法はリソグラフィにより形成されたレジ
ストパターンをエッチングマスクとして用いてシリコン
基板に溝を掘り、溝内部をシリコン酸化膜等の絶縁膜で
埋め込むものである。
ところで、半導体集積回路を構成する各素子は、限ら
れたチップ面積内に非常に高密度に配置されているが、
1個のチップ内部において素子密度は一定ではなく様々
である。4MbのDRAMを例にとれば、メモリーセル部の隣
接素子間の分離距離は1μm弱と非常に微細であるのに
対して、周辺回路部では数μm、あるいは数十μmと、
広い分離領域が存在する。素子分離工程では、これら様
々な幅を持つ分離領域を、同一の工程で形成する必要が
ある。
第3図は従来の溝埋め込み分離法によって広い分離領
域と狭い分離領域とを同一工程により形成する様子を示
している。第3図に従って、従来の溝埋め込み分離法に
ついて説明する。
まず、シリコン基板21の上にリソグラフィ工程により
レジストパターン(図示せず)を形成し、このレジスト
パターンをエッチングマスクとして用いて、溝幅W1を有
する狭い溝22と溝幅W2を有する広い溝23を形成する。こ
こで、狭い溝22の溝幅W1はシリコン基板21に製作される
集積回路において最小、一方、広い溝23の溝幅W2は最大
である。また、溝22,23の深さはdであり、広い溝23の
溝幅W2は溝幅dの2倍より広い(第3図(a))。
次に、気相成長法(以下、CVD法という。)により、
シリコン基板21上に溝厚t2のシリコン酸化膜24を堆積す
る(第3図(b))。
シリコン酸化膜24は溝22,23の側壁にもシリコン基板2
1表面とほぼ同じ速度で堆積するので、狭い溝22は溝幅W
1の半分の膜厚で埋め尽くされる。一方、溝幅が溝深の
2倍より大きい溝23の場合には、溝を埋め尽くすのに少
なくとも溝の深さdに相当する膜厚のシリコン酸化膜24
を堆積する必要がある。結局、シリコン基板21上の両方
の溝を同時に埋め尽くすために必要なシリコン酸化膜24
の膜厚tは溝の深さd以上であることが要求される。
また、シリコン酸化膜24の表面は狭い溝22の位置では
比較的平坦であるが、溝幅が広くなるにつれて平坦性が
なくなり、広い溝23の場合には、第3図(b)に示すよ
うに、溝の深さdに相当する高さの段差が形成されてし
まう。
上記段差をなくすために、リソグラフィ工程により広
い溝23内にレジストパターン25を形成する。これは、素
子領域に存するシリコン酸化膜24の除去工程において、
広い溝23内に存するシリコン酸化膜が除去されないよう
にするためである。当然のことながら、レジストパター
ン25の膜厚t3は溝の深さdとほぼ等しく、その幅W3は広
い溝23の幅W2からシリコン酸化膜24の膜厚t2の2倍を差
し引いた値以下であることが望まれる。レジストパター
ン25の形成後、レジストもしくは他の回転塗布膜26をそ
の上に形成して、表面を平坦化する(第3図(c))。
最後に、回転塗布膜厚26、レジスト25およびシリコン
酸化膜24を素子領域におけるシリコン基板表面21が露出
するまで等速度でエッチングして、素子分離工程を終了
する。
このように、溝埋め込み分離法は、リソグラフィ工程
で形成されたレジストパターンをエッチングマスクとし
てシリコン基板に加工された溝の領域のみが分離領域と
なるため、リソグラフィの限界まで分離幅の縮小が可能
であるので、高集積化の進む半導体集積回路の素子分離
法として適したものである。
<発明が解決しようとする課題> しかしながら、従来の溝埋め込み素子分離法は、素子
分離領域22,23を規定するためのリソグラフィ工程の他
に、広い分離領域23におけるシリコン酸化膜24の段差を
なくすべくレジストパターン25を形成するためのリソグ
ラフィ工程があり、計2回のリソグラフィ工程を必要と
する。しかも、後者のリソグラフィ工程は、広い分離領
域23におけるシリコン酸化膜24の凹部に正確にレジスト
パターン25を配置する必要があるため、厳密なマスクア
ライメントが要求される。半導体集積回路の作製工程に
おいて、リソグラフィ工程の追加は、工程時間を増加さ
せるのみならず、チップの歩留まりを低下させる大きな
要因となり、最終的に製品コストの増大を招くので、極
力避ける必要がある。
そこで、本発明の目的は、素子分離領域形成のための
工程時間の短縮、半導体集積回路の信頼性の向上、製造
コストの低減等を図るべく、素子分離領域を規定するた
めのリソグラフィ工程以外に全くリソグラフィ工程を必
要としない溝埋め込み分離法を利用した半導体素子分離
領域の形成方法を提供することである。
<課題を解決するための手段> 上記目的を達成するため、本発明の素子分離領域の形
成方法は、広い素子分離領域と狭い素子分離領域を半導
体基板に同時に形成するための半導体素子分離領域の形
成方法であって、半導体基板上にシリコン酸化膜とシリ
コン窒化膜を順次形成することにより、これら2つの膜
からなる第1の絶縁膜を形成し、次に、1回のリソグラ
フィ工程によって形成したレジストパターンをマスクと
して、広い素子分離領域となる第1部分と狭い素子分離
