JP2538915B2 - How to record and erase information - Google Patents
How to record and erase informationInfo
- Publication number
- JP2538915B2 JP2538915B2 JP62097167A JP9716787A JP2538915B2 JP 2538915 B2 JP2538915 B2 JP 2538915B2 JP 62097167 A JP62097167 A JP 62097167A JP 9716787 A JP9716787 A JP 9716787A JP 2538915 B2 JP2538915 B2 JP 2538915B2
- Authority
- JP
- Japan
- Prior art keywords
- recording
- crystallization
- composition
- recording layer
- substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Thermal Transfer Or Thermal Recording In General (AREA)
- Optical Record Carriers And Manufacture Thereof (AREA)
Description
【発明の詳細な説明】 産業上の利用分野 本発明は情報の記録及び消去方法、さらに詳しくは、
異なるパワーのレーザ光を用いて、情報信号の高密度か
つ高速度の記録及び消去を行う方法に関するものであ
る。The present invention relates to a method for recording and erasing information, and more specifically,
The present invention relates to a method for recording and erasing information signals at high density and high speed by using laser lights having different powers.
従来の技術 レーザ光線を利用した高密度な情報の記録、再生の技
術は公知であり、現在、文書フアイル、静止画フアイル
などに実用化されつつある。2. Description of the Related Art A technique for recording and reproducing high-density information using a laser beam is known, and is now being put to practical use for document files, still image files, and the like.
また、書き換え可能な記録媒体についてもいくつかの
記録材料が提案されている。これらの技術は、主に合金
でのアモルフアス状態と結晶状態との間の状態変化を利
用し、情報の記録や消去を行うものである。すなわち、
照射時間の短い高パワーのレーザ光照射によりアモルフ
アス状態を形成し、他方、照射時間の長い低パワーのレ
ーザ光照射により結晶状態を形成し、これら2つの状態
の光学定数の違いにより情報の記録や消去が行われる。Also, some recording materials have been proposed for rewritable recording media. These techniques mainly record and erase information by utilizing the state change between an amorphous state and a crystalline state in an alloy. That is,
Amorphous state is formed by high power laser light irradiation with short irradiation time, while a crystalline state is formed by low power laser light irradiation with long irradiation time. Information recording or recording is performed by the difference in optical constant between these two states. Erase is performed.
このような状態変化を利用する記録材料としては、例
えばGe−Te系〔「アプライド・フイジカル・レターズ
(Appl.Phys.Lett.)」第49巻、第502ページ(1986
年)〕や、Te−Ge−Sn−Au系〔「スピー(SPIE)」第69
5巻、第79ページ(1986年)〕などが知られている。As a recording material utilizing such a state change, for example, a Ge-Te system ["Appl. Phys. Lett.", Vol. 49, p. 502 (1986)
Year)], Te-Ge-Sn-Au system ["SPIE"] 69th
Volume 5, page 79 (1986)] and the like are known.
しかしながら、これらの合金においては、結晶化時間
が長いために、アモルファス状態を結晶化させるには、
記録媒体を結晶化に必要な温度に長時間保持する必要が
ある。このような状況を一定速度で回転しているディス
クで実現させるには、長円形のレーザビームを用いる必
要がある。したがって、このような場合、アモルファス
化のための円形ビームと結晶化のための長円形ビームの
2つを併用する必要があり、ドライブ装置が複雑になる
のを免れず、実用上好ましくない。However, in these alloys, since the crystallization time is long, in order to crystallize the amorphous state,
It is necessary to keep the recording medium at the temperature required for crystallization for a long time. In order to realize such a situation with a disc rotating at a constant speed, it is necessary to use an oval laser beam. Therefore, in such a case, it is necessary to use both the circular beam for amorphization and the elliptical beam for crystallization, which inevitably complicates the drive device, which is not preferable in practice.
これに対し、結晶化時間が短い記録材料を用いれば、
短時間のレーザ照射で結晶化できるため、通常の円形ビ
ームでアモルファス化と結晶化を行うことができる。ア
モルファス状態は記録膜を融点以上に加熱し急冷するこ
とによって得られるが、一方結晶化には記録膜を結晶化
温度(<融点)以上に加熱すればよい。したがって、一
つのレーザビームの強度を変化させるだけで、アモルフ
ァス状態と結晶状態が得られるので、既に記録された情
報を消去しながら同時に記録する、いわゆる単一ビーム
オーバーライトが可能になる。On the other hand, if a recording material with a short crystallization time is used,
Since it can be crystallized by laser irradiation for a short time, it can be amorphized and crystallized with a normal circular beam. The amorphous state is obtained by heating the recording film to a melting point or higher and then rapidly cooling it, while crystallization may be performed by heating the recording film to a crystallization temperature (<melting point) or higher. Therefore, an amorphous state and a crystalline state can be obtained only by changing the intensity of one laser beam, so that so-called single-beam overwriting is possible, in which already recorded information is erased and simultaneously recorded.
このように、結晶化時間が短くて、単一ビームオーバ
ーライトが可能な記録材料としては、例えばIn−Se合金
〔「アプライド・フイジカル・レターズ(Appl.Phys.Le
tt.)」第50巻、第667ページ(1987年)〕が提案されて
いる。しかしながら、このIn−Se合金においては、結晶
化時間は短いものの、感度が十分でなく、実用上問題が
あつた。As described above, as a recording material having a short crystallization time and capable of single beam overwriting, for example, an In-Se alloy [“Applied Physical Letters (Appl. Phys.
tt.) ”, Volume 50, Page 667 (1987)] is proposed. However, in this In-Se alloy, although the crystallization time was short, the sensitivity was not sufficient and there was a problem in practical use.
発明が解決しようとする問題点 本発明は、このような従来の記録材料が有する欠点を
克服し、結晶化時間が短く、かつ感度に優れた記録材料
を用い、情報信号の高密度かつ高速度の記録及び消去を
行う方法を提供することを目的としてなされたものであ
る。DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention The present invention overcomes the drawbacks of the conventional recording materials, uses a recording material having a short crystallization time and excellent sensitivity, and has a high density and high speed of an information signal. The purpose of the present invention is to provide a method of recording and erasing.
問題点を解決するための手段 これまで、Ge−Te合金を用いた記録材料に関しては、
Ge50モル%以下の組成範囲のものが精力的に検討されて
きたが、このような組成では結晶化時間が長く、感度が
不十分であつた。Means for Solving Problems So far, regarding the recording material using the Ge-Te alloy,
Although the composition range of Ge 50 mol% or less has been vigorously investigated, the crystallization time is long and the sensitivity is insufficient with such a composition.
本発明者らは、結晶化時間が短く、かつ感度に優れた
記録材料について、鋭意研究を重ね、光にGe−Teの二元
系合金について、Geが50モル%以上の組成とすれば結晶
化時間が極めて短かくなるが、これはアモルフアス化が
困難であることを見い出した。そこで、本発明者らはさ
らに研究を進めた結果、前記Ge−Teの二元系合金に、少
なくともSbを、Ge−Te及びSbの3元素の原子数の割合が
特定の範囲にあるように加えた材料が結晶化時間が短
く、かつ可逆性がある上に、感度も良好であり、したが
つて、この材料から成る記録層を有する情報記録媒体が
前記目的に適合しうることを見い出し、この知見に基づ
いて本発明を完成するに至つた。The present inventors have conducted extensive studies on a recording material having a short crystallization time and excellent sensitivity, and for a binary alloy of Ge-Te to the light, if the composition of Ge is 50 mol% or more, the crystal is formed. It was found that the conversion time was extremely short, but this was difficult to form into amorphous form. Therefore, as a result of further research by the present inventors, it has been confirmed that at least Sb is contained in the binary alloy of Ge—Te and the ratio of the number of atoms of the three elements of Ge—Te and Sb is within a specific range. It was found that the added material has a short crystallization time, is reversible, and has good sensitivity, and therefore an information recording medium having a recording layer made of this material can meet the above purpose, The present invention has been completed based on this finding.
すなわち、本発明は、基板上に設けられた加熱により
光学定数が変化する材料からなる記録層の、光学定数の
変化に対応して生じる光の反射率の変化によって情報の
記録及び消去を行う方法において、少なくともSb、Te及
びGeの3元素からなり、かつこれら3元素の原子数の割
合が、Sb、Te及びGeを頂点とする三角座標において、A
(Sb21Te19Ge60)、B(Sb21Te9Ge70)、C(Sb0Te20Ge
80)及びD(Sb0Te40Ge80)の4点で囲まれた範囲内に
ある組成(ただしSbが0の組成は除く)を有する記録層
を用い、該記録層に異なるパワーの単一レーザ光を照射
し、結晶化とアモルファス化を行うことを特徴とする情
報の記録及び消去方法を提供するものである。That is, the present invention is a method for recording and erasing information by changing the light reflectance of a recording layer made of a material whose optical constant is changed by heating provided on a substrate. In at least three elements of Sb, Te and Ge, and the ratio of the number of atoms of these three elements is A in the triangular coordinates with Sb, Te and Ge as vertices.
(Sb 21 Te 19 Ge 60 ), B (Sb 21 Te 9 Ge 70 ), C (Sb 0 Te 20 Ge 60 ).
80 ) and D (Sb 0 Te 40 Ge 80 ), a recording layer having a composition within the range surrounded by four points (excluding the composition in which Sb is 0) is used, and the recording layer has a single power of different power. The present invention provides a method for recording and erasing information, which is characterized by irradiating a laser beam to perform crystallization and amorphization.
以下、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.
本発明の情報記録媒体における記録層には、少なくと
もSb、Te及びGeの3元素から成り、かつこれら3元素の
原子数の割合が、第1図に示すように、Sb、Te及びGeを
頂点とする三角座標において、A(Sb21Te19Ge60)、B
(Sb21Te9Ge70)、C(Sb0Te20Ge80)及びD(Sb0Te40G
e80)の4点で囲まれた範囲内にある組成、すなわち第
1図において、A、B、C及びDの4点で囲まれた斜線
部分の組成を有する材料を用いることが必要である。Sb
の含有量は21モル%以下、好ましくは15%以下である。
Sbの量が0モル%、すなわちGe−Teのみの組成では、結
晶化時間は短いが、可逆性を示さず、しかもアモルフア
ス化が困難なので、記録材料として不適当であり、一方
21モル%を超えると結晶化時間が長くなり、本発明の効
果が十分に発揮されない。また、Geの含有量は60〜80モ
ル%の範囲であり、この量が80モル%を超えると結晶化
が極めて困難となる。The recording layer in the information recording medium of the present invention is composed of at least three elements of Sb, Te and Ge, and the ratio of the number of atoms of these three elements is Sb, Te and Ge as shown in FIG. In the triangulated coordinates, A (Sb 21 Te 19 Ge 60 ), B
(Sb 21 Te 9 Ge 70 ), C (Sb 0 Te 20 Ge 80 ), and D (Sb 0 Te 40 G
It is necessary to use a material having a composition within the range surrounded by the four points of (e 80 ), that is, the composition of the shaded area surrounded by the four points of A, B, C and D in FIG. . Sb
Content of 21 mol% or less, preferably 15% or less.
When the amount of Sb is 0 mol%, that is, when the composition is only Ge-Te, the crystallization time is short, but it does not exhibit reversibility and is difficult to form into amorphous form, so that it is unsuitable as a recording material.
When it exceeds 21 mol%, the crystallization time becomes long and the effects of the present invention are not sufficiently exhibited. Further, the Ge content is in the range of 60 to 80 mol%, and if this amount exceeds 80 mol%, crystallization becomes extremely difficult.
以上より、Sbの効果としては、Ge−Teの結晶化を妨げ
てアモルフアス化を促進する働きがあると思われる。From the above, it is considered that the effect of Sb has a function of hindering the crystallization of Ge—Te and promoting amorphization.
本発明における記録材料は、Sb、Te及びGeの3元素の
みから成るものでも、実用上十分に使用できるが、必要
に応じ、本発明の目的をそこなわない範囲で他の元素を
添加してもよい。The recording material according to the present invention can be sufficiently used practically even if it is composed of only three elements of Sb, Te and Ge. However, if necessary, other elements may be added within a range not impairing the purpose of the present invention. Good.
基板上に、これらの材料から成る記録層を設けるに
は、従来記録層の形成に慣用されている方法、例えば真
空蒸着やスパツタリングなどの方法が用いられる。組成
のコントロールは、真空蒸着においては、三元共蒸着法
などによつて行うことができるし、スパツタリングにお
いては、特定組成のターゲツトを用いるか、合金ターゲ
ツト上にチツプを置いて行うことができる。このように
して形成された記録層は、十分なコントラストを得るた
めには、その膜厚が20〜200nmの範囲にあることが望ま
しい。To provide a recording layer made of these materials on the substrate, a method conventionally used for forming the recording layer, for example, a method such as vacuum deposition or sputtering is used. The composition can be controlled by a ternary co-evaporation method or the like in vacuum vapor deposition, and by using a target having a specific composition or by placing a chip on an alloy target in sputtering. The recording layer thus formed preferably has a film thickness in the range of 20 to 200 nm in order to obtain sufficient contrast.
本発明における基板としては、例えばガラスやガラス
上に光硬化性樹脂を設けたもの、あるいはポリカーボネ
ート、アクリル樹脂、エポキシ樹脂、ポリスチレンなど
のプラスチツク基板、アルミニウム合金などの金属板な
どが用いられる。As the substrate in the present invention, for example, glass, a substrate provided with a photocurable resin on glass, a plastic substrate such as polycarbonate, acrylic resin, epoxy resin, polystyrene or the like, a metal plate such as aluminum alloy or the like is used.
第2図は本発明の情報記録媒体の構成の1例を示す断
面図であつて、基板1上に、少なくともSb、Te及びGeの
3元素から成る記録層2が設けられた構造を示してい
る。FIG. 2 is a cross-sectional view showing an example of the configuration of the information recording medium of the present invention, showing a structure in which a recording layer 2 composed of at least three elements of Sb, Te and Ge is provided on a substrate 1. There is.
発明の効果 本発明方法は、特定組成から成る結晶化時間が短く、
感度が優れた記録材料を用いているので、これに異なる
パワーの単一レーザ光を照射するだけで、情報信号の高
密度かつ高速度の記録及び消去を行ことができる。The method of the present invention has a short crystallization time of a specific composition,
Since the recording material having excellent sensitivity is used, it is possible to record and erase the information signal at a high density and at a high speed only by irradiating the recording material with a single laser beam having a different power.
実施例 次に実施例により本発明をさらに詳細に説明するが、
本発明はこれらの例によつてなんら限定されるものでは
ない。EXAMPLES Next, the present invention will be described in more detail with reference to Examples.
The present invention is not limited in any way by these examples.
実施例1 厚さ1.2mmのポリカーボネート基板上に、三元共蒸着
法により、真空度1.0×10-5Torrで、Sb−Te−Geから成
る膜厚100nmの記録層を形成した。すなわち、抵抗加熱
法によりWボートからGe及びTeをとばし、電気ビーム蒸
着法によりSbをとばして、組成Sb10Te24Ge66の記録層を
形成し、サンプルを作成した。Example 1 A 100-nm-thick recording layer made of Sb-Te-Ge was formed on a 1.2 mm-thick polycarbonate substrate by a ternary co-evaporation method at a vacuum degree of 1.0 * 10 < -5 > Torr. That is, Ge and Te were skipped from a W boat by a resistance heating method and Sb was skipped by an electric beam evaporation method to form a recording layer having a composition of Sb 10 Te 24 Ge 66 to prepare a sample.
一方、同様の方法で、厚さ1.2mmのスライドガラス上
に、組成Sb10Te24Ge66から成る膜厚50nmの薄膜を形成し
た。このスライドガラス上に薄膜を形成したサンプルを
オーブン中で50℃から300℃の温度範囲で約10分間の加
熱処理を施し、それぞれの温度での光透過率を波長830n
mで測定した。その結果より、初期状態に対し透過率が
1割減少した温度(これを結晶化温度と定義する)は約
160℃であつた。On the other hand, by the same method, a thin film having a film thickness of 50 nm made of the composition Sb 10 Te 24 Ge 66 was formed on a 1.2 mm-thick glass slide. A sample with a thin film formed on this slide glass was heat-treated in an oven in the temperature range of 50 ° C to 300 ° C for about 10 minutes, and the light transmittance at each temperature was measured at a wavelength of 830n.
It was measured in m. From the results, the temperature at which the transmittance decreased by 10% compared to the initial state (this is defined as the crystallization temperature) is about
It was 160 ° C.
ポリカーボネート上に薄膜を形成したサンプルに静止
状態でレーザ光照射を行つたのちの反射率の変化を測定
した。第3図は静止状態でのレーザ光照射装置の構成を
示している。半導体レーザ3を発した光は第1のレンズ
4で平行光とされたのち、第2のレンズ系及びプリズム
5、λ/4板6を通つて対物レンズ7によつて集光され記
録媒体上に照射される。反射光は、入射光と反対の経路
をたどりプリズム5で曲げられレンズ8によつて集光さ
れて光検出器9により検出される。この装置を用いてサ
ンプルの結晶化及びアモルフアス化を行つた結果を第4
図に示す。この図より明らかなように、パルス幅0.2μs
ecにおいて、1.5mWで結晶化し、5mWでアモルフアス化し
ており、結晶化時間が短く、かつ、高感度であつた。A sample in which a thin film was formed on polycarbonate was irradiated with laser light in a stationary state, and then the change in reflectance was measured. FIG. 3 shows the configuration of the laser light irradiation device in a stationary state. The light emitted from the semiconductor laser 3 is collimated by the first lens 4 and then is collimated by the objective lens 7 through the second lens system, the prism 5 and the λ / 4 plate 6, and is condensed on the recording medium. Is irradiated. The reflected light follows a path opposite to the incident light, is bent by the prism 5, is condensed by the lens 8, and is detected by the photodetector 9. The results of crystallization and amorphous conversion of the sample using this device
Shown in the figure. As is clear from this figure, pulse width 0.2 μs
In ec, it was crystallized at 1.5 mW and amorphized at 5 mW, and the crystallization time was short and the sensitivity was high.
参考例 第1表に示す組成のサンプルを実施例1と同様の方法
でポリカーボネート基板上に厚さ100nmに形成した。こ
れらのサンプルに静止状態で2mWのレーザ光を照射した
際の結晶化に要したパルス巾を第1表に示す。第1表に
おいて、結晶化に要したパルス幅はすべて1.5μsec以下
と短く、特にSb10Te24Ge66及びSb3Te25G62の組成では0.
2μsecと実用上十分な値であつた。Reference Example A sample having the composition shown in Table 1 was formed in a thickness of 100 nm on a polycarbonate substrate in the same manner as in Example 1. Table 1 shows the pulse width required for crystallization when these samples were irradiated with a laser beam of 2 mW in a stationary state. In Table 1, the pulse widths required for crystallization are all as short as 1.5 μsec or less, and especially in the composition of Sb 10 Te 24 Ge 66 and Sb 3 Te 25 G 62 , it is 0.
The value was 2 μsec, which was a sufficient value for practical use.
実施例2 直径5 1/4インチ、厚さ1.2mmの、射出成形法によつて
得られた円板状のポリカーボネート基板の上に、実施例
1と同様の作成法でSb10Te28Ge62の組成比の薄膜を厚さ
100nmに形成した。このサンプルを900rpmで基板回転さ
せ、基板越しに半導体レーザ(波長830nm)の光を4mWの
出力でデイスク1回転分発光させ、半径約30mmの位置を
1トラツク結晶化させた。次に、この結晶化させたトラ
ツク上に、1MHzの信号を記録した。この際、記録に要し
たレーザパワーは7mWであり、その信号を消去するのに
必要なパワーは4mWと実用上十分な感度を有していた。 Example 2 On a disc-shaped polycarbonate substrate having a diameter of 5 1/4 inch and a thickness of 1.2 mm and obtained by an injection molding method, Sb 10 Te 28 Ge 62 was prepared in the same manner as in Example 1. Thickness of thin film with composition ratio of
It was formed to 100 nm. The substrate was rotated at 900 rpm, and light of a semiconductor laser (wavelength 830 nm) was emitted through the substrate for one rotation of the disk at an output of 4 mW to crystallize one track at a radius of about 30 mm. A 1 MHz signal was then recorded on this crystallized track. At this time, the laser power required for recording was 7 mW, and the power required to erase the signal was 4 mW, which was a sensitivity sufficient for practical use.
実施例3 実施例2と同様のポリカーボネート基板上に、Sb13Te
22Ge65の組成比の薄膜を基板を回転させた状態でRFスパ
ツタ法によりスパツタ圧1.0×10-3Torrで厚さ100nmに形
成した。このサンプルについて実施例2と同様な評価を
行つた。基板回転900rpm、半径30mmの位置に1MHzの信号
を記録するのに要したレーザパワーは、8mWであり、消
去に必要なレーザパワーは6.5mWと十分な感度を有して
いた。Example 3 On the same polycarbonate substrate as in Example 2, Sb 13 Te
A thin film with a composition ratio of 22 Ge 65 was formed with a sputtering pressure of 1.0 × 10 −3 Torr and a thickness of 100 nm by the RF sputtering method while rotating the substrate. This sample was evaluated in the same manner as in Example 2. The laser power required to record a 1 MHz signal at a position where the substrate rotation was 900 rpm and the radius was 30 mm was 8 mW, and the laser power required for erasing was 6.5 mW, which was a sufficient sensitivity.
比較例 実施例1と同様な方法で、第2表に示す組成のGe−Te
薄膜を、厚さ1.2mmのポリカーボネート基板上に膜厚100
nmに形成した。Comparative Example In the same manner as in Example 1, Ge-Te having the composition shown in Table 2 was used.
A thin film with a thickness of 100 mm on a 1.2 mm thick polycarbonate substrate.
formed to nm.
一方、同様の組成の薄膜を、厚さ1.2mmのスライドガ
ラス上に膜厚50nmに形成した。このサンプルを、50℃か
ら300℃までの温度範囲で約10分間の加熱処理を施し、
それぞれの温度における光透過率を波長830nmで測定し
結晶化温度を求めた。その結果を第2表に示す。第2表
より明らかなようにGeの量が増すに伴つて結晶化温度が
上昇する。On the other hand, a thin film having the same composition was formed in a thickness of 50 nm on a slide glass having a thickness of 1.2 mm. This sample is heat-treated for about 10 minutes in the temperature range from 50 ° C to 300 ° C,
The light transmittance at each temperature was measured at a wavelength of 830 nm to determine the crystallization temperature. Table 2 shows the results. As is clear from Table 2, the crystallization temperature rises as the amount of Ge increases.
また、ポリカーボネート上に薄膜を形成したサンプル
に静止状態でレーザ光照射を行い、結晶化に必要なレー
ザパワー及びパルス巾を測定した。結果を第5図に示
す。この図から明らかなように0.2μsec以下の短時間で
も結晶化が起こり始めることが分かる。しかし、静止状
態においてさえも、8mW以下ではアモルフアス化が不可
能であり、実用性に欠けるものであつた。 Further, a sample in which a thin film was formed on polycarbonate was irradiated with laser light in a stationary state, and the laser power and pulse width required for crystallization were measured. Results are shown in FIG. As is clear from this figure, crystallization begins to occur even in a short time of 0.2 μsec or less. However, even in the stationary state, it was impossible to make amorphous form at 8 mW or less, which was not practical.
第1図は、本発明方法において情報記録媒体の記録層に
用いられる材料の組成範囲を示す三角座標図、第2図は
本発明の情報記録媒体の構成の1例を示す断面図、第3
図は記録媒体上にレーザ光を照射するための静止状態で
のレーザ光照射装置の1例の構成図、第4図は実施例に
おける記録層の静止状態でのアモルフアス化しきい値及
び結晶化しきい値を示すグラフ、第5図は比較例におけ
る記録層の静止状態での結晶化しきい値を示すグラフで
ある。式中の符号1は基板、2は記録層、3は半導体レ
ーザ、4及び8はレンズ、5はプリズム、7は対物レン
ズ、9は光検出器である。FIG. 1 is a triangular coordinate diagram showing the composition range of the material used for the recording layer of the information recording medium in the method of the present invention, and FIG. 2 is a sectional view showing an example of the configuration of the information recording medium of the present invention.
FIG. 4 is a block diagram of an example of a laser light irradiation device for irradiating a laser beam on a recording medium in a stationary state, and FIG. 4 is an amorphous threshold for crystallization and a crystallization threshold of a recording layer in the embodiment in a stationary state. FIG. 5 is a graph showing the values, and FIG. 5 is a graph showing the crystallization threshold of the recording layer in the stationary state in the comparative example. In the formula, reference numeral 1 is a substrate, 2 is a recording layer, 3 is a semiconductor laser, 4 and 8 are lenses, 5 is a prism, 7 is an objective lens, and 9 is a photodetector.
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭61−2594(JP,A) 特開 昭61−89889(JP,A) 特開 昭62−73438(JP,A) 特開 昭62−196181(JP,A) 特開 昭62−209742(JP,A) 特開 昭63−100632(JP,A) 特開 昭63−142542(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-61-2594 (JP, A) JP-A-61-89889 (JP, A) JP-A-62-73438 (JP, A) JP-A-62- 196181 (JP, A) JP 62-209742 (JP, A) JP 63-100632 (JP, A) JP 63-142542 (JP, A)
Claims (1)
変化する材料からなる記録層の、光学定数の変化に対応
して生じる光の反射率の変化によって情報の記録及び消
去を行う方法において、少なくともSb、Te及びGeの3元
素からなり、かつこれら3元素の原子数の割合が、Sb、
Te及びGeを頂点とする三角座標において、A(Sb21Te19
Ge60)、B(Sb21Te9Ge70)、C(Sb0Te20Ge80)及びD
(Sb0Te40Ge80)の4点で囲まれた範囲内にある組成
(ただしSbが0の組成は除く)を有する記録層を用い、
該記録層に異なるパワーの単一レーザ光を照射し、結晶
化とアモルファス化を行うことを特徴とする情報の記録
及び消去方法。1. A method for recording and erasing information by changing the reflectance of light in a recording layer made of a material whose optical constant changes by heating provided on a substrate in response to a change in the optical constant. , At least three elements of Sb, Te, and Ge, and the atomic ratio of these three elements is Sb,
In triangular coordinates with Te and Ge as vertices, A (Sb 21 Te 19
Ge 60 ), B (Sb 21 Te 9 Ge 70 ), C (Sb 0 Te 20 Ge 80 ), and D
(Sb 0 Te 40 Ge 80 ) A recording layer having a composition within a range surrounded by four points (excluding a composition in which Sb is 0) is used,
A method for recording and erasing information, characterized in that the recording layer is irradiated with a single laser beam of different power to perform crystallization and amorphization.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62097167A JP2538915B2 (en) | 1987-04-20 | 1987-04-20 | How to record and erase information |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62097167A JP2538915B2 (en) | 1987-04-20 | 1987-04-20 | How to record and erase information |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63263641A JPS63263641A (en) | 1988-10-31 |
JP2538915B2 true JP2538915B2 (en) | 1996-10-02 |
Family
ID=14185018
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62097167A Expired - Fee Related JP2538915B2 (en) | 1987-04-20 | 1987-04-20 | How to record and erase information |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2538915B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2755593B2 (en) * | 1988-03-31 | 1998-05-20 | 株式会社東芝 | Information recording medium |
JPH0825337B2 (en) * | 1988-04-28 | 1996-03-13 | 松下電器産業株式会社 | Optical information recording / reproducing / erasing member and optical disc |
-
1987
- 1987-04-20 JP JP62097167A patent/JP2538915B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPS63263641A (en) | 1988-10-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5194363A (en) | Optical recording medium and production process for the medium | |
KR100770768B1 (en) | Optical recording medium and method of recording using such optical recording medium | |
EP0260920B1 (en) | Thin film amorphous optical recording films | |
JP2000505930A (en) | Optical recording medium having phase change recording layer | |
JP2746896B2 (en) | Optical recording medium | |
JP2574325B2 (en) | Optical information recording medium | |
EP0626682A1 (en) | Optical record medium | |
US6660451B1 (en) | Optical information recording medium | |
KR20010080202A (en) | Rewritable optical information recording medium | |
JP2538915B2 (en) | How to record and erase information | |
JP2001507645A (en) | Ge-Sb-Te alloy rewritable optical information medium | |
JPH0371035B2 (en) | ||
JP2003341240A (en) | Optical recording medium | |
US5385806A (en) | Optical information recording medium | |
JP2629746B2 (en) | Optical recording medium | |
JPH0526668B2 (en) | ||
JP2726259B2 (en) | Information recording method | |
JPS63153728A (en) | Information recorder | |
JP2615627B2 (en) | Optical information recording medium | |
JPH04232780A (en) | Phase change optical recording medium | |
JPH041933B2 (en) | ||
JPH03224791A (en) | Data recording medium | |
JP2798247B2 (en) | Optical recording medium | |
JP2903969B2 (en) | Optical recording medium and recording / reproducing method using the same | |
JP2537875B2 (en) | Information recording method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |