Nothing Special   »   [go: up one dir, main page]

JP2522024B2 - Method for manufacturing photoelectric conversion element - Google Patents

Method for manufacturing photoelectric conversion element

Info

Publication number
JP2522024B2
JP2522024B2 JP63225303A JP22530388A JP2522024B2 JP 2522024 B2 JP2522024 B2 JP 2522024B2 JP 63225303 A JP63225303 A JP 63225303A JP 22530388 A JP22530388 A JP 22530388A JP 2522024 B2 JP2522024 B2 JP 2522024B2
Authority
JP
Japan
Prior art keywords
powder
photoelectric conversion
electrode
conversion element
semiconductor powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63225303A
Other languages
Japanese (ja)
Other versions
JPH0273671A (en
Inventor
直樹 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP63225303A priority Critical patent/JP2522024B2/en
Publication of JPH0273671A publication Critical patent/JPH0273671A/en
Application granted granted Critical
Publication of JP2522024B2 publication Critical patent/JP2522024B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells

Landscapes

  • Photovoltaic Devices (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、単結晶半導体粉末を用いた光電変換素子の
製造方法に関する。
The present invention relates to a method for manufacturing a photoelectric conversion element using a single crystal semiconductor powder.

〔従来の技術〕[Conventional technology]

半導体を用いた光電変換素子において、半導体には多
種の物質が用いられている。薄膜半導体層を用いる場
合、多く利用されているのはアモルファスSiである。と
ころがアモルファスSiを用いる場合、薄膜としては1μ
m程度でよいが、真空装置を用いて形成するため装置自
体の規模が大きく、コスト高となる上、信頼性の点での
光劣化という大きな問題がある。半導体に単結晶Siを用
いる場合、信頼性,変換効率の点では問題がない。しか
し、材料として使用するSiが200μmと厚く、また高価
であるという問題がある。
In photoelectric conversion elements using semiconductors, various substances are used as semiconductors. When a thin-film semiconductor layer is used, amorphous Si is often used. However, when amorphous Si is used, the thickness of the thin film is 1μ.
Although it may be about m, since the apparatus is formed using a vacuum apparatus, the scale of the apparatus itself is large, the cost is high, and there is a serious problem of photodegradation in terms of reliability. When using single crystal Si as a semiconductor, there is no problem in terms of reliability and conversion efficiency. However, there is a problem that Si used as a material is as thick as 200 μm and is expensive.

そこで、材料,プロセス共低コスト化可能な光電変換
素子が望まれるわけであるが、これに対して単結晶半導
体の粉末を用いた光電変換素子が考えられている。この
構造及び製造方法を第2図に従って説明すると、基板1
上にまず拡散防止層5として、例えばMo層が形成され、
次に裏面電極4として、例えばAl層が形成される。その
上に、粒径25μm程度の結晶粒であるp形単結晶Si粉末
8を絶縁材料7と混合させ、有機物質に溶かし込んで形
成したペーストを印刷する。絶縁材料7としてはガラス
原料が、有機物質としてはポリビニルアルコールなどが
用いられる。次に、基板ごと加熱炉へ装入し、不活性ガ
ス及びフォーミングガス中で加熱する。200℃程度で有
機物質は蒸発してしまう。さらに加熱して約600℃前後
にすると、裏面電極4のAlとSiとの共融が始まり、Si粉
体8と電極4との間にAl−Siのの溶融合金が形成され
る。さらに温度を上げると絶縁物質7が溶解し、Al−Si
合金層の上をカバーする。その後温度を徐々に下げてい
くと、Al電極4とSi粉体8とのAl−Si溶融合金からの折
出量はp+形Si9となり、裏面電極4との電気的コタクト
が形成される。次いで、結晶粒表面をみがき、その上に
光入射側電極10として極薄のAl薄膜を形成する。この電
極は、裏面電極4との対向電極であると同時にSi粉体8
とのショットキー接合を形成する目的をもつ。
Therefore, there is a demand for a photoelectric conversion element that can be manufactured at low cost in terms of both materials and processes. On the other hand, a photoelectric conversion element using powder of a single crystal semiconductor has been considered. The structure and manufacturing method will be described with reference to FIG.
First, for example, a Mo layer is formed as the diffusion preventing layer 5,
Next, as the back surface electrode 4, for example, an Al layer is formed. Then, a p-type single crystal Si powder 8 which is a crystal grain having a grain size of about 25 μm is mixed with the insulating material 7, and a paste formed by being dissolved in an organic substance is printed. A glass raw material is used as the insulating material 7, and polyvinyl alcohol or the like is used as the organic substance. Next, the substrate is put into a heating furnace and heated in an inert gas and a forming gas. Organic substances evaporate at around 200 ° C. When it is further heated to about 600 ° C., eutectic of Al and Si of the back surface electrode 4 starts, and a molten alloy of Al—Si is formed between the Si powder 8 and the electrode 4. When the temperature is further raised, the insulating material 7 melts and Al-Si
Cover the top of the alloy layer. Then, when the temperature is gradually lowered, the protrusion amount of the Al electrode 4 and the Si powder 8 from the Al-Si molten alloy becomes p + -type Si9, and an electrical contact with the back surface electrode 4 is formed. Next, the surface of the crystal grain is polished, and an ultrathin Al thin film is formed thereon as the light incident side electrode 10. This electrode is the opposite electrode to the back surface electrode 4 and at the same time the Si powder 8
Has the purpose of forming a Schottky junction with.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

このような光電変換素子構造では、ショットキー接合
を形成することによってダイオードを構成し、光電変換
可能とするため、光入射側の電極10としてはSi粉体8と
ショットキー接合が形成可能である金属を用いなければ
ならなく、電極材料の選択範囲が狭くなるという欠点が
ある。また金属を電極として用いているため、電気的コ
ンタクトを良好にするために電極の厚みは少なくとも数
10Å程度は必要であり、光の透過率が減少してしまうと
共に反射率も増加し、Si粉末8に結成される光電変換層
に入る実質的な入射光量が減少してしまい、出力特性も
低くなるといった問題があた。
In such a photoelectric conversion element structure, a diode is formed by forming a Schottky junction so that photoelectric conversion can be performed. Therefore, the Si powder 8 and the Schottky junction can be formed as the electrode 10 on the light incident side. Since metal has to be used, the selection range of the electrode material is narrowed. Also, since metal is used as the electrode, the thickness of the electrode should be at least several in order to improve the electrical contact.
About 10Å is required, and the transmittance of light decreases and the reflectance also increases, and the substantial amount of incident light entering the photoelectric conversion layer formed in the Si powder 8 decreases, resulting in low output characteristics. There was a problem such as.

本発明の課題は、光入射側電極から光電変換層を形成
する半導体粉末へ入る入射量を増加させ、高出力特性を
持つ低コスト光電変換素子を製造する方法を提供するこ
とにある。
An object of the present invention is to provide a method for producing a low-cost photoelectric conversion element having high output characteristics by increasing the amount of incident light entering the semiconductor powder forming the photoelectric conversion layer from the light incident side electrode.

〔課題を解決するための手段〕[Means for solving the problem]

上記の課題の解決のために、本発明は、第一導電形の
単結晶半導体粉末を同一平面上に密に配置する工程と、
その面の一側において半導体粉末に、第二導電形のため
のドーピング不純物を含む導電性材料の薄膜を接触させ
る工程と、加熱により半導体粉末と導電性材料とを合金
化させたのち冷却して半導体粉末内の一部に第二導電形
の領域を成して、半導体粉末内にpn接合を形成する工程
と、半導体粉末の他側を透光性電極で覆う工程とを備え
たものとする。
In order to solve the above problems, the present invention, a step of densely arranging a single crystal semiconductor powder of the first conductivity type on the same plane,
On one side of the surface, the semiconductor powder is brought into contact with a thin film of a conductive material containing a doping impurity for the second conductivity type, and the semiconductor powder and the conductive material are alloyed by heating and then cooled. A step of forming a region of the second conductivity type in a part of the semiconductor powder to form a pn junction in the semiconductor powder, and a step of covering the other side of the semiconductor powder with a transparent electrode are provided. .

〔作用〕[Action]

上記の方法では、ドーピング不純物を含む導電性材料
は半導体粉末と合金化し、冷却することにより半導体粉
末内に光電変換層を形成するpn接合をつくると共に、光
電変換素子の一方の電極となる。半導体粉末の他側を覆
う透光性電極は、ショットキー接合形成を兼ねる電極よ
り高透過率,低反射率にできるため、光電変換層への入
射光量が増加し、素子の出力特性が向上する。
In the above method, the conductive material containing the doping impurities is alloyed with the semiconductor powder and cooled to form a pn junction forming a photoelectric conversion layer in the semiconductor powder, and at the same time serve as one electrode of the photoelectric conversion element. The translucent electrode that covers the other side of the semiconductor powder can have higher transmittance and lower reflectance than the electrode that also serves as the Schottky junction formation, so that the amount of light incident on the photoelectric conversion layer increases and the output characteristics of the device improve. .

〔実施例〕〔Example〕

以下本発明の一実施例を、第2図と共通の部分には同
一の符号を付した第1図(a)〜(e)を引用して説明
する。後工程として加熱工程が入るため、絶縁材料とし
てはアルミナ硅酸ガラス,石英ガラス,アルミナ等のセ
ラミックを用いる絶縁性基板1上に基板からの不純物拡
散防止として拡散防止層5を形成する。(図a)。拡散
防止層5としては二酸化硅素膜,窒化硅素膜あるいは高
融点金属であるMo,Ni膜などが用いられる。次に拡散防
止層5の上に裏面電極4としてAl膜を、例えば蒸着によ
り積層する(図b)。別に、25μm程度の粒径の結晶粒
であるn形単結晶Si粉末2を絶縁材料7と混合させ、有
機物質に溶かし込んでペーストを作成し、このペースト
をAl膜4の上に印刷する(図c)。絶縁材料7としては
ガラス原料が、有機物質としてはポリビニルアルコール
などが用いられる。次に、基板ごと加熱炉に装入し、不
活性ガスおよびフォーミングガス中で加熱する。200℃
程度の加熱でまず有機物質が蒸発し、さらに加熱し600
℃前後にすると裏面電極4のAlとSiとの共融が始まり、
Si粉体8と電極4の間にAl−Si合金が形成される。さら
に温度を上げると絶縁物質7が溶解し、Al−Si合金上を
カバーする。これは光入射側電極3と裏面電極4との短
絡を防ぐ役割を果たす。その後徐々に温度を下げていく
と、Si粉体8と合金層との溶解部はAlがドーパントとし
てSi内に拡散することにより、凝固の際p形Si層6が形
成される(図d)。従って、n形Si粉体2にはpn接合が
形成されたことになる。その後結晶粒表面をみがき、光
入射側電極3を形成する。(図e)。光入射側電極3と
しては、透光性導電材料であるITOやSnO2薄膜などを用
いる。ITOやSnO2薄膜などを用いた場合、その薄膜によ
り反射率を制御することができ、例えば700Å程度の厚
さの薄膜を形成すれば反射率を最小にすることができ
る。
An embodiment of the present invention will be described below with reference to FIGS. 1 (a) to 1 (e) in which parts common to those in FIG. Since a heating step is performed as a subsequent step, the diffusion prevention layer 5 is formed on the insulating substrate 1 using a ceramic such as alumina silicate glass, quartz glass, or alumina as an insulating material to prevent impurity diffusion from the substrate. (Figure a). As the diffusion prevention layer 5, a silicon dioxide film, a silicon nitride film, a Mo or Ni film which is a refractory metal, or the like is used. Next, an Al film is laminated as the back electrode 4 on the diffusion prevention layer 5 by, for example, vapor deposition (FIG. B). Separately, an n-type single crystal Si powder 2 which is a crystal grain having a grain size of about 25 μm is mixed with an insulating material 7 and dissolved in an organic substance to form a paste, and this paste is printed on the Al film 4 ( Figure c). A glass raw material is used as the insulating material 7, and polyvinyl alcohol or the like is used as the organic substance. Next, the substrate is put into a heating furnace and heated in an inert gas and a forming gas. 200 ° C
The organic substance evaporates first by heating for about 600 ° C
At around ℃, eutectic of Al and Si of the backside electrode 4 starts,
An Al—Si alloy is formed between the Si powder 8 and the electrode 4. When the temperature is further raised, the insulating material 7 melts and covers the Al-Si alloy. This plays a role of preventing a short circuit between the light incident side electrode 3 and the back surface electrode 4. After that, when the temperature is gradually lowered, Al diffuses into Si as a dopant in the melting portion of the Si powder 8 and the alloy layer, so that the p-type Si layer 6 is formed during solidification (Fig. D). . Therefore, a pn junction is formed in the n-type Si powder 2. Then, the surface of the crystal grain is polished to form the light incident side electrode 3. (Fig. E). As the light incident side electrode 3, ITO or SnO 2 thin film which is a transparent conductive material is used. When an ITO or SnO 2 thin film is used, the reflectance can be controlled by the thin film, and the reflectance can be minimized by forming a thin film having a thickness of about 700Å, for example.

本発明の別の実施例として、基板として絶縁性のもの
ではなく高融点金属、例えば。Mo,Ni等の金属板を用い
てもよい。この場合、拡散防止層5は形成しなくてもよ
い。さらに、本発明の太陽電池特性としての評価を行っ
た。従来法としては光入射窓としてAl膜を約50Åの厚さ
に形成し、本発明としては光入射窓としてITOを約700Å
の厚さに形成した。その結果、従来法で短絡光電流が12
mA/cm2の出力であったものが、本発明では15mA/cm2に向
上し、変換効率の向上を図ることができた。
As another embodiment of the present invention, the substrate is not an insulative one, but a refractory metal, for example. A metal plate such as Mo or Ni may be used. In this case, the diffusion prevention layer 5 may not be formed. Furthermore, the solar cell characteristics of the present invention were evaluated. In the conventional method, an Al film is formed as a light incident window to a thickness of about 50Å, and in the present invention, ITO is used as a light incident window at about 700Å.
Formed to a thickness of. As a result, the short-circuit photocurrent is 12
What was the output of mA / cm 2 is in the present invention improves the 15 mA / cm 2, it was possible to improve the conversion efficiency.

以上の実施例では単結晶半導体粉末としn形Si粉末を
用いたが、p形粉末を用いてもよく、よの際は裏面電極
としてはSn−Sb合金などを使用すればよい。
In the above examples, n-type Si powder was used as the single crystal semiconductor powder, but p-type powder may be used, and in this case Sn-Sb alloy or the like may be used as the back electrode.

〔発明の効果〕〔The invention's effect〕

本発明によれば、単結晶半導体粉末を用いた光電変換
素子の光電変換層も、従来の光入射側電極とのショット
キー接合によらないで、裏面電極との合金化によって粉
末内に生ずるpn接合によって形成するので、光入射側電
極として透過率、反射率の点で有効な透光性電極を採用
することができ、従来法にくらべ製造工程数を増加させ
ることなく、出力特性の向上した低コストの光電変換素
子が製造可能になった。
According to the present invention, the photoelectric conversion layer of the photoelectric conversion element using the single crystal semiconductor powder does not depend on the conventional Schottky junction with the light incident side electrode, but is formed in the powder by alloying with the back electrode. Since it is formed by bonding, it is possible to adopt a transparent electrode that is effective in terms of transmittance and reflectance as the light incident side electrode, and the output characteristics are improved without increasing the number of manufacturing steps compared with the conventional method. It has become possible to manufacture low-cost photoelectric conversion elements.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例の光電変換素子の製造工程を
順次示す断面図、第2図は従来の単結晶半導体粉末を用
いた光電変換素子の断面図である。 1:絶縁性基板、2:n形Si粉末、3:光入射側電極、4:裏面
電極、5:拡散防止層、6:p形Si層、7:絶縁材料。
FIG. 1 is a sectional view sequentially showing the manufacturing process of a photoelectric conversion element according to an embodiment of the present invention, and FIG. 2 is a sectional view of a photoelectric conversion element using a conventional single crystal semiconductor powder. 1: Insulating substrate, 2: n-type Si powder, 3: light incident side electrode, 4: back electrode, 5: diffusion prevention layer, 6: p-type Si layer, 7: insulating material.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】第一導電形の単結晶半導体粉末を同一平面
上に密に配置する工程と、 その面の一側において半導体粉末に、第二導電形のため
のドーピング不純物を含む導電性材料の薄膜を接触させ
る工程と、 加熱により半導体粉末と導電性材料とを合金化させたの
ち冷却して半導体粉末内の一部に第二導電形の領域を形
成して、半導体粉末内にpn接合を形成する工程と、 半導体粉末の他側を透光性電極で覆う工程と、 を備えたことを特徴とする光電変換素子の製造方法。
1. A step of densely arranging single crystal semiconductor powders of the first conductivity type on the same plane, and a conductive material containing a doping impurity for the second conductivity type in the semiconductor powder on one side of the surface. The step of contacting the thin film and the step of heating to alloy the semiconductor powder with the conductive material and then cooling to form a region of the second conductivity type in a part of the semiconductor powder to form a pn junction in the semiconductor powder. And a step of covering the other side of the semiconductor powder with a transparent electrode, the method for producing a photoelectric conversion element.
JP63225303A 1988-09-08 1988-09-08 Method for manufacturing photoelectric conversion element Expired - Lifetime JP2522024B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63225303A JP2522024B2 (en) 1988-09-08 1988-09-08 Method for manufacturing photoelectric conversion element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63225303A JP2522024B2 (en) 1988-09-08 1988-09-08 Method for manufacturing photoelectric conversion element

Publications (2)

Publication Number Publication Date
JPH0273671A JPH0273671A (en) 1990-03-13
JP2522024B2 true JP2522024B2 (en) 1996-08-07

Family

ID=16827229

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63225303A Expired - Lifetime JP2522024B2 (en) 1988-09-08 1988-09-08 Method for manufacturing photoelectric conversion element

Country Status (1)

Country Link
JP (1) JP2522024B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2758741B2 (en) * 1991-08-09 1998-05-28 シャープ株式会社 Photoelectric conversion element and method for manufacturing the same
JP2002043602A (en) * 2000-07-27 2002-02-08 Kyocera Corp Photoelectric converter and its manufacturing method
JP2002261301A (en) * 2001-02-28 2002-09-13 Kyocera Corp Photoelectric converter
JP2005243872A (en) * 2004-02-26 2005-09-08 Kyocera Corp Photoelectric converter and manufacturing method thereof
US12072656B1 (en) 2023-03-16 2024-08-27 Toshiba Tec Kabushiki Kaisha Image forming apparatus abnormality detection

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51129192A (en) * 1975-05-06 1976-11-10 Agency Of Ind Science & Technol Manufacturing method of solar battery
JPS5940314B2 (en) * 1979-05-30 1984-09-29 株式会社東芝 oxide piezoelectric material
JPH0754855B2 (en) * 1984-09-04 1995-06-07 テキサス インスツルメンツ インコーポレイテッド How to make a solar array

Also Published As

Publication number Publication date
JPH0273671A (en) 1990-03-13

Similar Documents

Publication Publication Date Title
US4947219A (en) Particulate semiconductor devices and methods
JPH0117272B2 (en)
JP2804839B2 (en) Method for manufacturing semiconductor device
JP2758749B2 (en) Photoelectric conversion device and method of manufacturing the same
JPH0536997A (en) Photovoltaic device
JP2641800B2 (en) Solar cell and method of manufacturing the same
JP2522024B2 (en) Method for manufacturing photoelectric conversion element
US4706376A (en) Method of making semiconductor photoelectric conversion device
US4005468A (en) Semiconductor photoelectric device with plural tin oxide heterojunctions and common electrical connection
US4360702A (en) Copper oxide/N-silicon heterojunction photovoltaic device
US4704624A (en) Semiconductor photoelectric conversion device with partly crystallized intrinsic layer
US5395457A (en) Photovoltaic device and method of manufacturing the same
JPH0864851A (en) Photovoltaic element and fabrication thereof
JP2002185024A (en) Solar battery and manufacturing method therefor
JPH1012903A (en) Photoelectric transducer
JPH04356972A (en) Manufacture of photoelectric converter
JP3209700B2 (en) Photovoltaic device and module
JP2758741B2 (en) Photoelectric conversion element and method for manufacturing the same
JPS6143870B2 (en)
JPS6357952B2 (en)
JP2007208049A (en) Photoelectric converter, manufacturing method thereof, and optical generator
JPS59117276A (en) Manufacture of solar battery
JP3652056B2 (en) Method for manufacturing photoelectric conversion device
JP2771651B2 (en) Method for manufacturing photovoltaic element
JP3244375B2 (en) Method for producing thin-film polycrystalline silicon and method for producing photovoltaic element using the same