領域となる第2部分にそれぞれ存する上記第1の絶縁膜
を除去して、上記半導体基板の表面に至る開口を上記第
1の絶縁膜に形成し、次に、上記レジストパターンを除
去して、シリコン窒化膜とシリコン酸化膜を上記第1の
絶縁膜上および各開口内面に順次堆積することにより、
これら2つの膜からなる第2の絶縁膜を形成し、次に、
上記第1の絶縁膜上および上記第1部分における開口の
底面の中央部に存する上記第2の絶縁膜のシリコン窒化
膜が露出するまで上記第2の絶縁膜のシリコン酸化膜に
異方性エッチングを施して、上記第1部分においては開
口の周囲部のみにシリコン酸化膜を残す一方、上記第2
部分においては開口内全体にシリコン酸化膜を残し、次
に、各開口内に残ったシリコン酸化膜をマスクとして、
露出した上記第2の絶縁膜のシリコン窒化膜に異方性エ
ッチングを施すことにより、上記第1部分における開口
の底面の中央部に上記半導体基板の表面を露出させ、次
に、各開口内に残ったシリコン酸化膜を除去することに
より、各開口内においてこのシリコン酸化膜の下側にあ
った第2の絶縁膜のシリコン窒化膜を露出させ、次に、
上記第1の絶縁膜と上記第1部分の開口内に露出した断
面略L字形のシリコン窒化膜とをマスクとして選択酸化
を行って、上記第1部分の開口の底面の中央部に露出し
た半導体基板表面に酸化膜を形成し、次に、各開口内の
シリコン窒化膜を除去し、上記第1部分における開口の
底面の中央部に選択酸化法により形成された上記酸化膜
と上記第1の絶縁膜とをマスクとして、上記第1部分に
おいては上記開口の底面の周囲部に露出した半導体基板
表面を、上記第2部分においては上記開口の底面全体に
露出した半導体基板表面を、それぞれエッチングするこ
とにより、広い素子分離領域と狭い素子分離領域をそれ
ぞれ画定する溝を形成し、上記各溝を第3の絶縁膜で埋
め込むことを特徴としている。
<作用> 本発明の方法によれば、広い素子分離領域では、開口
底面の中央部に選択酸化法により形成された酸化膜と第
1の絶縁膜をマスクとして開口底面の周囲部に溝を形成
し、狭い素子分離領域では、第1の絶縁膜をマスクとし
て開口の底面全体に溝を形成するから、リソグラフィ工
程は、素子分離領域の形成工程の当初において、素子分
離領域を規定するレジストパターンを第1の絶縁膜上に
形成するために1回実施されるだけであって、後の工程
では1度もリソグラフィ工程は行なわれない。したがっ
て、上記従来の方法に比べて、工程が簡略化されて工程
時間が短縮化されるのみならず、チップの歩留まりが向
上され、製造コストが低減される。
また、広い素子分離領域では、素子分離領域の周辺部
を除く中央部は選択酸化法により酸化膜を形成し、絶縁
膜で埋め込むべき溝は周辺部のみに形成するため、どの
ように広い幅の素子分離領域を形成する場合であって
も、選択酸化法による酸化膜形成領域の幅方向寸法が大
きくなるだけで、溝の幅は広げる必要はないので、狭い
素子分離領域の溝の埋め込みと同時に広い素子分離領域
の溝の埋め込みが簡単、迅速に行え、広い分離領域の形
成が楽に行える。しかも、素子分離領域の周辺部はこの
ように溝埋め込み法を用いて形成したものなので、リソ
グラフィ工程で規定した領域が忠実に素子分離領域とな
る。
さらに、選択酸化工程時には、狭い素子分離領域の半
導体基板表面は完全に第2絶縁膜のシリコン窒化膜で覆
われているので、狭い素子分離領域では選択酸化法によ
る酸化膜の形成は行われない。したがって、狭い素子分
離領域は、酸化による体積膨張に起因する欠陥の発生の
問題とは無縁である。一方、広い素子分離領域において
は、選択酸化法によって素子分離領域の中央部に形成す
べき酸化膜は半導体基板の表面部だけであって、選択酸
化法だけで素子分離領域を形成する場合のように酸化膜
の膜厚を非常に厚くする必要がないため、酸化時間が短
くて済み、また、狭い素子分離領域同様に、酸化による
体積膨張に起因する欠陥の発生といった問題も生じな
い。
<実施例> 以下、本発明を図示の実施例により詳細に説明する。
第1図(a)〜(k)は本発明の一実施例としての素
子分離領域の形成方法により半導体基板上に広い素子分
離領域を形成する様子を示している。第2図(a)〜
(k)は第1図(a)〜(k)に示した各工程に対応し
ており、狭い分離領域が上記広い分離領域と同時に共通
の工程により同一基板上に形成されていく様子を示した
図である。以下、第1図、第2図に従って本実施例の半
導体素子分離領域の形成方法を説明する。
(a)まず、第1図(a),第2図(a)に示すよう
に、共通のシリコン基板1の表面を薄く酸化して、膜厚
100〜500Åのシリコン酸化膜2を形成した後、減圧CVD
法によりシリコン窒化膜3を2000〜5000Å堆積する。こ
のシリコン酸化膜2とシリコン窒化膜3とで第1の絶縁
膜を形成する。続いて、分離領域を規定するレジストパ
ターンを1回のフォトリソグラフィ工程により形成す
る。このレジストパターンにおいて、第1図(a)に示
した開口部5Aによって広い素子分離領域が規定され、第
2図(a)に示した開口部5Bによって狭い素子分離領域
が規定される。ここで、開口部5Aの幅をWa、開口部5Bの
幅をWbとする。なお、レジスト4で覆われた領域のシリ
コン表面に半導体素子が形成されることになる。
(b)次に、第1図(b),第2図(b)に示すよう
に、レジストパターン4をエッチングマスクとして反応
性イオンエッチング(RIE)法によりシリコン窒化膜3
およびシリコン酸化膜2を加工して、シリコン基板1に
至る開口5A,5B(便宜上、レジストパターンの開口部を
示す番号と同じ番号を使用する。)を形成する。
(c)次に、第1図(c),第2図(c)に示すよう
に、第2の絶縁膜として、100〜500Å程度の薄いシリコ
ン窒化膜6を、続いてシリコン酸化膜7を減圧CVD法に
より堆積形成する。このとき、シリコン酸化膜7の堆積
膜厚が開口の幅の1/2よりも大きい場合には、第2図
(c)に示すように開口内部はシリコン酸化膜7で完全
に埋め尽くされる。
(d)次に、RIE法により、シリコン酸化膜7をシリコ
ン窒化膜6が露出するまで異方性エッチングを行う。こ
の結果、広い幅Waの開口5Aでは、第1図(d)に示すよ
うに、側壁部のみにシリコン酸化膜7が残り、狭い幅Wb
の開口5Bでは、第2図(d)に示すように、開口5Bを埋
め込んだ状態でシリコン酸化膜7が残る。
(e)次にシリコン窒化膜6に異方性すなわち垂直方向
にエッチングを施す。このエッチング工程により、広い
分離領域では、第1図(e)に示すように、シリコン窒
化膜3上のシリコン窒化膜6のみならず、開口5Aの底面
中央部に露出しているシリコン窒化膜6も除去されて、
シリコン基板1が露出する。一方、狭い分離領域では、
開口5Bはシリコン酸化膜7によって完全に埋め込まれて
いるため、シリコン窒化膜3上のシリコン窒化膜6のみ
が除去される。
(f)次に、薄いフッ酸溶液でシリコン酸化膜7を完全
に除去した後、熱酸化を行う。この結果、広い分離領域
では、第1図(f)に示すように、シリコン基板1の露
出部1a(第1図(e)参照)が酸化されてシリコン酸化
膜9が形成される。このとき、ロコス酸化時に認められ
るバースビークの広がりは、開口5Aの底面の周囲部に存
する薄いシリコン窒化膜6の突出部6aおよび厚いシリコ
ン窒化膜3で押さえられるので、分離領域が設計幅寸法
Wa以上に拡大することが防止される。
一方、狭い分離領域では、第2図(b)に示すよう
に、開口5B内に存する薄いシリコン窒化膜6がシリコン
基板1を完全に覆っているため、シリコン基板1表面は
酸化されない。
なお、この酸化工程で形成すべき酸化膜の膜厚は、選
択酸化法だけで素子分離領域を形成する場合に比べて、
はるかに薄い。したがって、酸化時間も短く、また、シ
リコン基板に欠陥を発生させるような体積膨張も起こら
ない。
(g)次に、薄いシリコン窒化膜6の突出部6aを除去
し、薄いフッ酸溶液で処理する。この結果、広い分離領
域では、第1図(g)に示すように、シリコン酸化膜9
のバースピークが後退して、開口5Aの底面の周囲部10に
シリコン基板1の表面が露出する。一方、狭い分離領域
では、第2図(g)に示すように、開口5B内に、この開
口5Bの幅Wb全体にわたってシリコン基板1が露出する。
(h)次に、シリコン基板1をRIE法により異方性エッ
チングする。このとき広い分離領域では、開口5A両側に
存するシリコン窒化膜3および開口5Aの底面中央部に存
するシリコン酸化膜9がエッチングマスクとして作用
し、狭い分離領域では開口5B両側に存するシリコン窒化
膜3がエッチングマスクとして作用する。したがって、
このエッチングのためにわざわざ新たなリソグラフィ工
程を経る必要がない。
このエッチング加工の結果、広い分離領域では、第1
図(h)に示すように、シリコン酸化膜9の両側に幅W
a'を有する溝11,11が形成される。これらの溝11,11の側
壁面を形成する半導体基板1のエッチング面のうちシリ
コン窒化膜3で保護されている側の側壁面間の距離は、
言うまでもなく開口5Aの幅Waに等しい。一方、狭い分離
領域では、第2図(h)に示すように、開口5Bの幅Wbと
同じ幅を有する溝12がシリコン基板1に形成される。溝
11,12の深さは、十分な素子分離特性を得るために5000
Å以上であることが望ましい。なお、さらに分離特性を
向上させるために、必要に応じて溝11,12の低部および
側壁に不純物を添加してもよい。
(i)次に、減圧CVD法を用いて第3の絶縁膜であるシ
リコン酸化膜13を堆積する。ここで重要なことは、シリ
コン酸化膜13の堆積膜厚tは、広い分離領域内の溝11お
よび狭い分離領域の溝12を完全に埋め込むために、それ
ぞれの溝幅Wa',Wbの半分よりも厚くなくてはならないと
いうことである。即ち、t>Wa'/2かつt>Wb/2でなけ
ればならない。しかし、いずれにしても、広い幅Waの溝
を埋め込むわけではないので、tの値は従来の溝埋め込
み素子分離法の場合に比べて、大幅に小さくすることが
でき、したがってシリコン酸化膜13の堆積時間が短縮で
きる。
(j)次に、シリコン窒化膜3が露出するまで、シリコ
ン酸化膜13に異方性エッチングを施す。この結果、第1
図(h),第2図(h)にそれぞれ示すように、溝11,1
2内のみにシリコン酸化膜13が残される。
(k)最後に、素子領域を覆うシリコン窒化膜3および
シリコン酸化膜2をそれぞれ熱リン酸、薄いフッ酸溶液
で除去して、一連の素子分離領域の形成工程を終了す
る。
第1図(k)および第2図(k)はそれぞれ上記一連
の工程によって得られた広い素子分離領域と狭い素子分
離領域の断面形状を示している。これらの図に示すよう
に、最終的に得られた素子分離領域の幅は、広い分離領
域においても狭い分離領域においても、上記工程(a)
で形成したレジストパターンの開口5A,5Bの幅Wa,Wbがそ
れぞれ維持されている。
このように、この方法で素子分離領域を形成すれば、
従来の溝埋め込み素子分離法に比べて、非常に簡単な工
程で、しかも短時間に、広い素子分離領域を設計通りに
形成することができると共に、リソグラフィの限界まで
素子分離領域を縮小することが可能であり、集積回路の
今後の一層の微細化にも十分対応することができる。
上記工程を経て素子分離領域の形成が完了すると、通
常の方法に従って、MOSトランジスタやキャパシタ等の
素子をシリコン基板1の活性領域に形成して、上記素子
分離領域を有する半導体集積回路が完成する。
このようにして形成されたMOSトランジスタを測定し
た。その結果、選択酸化法で分離した同一のサイズを持
つトランジスタに比べて、何ら遜色のない特性が得られ
た。特に、接合の逆方向リーク特性に関しては、選択酸
化法のみで素子分離領域を形成する場合に認められる体
積膨張によるシリコン基板の欠陥発生がないために、極
めて低い値に抑えられている。また、隣接素子間に必然
的に形成される寄生MOSトランジスタに関しては、0.5μ
mと極めて狭い分離幅においても、そのフィールド反転
電圧およびフィールドパンチスルー電圧は電源電圧の2
倍以上と、良好な特性が得られた。
なお、本発明は半導体素子分離領域の形成方法に関す
るものであり、特許請求の範囲で明記したものを除いて
は、材料、手段、数値等は本実施例に係るものに限定さ
れるものではない。
<発明の効果> 以上より明らかなように、本発明の半導体素子分離領
域の形成方法は、広い素子分離領域では、開口の周囲部
に断面略L字形に残る第2の絶縁膜のシリコン窒化膜を
マスクとして開口底面中央部に酸化膜を形成し、この酸
化膜と第1の絶縁膜をマスクとして開口底面周囲部に溝
を形成する一方、狭い素子分離領域では、開口内面全体
に残る第2の絶縁膜のシリコン窒化膜のおかげで酸化膜
は形成されないので、第1の絶縁膜のみをマスクとして
開口の底面全域に溝を形成し、続いて、これらの溝を第
3の絶縁膜で埋めることによって、この第3の絶縁膜と
上記酸化膜とで広い素子分離領域とすると同時に、溝を
埋める第3の絶縁膜のみで狭い素子分離領域とするもの
である。したがって、リソグラフィ工程は全工程を通じ
て開口を形成するための1回のみとなり、従来の溝埋め
込み素子分離法において要求されていた広い素子分離領
域を平坦化するための厳密なマスクアライメント作業を
伴うリソグラフィ工程が不要となるので、半導体集積回
路作製に要する工程数および工程時間を従来の溝埋め込
み素子分離法に比べて大きく低減することができると共
に、チップの歩留まりを向上して、製造コストを大幅に
削減することができる。
また、本発明によれば、リソグラフィの限界となる極
めて微細な素子分離領域から十分に広い素子分離領域ま
で対応可能であり、かつ、いかなる大きさ、いかなる形
状の素子分離領域であっても、リソグラフィ工程によっ
て形成されるレジストパターンに忠実に形成することが
できる。したがって、パターンシフトやその他の繁雑な
制約事項がなくなって、回路レイアウトが容易になると
共に、半導体集積回路の微細化に大きく貢献することが
できる。
また、本発明に係る選択酸化工程によって形成する酸
化膜の膜厚は大きくする必要がないので、酸化工程時間
が短くて済み、かつ、体積膨張に起因する欠陥が発生し
ないため、良好な素子特性を得ることができる。
【図面の簡単な説明】
第1図は本発明の一実施例である方法を用いて広い素子
分離領域を形成するための各工程を示した図、第2図は
第1図に示した広い素子分離領域の形成と並行して狭い
分離領域が同一基板上に形成されていく様子を示した
図、第3図は従来の溝埋め込み素子分離法の問題点を説
明する図である。 1……シリコン基板、2……薄いシリコン酸化膜、3…
…シリコン窒化膜、 4……素子分離領域を規定するレジストパターン、5A,5
B……開口、 6……シリコン窒化膜、6a……シリコン窒化膜の突出
部、 7……CVD法により堆積したシリコン酸化膜、9……広
い分離領域の中央部を選択酸化することにより形成した
シリコン酸化膜、 11,12……溝、13……CVD法により堆積したシリコン酸化
膜。

Claims (1)

    (57)【特許請求の範囲】
  1. 【請求項1】広い素子分離領域と狭い素子分離領域を半
    導体基板に同時に形成するための半導体素子分離領域の
    形成方法であって、 半導体基板上にシリコン酸化膜とシリコン窒化膜を順次
    形成することにより、これら2つの膜からなる第1の絶
    縁膜を形成し、 次に、1回のリソグラフィ工程によって形成したレジス
    トパターンをマスクとして、広い素子分離領域となる第
    1部分と狭い素子分離領域となる第2部分にそれぞれ存
    する上記第1の絶縁膜を除去して、上記半導体基板の表
    面に至る開口を上記第1の絶縁膜に形成し、 次に、上記レジストパターンを除去して、シリコン窒化
    膜とシリコン酸化膜を上記第1の絶縁膜上および各開口
    内面に順次堆積することにより、これら2つの膜からな
    る第2の絶縁膜を形成し、 次に、上記第1の絶縁膜上および上記第1部分における
    開口の底面の中央部に存する上記第2の絶縁膜のシリコ
    ン窒化膜が露出するまで上記第2の絶縁膜のシリコン酸
    化膜に異方性エッチングを施して、上記第1部分におい
    ては開口の周囲部のみにシリコン酸化膜を残す一方、上
    記第2部分においては開口内全体にシリコン酸化膜を残
    し、 次に、各開口内に残ったシリコン酸化膜をマスクとし
    て、露出した上記第2の絶縁膜のシリコン窒化膜に異方
    性エッチングを施すことにより、上記第1部分における
    開口の底面の中央部に上記半導体基板の表面を露出さ
    せ、 次に、各開口内に残ったシリコン酸化膜を除去すること
    により、各開口内においてこのシリコン酸化膜の下側に
    あった第2の絶縁膜のシリコン窒化膜を露出させ、 次に、上記第1の絶縁膜と上記第1部分の開口内に露出
    した断面略L字形のシリコン窒化膜とをマスクとして選
    択酸化を行って、上記第1部分の開口の底面の中央部に
    露出した半導体基板表面に酸化膜を形成し、 次に、各開口内のシリコン窒化膜を除去し、上記第1部
    分における開口の底面の中央部に選択酸化法により形成
    された上記酸化膜と上記第1の絶縁膜とをマスクとし
    て、上記第1部分においては上記開口の底面の周囲部に
    露出した半導体基板表面を、上記第2部分においては上
    記開口の底面全体に露出した半導体基板表面を、それぞ
    れエッチングすることにより、広い素子分離領域と狭い
    素子分離領域をそれぞれ画定する溝を形成し、 上記各溝を第3の絶縁膜で埋め込むことを特徴とする半
    導体素子分離領域の形成方法。
JP2043394A 1990-02-23 1990-02-23 半導体素子分離領域の形成方法 Expired - Fee Related JP2641781B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2043394A JP2641781B2 (ja) 1990-02-23 1990-02-23 半導体素子分離領域の形成方法
US07/653,074 US5096848A (en) 1990-02-23 1991-02-11 Method for forming semiconductor device isolating regions
KR1019910002803A KR100195672B1 (ko) 1990-02-23 1991-02-21 반도체소자 격리영역을 형성하는 방법
EP91301459A EP0443879B1 (en) 1990-02-23 1991-02-22 Method for forming semiconductor device isolation regions
DE69132117T DE69132117T2 (de) 1990-02-23 1991-02-22 Verfahren zur Herstellung von Isolationszonen für Halbleiteranordnungen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2043394A JP2641781B2 (ja) 1990-02-23 1990-02-23 半導体素子分離領域の形成方法

Publications (2)

Publication Number Publication Date
JPH03245554A JPH03245554A (ja) 1991-11-01
JP2641781B2 true JP2641781B2 (ja) 1997-08-20

Family

ID=12662574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2043394A Expired - Fee Related JP2641781B2 (ja) 1990-02-23 1990-02-23 半導体素子分離領域の形成方法

Country Status (5)

Country Link
US (1) US5096848A (ja)
EP (1) EP0443879B1 (ja)
JP (1) JP2641781B2 (ja)
KR (1) KR100195672B1 (ja)
DE (1) DE69132117T2 (ja)

Families Citing this family (76)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5240512A (en) * 1990-06-01 1993-08-31 Texas Instruments Incorporated Method and structure for forming a trench within a semiconductor layer of material
KR960008518B1 (en) * 1991-10-02 1996-06-26 Samsung Electronics Co Ltd Manufacturing method and apparatus of semiconductor device
JP2608513B2 (ja) * 1991-10-02 1997-05-07 三星電子株式会社 半導体装置の製造方法
JP3157357B2 (ja) * 1993-06-14 2001-04-16 株式会社東芝 半導体装置
EP0635884A1 (de) * 1993-07-13 1995-01-25 Siemens Aktiengesellschaft Verfahren zur Herstellung eines Grabens in einem Substrat und dessen Verwendung in der Smart-Power-Technologie
DE69434736D1 (de) * 1993-08-31 2006-06-22 St Microelectronics Inc Isolationsstruktur und Verfahren zur Herstellung
US5308786A (en) * 1993-09-27 1994-05-03 United Microelectronics Corporation Trench isolation for both large and small areas by means of silicon nodules after metal etching
US5372968A (en) * 1993-09-27 1994-12-13 United Microelectronics Corporation Planarized local oxidation by trench-around technology
US5366925A (en) * 1993-09-27 1994-11-22 United Microelectronics Corporation Local oxidation of silicon by using aluminum spiking technology
US5294562A (en) * 1993-09-27 1994-03-15 United Microelectronics Corporation Trench isolation with global planarization using flood exposure
KR960014452B1 (ko) * 1993-12-22 1996-10-15 금성일렉트론 주식회사 반도체 소자분리 방법
KR960014455B1 (ko) * 1994-01-12 1996-10-15 금성일렉트론 주식회사 반도체장치의 및 그 제조방법
US5371036A (en) * 1994-05-11 1994-12-06 United Microelectronics Corporation Locos technology with narrow silicon trench
US5851887A (en) * 1994-09-07 1998-12-22 Cypress Semiconductor Corporation Deep sub-micron polysilicon gap formation
JP2715972B2 (ja) * 1995-03-04 1998-02-18 日本電気株式会社 半導体装置の製造方法
KR100190010B1 (ko) * 1995-12-30 1999-06-01 윤종용 반도체 소자의 소자분리막 형성방법
US6124007A (en) 1996-03-06 2000-09-26 Scimed Life Systems Inc Laminate catheter balloons with additive burst strength and methods for preparation of same
US5904539A (en) * 1996-03-21 1999-05-18 Advanced Micro Devices, Inc. Semiconductor trench isolation process resulting in a silicon mesa having enhanced mechanical and electrical properties
WO1997038442A1 (en) * 1996-04-10 1997-10-16 Advanced Micro Devices, Inc. Semiconductor trench isolation with improved planarization methodology
US5926713A (en) * 1996-04-17 1999-07-20 Advanced Micro Devices, Inc. Method for achieving global planarization by forming minimum mesas in large field areas
US5899727A (en) 1996-05-02 1999-05-04 Advanced Micro Devices, Inc. Method of making a semiconductor isolation region bounded by a trench and covered with an oxide to improve planarization
KR980006053A (ko) * 1996-06-26 1998-03-30 문정환 반도체장치의 격리막 형성방법
US5944726A (en) * 1996-08-23 1999-08-31 Scimed Life Systems, Inc. Stent delivery system having stent securement means
US6391032B2 (en) 1996-08-23 2002-05-21 Scimed Life Systems, Inc. Stent delivery system having stent securement means
US6123712A (en) 1996-08-23 2000-09-26 Scimed Life Systems, Inc. Balloon catheter with stent securement means
US6077273A (en) 1996-08-23 2000-06-20 Scimed Life Systems, Inc. Catheter support for stent delivery
CA2263492C (en) 1996-08-23 2006-10-17 Scimed Life Systems, Inc. Stent delivery system having stent securement apparatus
US5980530A (en) 1996-08-23 1999-11-09 Scimed Life Systems Inc Stent delivery system
US6090685A (en) * 1997-08-22 2000-07-18 Micron Technology Inc. Method of forming a LOCOS trench isolation structure
US6492684B2 (en) 1998-01-20 2002-12-10 International Business Machines Corporation Silicon-on-insulator chip having an isolation barrier for reliability
US6133610A (en) * 1998-01-20 2000-10-17 International Business Machines Corporation Silicon-on-insulator chip having an isolation barrier for reliability and process of manufacture
TW396508B (en) * 1999-01-05 2000-07-01 Mosel Vitelic Inc A method for forming trench isolation
US6727161B2 (en) 2000-02-16 2004-04-27 Cypress Semiconductor Corp. Isolation technology for submicron semiconductor devices
US6726714B2 (en) * 2001-08-09 2004-04-27 Scimed Life Systems, Inc. Stent delivery system
US6756284B2 (en) * 2002-09-18 2004-06-29 Silicon Storage Technology, Inc. Method for forming a sublithographic opening in a semiconductor process
US6699772B1 (en) * 2002-09-18 2004-03-02 Gian Sharma Hybrid trench isolation technology for high voltage isolation using thin field oxide in a semiconductor process
US7601285B2 (en) * 2003-12-31 2009-10-13 Boston Scientific Scimed, Inc. Medical device with varying physical properties and method for forming same
US7264458B2 (en) * 2004-01-07 2007-09-04 Boston Scientific Scimed, Inc. Process and apparatus for forming medical device balloons
US7016394B2 (en) * 2004-04-23 2006-03-21 Ucar Carbon Company Inc. Male-female electrode joint
US7635510B2 (en) * 2004-07-07 2009-12-22 Boston Scientific Scimed, Inc. High performance balloon catheter/component
US9586030B2 (en) * 2004-12-23 2017-03-07 Boston Scientific Scimed, Inc. Fugitive plasticizer balloon surface treatment for enhanced stent securement
US20070009564A1 (en) * 2005-06-22 2007-01-11 Mcclain James B Drug/polymer composite materials and methods of making the same
US8298565B2 (en) 2005-07-15 2012-10-30 Micell Technologies, Inc. Polymer coatings containing drug powder of controlled morphology
WO2007011708A2 (en) 2005-07-15 2007-01-25 Micell Technologies, Inc. Stent with polymer coating containing amorphous rapamycin
US8043673B2 (en) * 2006-03-02 2011-10-25 Boston Scientific Scimed, Inc. Method to make tube-in-tube balloon
US8858855B2 (en) * 2006-04-20 2014-10-14 Boston Scientific Scimed, Inc. High pressure balloon
EP2019657B1 (en) 2006-04-26 2015-05-27 Micell Technologies, Inc. Coatings containing multiple drugs
US7943221B2 (en) * 2006-05-22 2011-05-17 Boston Scientific Scimed, Inc. Hinged compliance fiber braid balloon
CA2667228C (en) * 2006-10-23 2015-07-14 Micell Technologies, Inc. Holder for electrically charging a substrate during coating
US11426494B2 (en) 2007-01-08 2022-08-30 MT Acquisition Holdings LLC Stents having biodegradable layers
CA2679712C (en) * 2007-01-08 2016-11-15 Micell Technologies, Inc. Stents having biodegradable layers
NZ580469A (en) * 2007-04-17 2012-05-25 Micell Technologies Inc Coronary stents having biodegradable layers
AU2008256684B2 (en) 2007-05-25 2012-06-14 Micell Technologies, Inc. Polymer films for medical device coating
US20100298928A1 (en) * 2007-10-19 2010-11-25 Micell Technologies, Inc. Drug Coated Stents
CN102083397B (zh) 2008-04-17 2013-12-25 米歇尔技术公司 具有生物可吸收层的支架
US9510856B2 (en) 2008-07-17 2016-12-06 Micell Technologies, Inc. Drug delivery medical device
AU2009270849B2 (en) * 2008-07-17 2013-11-21 Micell Technologies, Inc. Drug delivery medical device
US8834913B2 (en) * 2008-12-26 2014-09-16 Battelle Memorial Institute Medical implants and methods of making medical implants
US20100241220A1 (en) * 2009-03-23 2010-09-23 Mcclain James B Peripheral Stents Having Layers
JP2012522589A (ja) 2009-04-01 2012-09-27 ミシェル テクノロジーズ,インコーポレイテッド 被覆ステント
EP3366326A1 (en) 2009-04-17 2018-08-29 Micell Technologies, Inc. Stents having controlled elution
WO2011097103A1 (en) * 2010-02-02 2011-08-11 Micell Technologies, Inc. Stent and stent delivery system with improved deliverability
US8795762B2 (en) * 2010-03-26 2014-08-05 Battelle Memorial Institute System and method for enhanced electrostatic deposition and surface coatings
WO2011133655A1 (en) 2010-04-22 2011-10-27 Micell Technologies, Inc. Stents and other devices having extracellular matrix coating
EP2593039B1 (en) 2010-07-16 2022-11-30 Micell Technologies, Inc. Drug delivery medical device
US10464100B2 (en) 2011-05-31 2019-11-05 Micell Technologies, Inc. System and process for formation of a time-released, drug-eluting transferable coating
WO2013012689A1 (en) 2011-07-15 2013-01-24 Micell Technologies, Inc. Drug delivery medical device
US10188772B2 (en) 2011-10-18 2019-01-29 Micell Technologies, Inc. Drug delivery medical device
EP2967803B1 (en) 2013-03-12 2023-12-27 Micell Technologies, Inc. Bioabsorbable biomedical implants
CA2912387C (en) 2013-05-15 2019-04-16 Micell Technologies, Inc. Bioabsorbable biomedical implants
JP6718979B2 (ja) 2016-04-12 2020-07-08 ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. 医療用バルーン
EP3554570B1 (en) 2016-12-13 2023-01-25 Boston Scientific Scimed, Inc. Medical balloon
WO2018200661A1 (en) 2017-04-25 2018-11-01 Boston Scientific Scimed, Inc. Medical balloon
US20200135898A1 (en) * 2018-10-30 2020-04-30 International Business Machines Corporation Hard mask replenishment for etching processes
CN112271134B (zh) * 2020-10-20 2021-10-22 苏州东微半导体股份有限公司 半导体功率器件的制造方法
CN112086506B (zh) 2020-10-20 2022-02-18 苏州东微半导体股份有限公司 半导体超结器件的制造方法

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5146083A (en) * 1974-10-18 1976-04-20 Hitachi Ltd Handotaisochino seizohoho
US4476623A (en) * 1979-10-22 1984-10-16 International Business Machines Corporation Method of fabricating a bipolar dynamic memory cell
JPS5943545A (ja) * 1982-09-06 1984-03-10 Hitachi Ltd 半導体集積回路装置
JPS5958838A (ja) * 1982-09-29 1984-04-04 Hitachi Ltd 半導体装置
JPS59186343A (ja) * 1983-04-07 1984-10-23 Sony Corp 半導体装置の製法
JPS6038832A (ja) * 1983-08-12 1985-02-28 Hitachi Ltd 半導体装置とその製造方法
US4569701A (en) * 1984-04-05 1986-02-11 At&T Bell Laboratories Technique for doping from a polysilicon transfer layer
JPS60241231A (ja) * 1984-05-15 1985-11-30 Nippon Telegr & Teleph Corp <Ntt> 半導体集積回路装置の製法
USH204H (en) * 1984-11-29 1987-02-03 At&T Bell Laboratories Method for implanting the sidewalls of isolation trenches
US4666557A (en) * 1984-12-10 1987-05-19 Ncr Corporation Method for forming channel stops in vertical semiconductor surfaces
JP2589065B2 (ja) * 1985-02-19 1997-03-12 三洋電機株式会社 半導体集積装置の製造方法
US4641416A (en) * 1985-03-04 1987-02-10 Advanced Micro Devices, Inc. Method of making an integrated circuit structure with self-aligned oxidation to isolate extrinsic base from emitter
US4653177A (en) * 1985-07-25 1987-03-31 At&T Bell Laboratories Method of making and selectively doping isolation trenches utilized in CMOS devices
US4745081A (en) * 1985-10-31 1988-05-17 International Business Machines Corporation Method of trench filling
US4892614A (en) * 1986-07-07 1990-01-09 Texas Instruments Incorporated Integrated circuit isolation process
US4842675A (en) * 1986-07-07 1989-06-27 Texas Instruments Incorporated Integrated circuit isolation process
JP2608054B2 (ja) * 1986-10-20 1997-05-07 三菱電機株式会社 半導体記憶装置の製造方法
JPS63114130A (ja) * 1986-10-31 1988-05-19 Hitachi Ltd 素子間分離法
JPS63122261A (ja) * 1986-11-12 1988-05-26 Mitsubishi Electric Corp 半導体装置の製造方法
JPS63188952A (ja) * 1987-01-31 1988-08-04 Toshiba Corp 半導体装置の製造方法
JPS63307756A (ja) * 1987-06-09 1988-12-15 Sony Corp 半導体装置の製造方法
US4861729A (en) * 1987-08-24 1989-08-29 Matsushita Electric Industrial Co., Ltd. Method of doping impurities into sidewall of trench by use of plasma source
JPH01125971A (ja) * 1987-11-11 1989-05-18 Seiko Instr & Electron Ltd C−mis型半導体装置とその製造方法
DE3738643A1 (de) * 1987-11-13 1989-05-24 Siemens Ag Verfahren zum herstellen von isolationsschichten in hochintegrierten halbleiterschaltungen
JPH01156897A (ja) * 1987-12-15 1989-06-20 Matsushita Electric Works Ltd ワイヤレスセキュリティーシステム
JPH027529A (ja) * 1988-06-27 1990-01-11 Nec Corp バイポーラトランジスタ及びその製造方法

Also Published As

Publication number Publication date
EP0443879B1 (en) 2000-04-19
EP0443879A2 (en) 1991-08-28
DE69132117T2 (de) 2000-09-28
US5096848A (en) 1992-03-17
KR100195672B1 (ko) 1999-06-15
JPH03245554A (ja) 1991-11-01
EP0443879A3 (en) 1993-03-10
DE69132117D1 (de) 2000-05-25

Similar Documents

Publication Publication Date Title
JP2641781B2 (ja) 半導体素子分離領域の形成方法
JP3501297B2 (ja) 半導体メモリ装置の製造方法
JP2994239B2 (ja) Soiトレンチ構造およびその製造方法
US6136664A (en) Filling of high aspect ratio trench isolation
JP2597022B2 (ja) 素子分離領域の形成方法
US5432116A (en) Method for the fabrication of dynamic random access memory capacitor
JP2527291B2 (ja) 半導体メモリ装置およびその製造方法
JPH04127433A (ja) 半導体素子分離領域の形成方法
KR100214917B1 (ko) 반도체 장치 및 그 제조 방법
US6667223B2 (en) High aspect ratio high density plasma (HDP) oxide gapfill method in a lines and space pattern
JP4860808B2 (ja) 写真工程の解像度を越えるトレンチを絶縁膜の内に形成する方法
JPH11233614A (ja) 半導体装置及びその製造方法
JPH07130874A (ja) 半導体記憶装置及びその製造方法
US5441908A (en) Capacitor of a semiconductor device having increased effective area
JP4031852B2 (ja) 半導体集積回路の製造方法
JPH11312730A (ja) 半導体装置の製造方法
US7754568B2 (en) Semiconductor device and method of fabricating the same
US11956944B2 (en) DRAM semiconductor structure formation method and DRAM semiconductor structure
JP3971144B2 (ja) 半導体装置の製造方法及び半導体装置
US20220130836A1 (en) Semiconductor structure formation method and semiconductor structure
JPH0415935A (ja) 半導体素子分離領域の形成方法
JP2003078000A (ja) 半導体装置の製造方法
EP3971975A1 (en) Semiconductor device and manufacturing method therefor
KR0168340B1 (ko) 반도체 장치의 커패시터 제조방법
JPH02226761A (ja) 半導体装置およびその製造方法

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees