Nothing Special   »   [go: up one dir, main page]

JP2511095B2 - Electrode material - Google Patents

Electrode material

Info

Publication number
JP2511095B2
JP2511095B2 JP63023973A JP2397388A JP2511095B2 JP 2511095 B2 JP2511095 B2 JP 2511095B2 JP 63023973 A JP63023973 A JP 63023973A JP 2397388 A JP2397388 A JP 2397388A JP 2511095 B2 JP2511095 B2 JP 2511095B2
Authority
JP
Japan
Prior art keywords
conductivity
electrode
electrode material
oxide
ysz
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63023973A
Other languages
Japanese (ja)
Other versions
JPH01200560A (en
Inventor
紀久士 常吉
一剛 森
明宏 沢田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP63023973A priority Critical patent/JP2511095B2/en
Publication of JPH01200560A publication Critical patent/JPH01200560A/en
Application granted granted Critical
Publication of JP2511095B2 publication Critical patent/JP2511095B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9016Oxides, hydroxides or oxygenated metallic salts
    • H01M4/9025Oxides specially used in fuel cell operating at high temperature, e.g. SOFC
    • H01M4/9033Complex oxides, optionally doped, of the type M1MeO3, M1 being an alkaline earth metal or a rare earth, Me being a metal, e.g. perovskites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9016Oxides, hydroxides or oxygenated metallic salts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inert Electrodes (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は電極材料に関し、特に、固体電解質型燃料電
池(Solid oxide Fuel Cell、以下SOFCと略す)の空気
電極材料に関する。
TECHNICAL FIELD The present invention relates to an electrode material, and more particularly to an air electrode material for a solid oxide fuel cell (hereinafter abbreviated as SOFC).

〔従来の技術〕[Conventional technology]

SOFCは第1図に例示したように固体電解質材料2をは
さんで空気電極1と燃料電極4が取付けられる。なお、
3は中間接続子(インコネツタ)、5は多孔性の板又は
管状基体である。
The SOFC has an air electrode 1 and a fuel electrode 4 mounted with a solid electrolyte material 2 in between as illustrated in FIG. In addition,
3 is an intermediate connector (in connector), 5 is a porous plate or tubular substrate.

固体電解質材料2としては、酸素イオン導電性を有す
るイツトリア安定化ジルコニア(以下YSZと略す)が多
用されている。空気電極1は高温の酸化雰囲気において
も安定で、高い導電性を有するペロブスカイト型複合酸
化物が、また燃料電極4には、ニツケルなどが使用され
ている。この電池は約1000℃において運転される。ペロ
ブスカイト型複合酸化物はABO3(A,Bは金属元素)で表
わされ、空気電極1としてはLaMNO3やLaCoO3の系統のも
のが用いられている。この場合LaをAサイト、MnをBサ
イト元素という。従来はAサイトのLaの一部をSrやCaで
置換したLa1-xAxMnO3やLa1-xAxCoO3(A=Sr,Ca、0<
x≦0.4)で表わされるランタンマンガナイト系(La−M
n系)、ランタンコバルタイト系(La−Co系)のものが
多用されている。
As the solid electrolyte material 2, yttria-stabilized zirconia (hereinafter abbreviated as YSZ) having oxygen ion conductivity is often used. The air electrode 1 is made of a perovskite type complex oxide which is stable even in a high temperature oxidizing atmosphere and has high conductivity, and the fuel electrode 4 is made of nickel or the like. This battery operates at about 1000 ° C. The perovskite type complex oxide is represented by ABO 3 (A and B are metallic elements), and the air electrode 1 used is of the LaMNO 3 or LaCoO 3 system. In this case, La is called A site and Mn is called B site element. Conventionally, La 1-x A x MnO 3 or La 1-x A x CoO 3 (A = Sr, Ca, 0 <
x-0.4) lanthanum manganite series (La-M
n type) and lanthanum cobaltite type (La-Co type) are often used.

ところでLa−Co系材料は約1000℃において1×103
2×103S/cm(S:ジーメンス=1/Ω、コンダクタンス単
位)の高い導電率(σ)を示し、現在公知の空気電極材
料の中では最高のものであるが、1000℃近辺の高温下で
はYSZと反応し、La2ZrO5などの不良導電物質(又は絶縁
物質)をYSZとの接合部に生じさせるため、短期間のう
ちに電池性能が低下するという致命的欠点をもつてい
る。従つてYSZを用いるSOFCの空気電極としては実用性
がない。
By the way, La-Co materials are 1 × 10 3 ~
High conductivity (σ) of 2 × 10 3 S / cm (S: Siemens = 1 / Ω, conductance unit), which is the highest among currently known air electrode materials, but high temperature around 1000 ℃ Below, it reacts with YSZ and causes a bad conductive material (or insulating material) such as La 2 ZrO 5 to form at the junction with YSZ, which has the fatal drawback that battery performance deteriorates in a short period of time. . Therefore, it is not practical as an air electrode for SOFC using YSZ.

一方La−Mn系の材料はYSZと反応しないが、1000℃付
近での導電率(σ)が100S/cm程度でLa−Co系の1/10と
低い欠点がある。
On the other hand, the La-Mn-based material does not react with YSZ, but has a drawback that the conductivity (σ) at around 1000 ° C is about 100 S / cm, which is as low as 1/10 of the La-Co-based material.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

電極材料の導電率が低い又は短時間のうちに低下する
ことは、電池を構成した際の内部抵抗の増大をきたすも
ので好ましくない。本発明は高い導電性のLa−Mn系空気
電極を提供し、従来材料における不具合点を克服しよう
とするものである。
It is not preferable that the conductivity of the electrode material is low or that it decreases in a short time because it causes an increase in internal resistance when the battery is constructed. The present invention aims to provide a highly conductive La-Mn based air electrode and overcome the drawbacks of conventional materials.

〔課題を解決するための手段〕[Means for solving the problem]

本発明はランタンマンガナイト系のペロブスカイト型
複合酸化物においてLa1-xAxMn1-yByO3(A=Ca,Sr、B
=Ni,Cr、0≦x≦0.4、0<y≦0.25)で表わされる組
成を有してなることを特徴とする電極材料である。
The present invention relates to La 1-x A x Mn 1- y By O 3 (A = Ca, Sr, B) in a lanthanum manganite-based perovskite complex oxide.
= Ni, Cr, 0 ≦ x ≦ 0.4, 0 <y ≦ 0.25), which is an electrode material.

前述のように従来のLa−Mn系空気電極材料はLa1-xAxM
nO3(A=Sr,Ca、0≦x≦0.4)で表わされ、Aサイト
のLaの一部を2価の金属元素で置換した形のものであつ
た。本発明は上記従来の材料のBサイトのMnの一部もNi
やCrといつた遷移金属元素で置換した形の材料、即ちLa
1-xAxMn1-yByO3で表わされる従来にない形とすることに
より前記課題の解決をはかつたものである。実験の結
果、BはCr,Niがよく、yは後述の実施例から推定され
るように0<y≦0.25とするものである。BとしてCoを
用いても導電率は向上するが、YSZとの反応があり、YSZ
を用いるSOFCには適用できない。
As mentioned above, the conventional La-Mn-based air electrode material is La 1-x A x M
It was represented by nO 3 (A = Sr, Ca, 0 ≦ x ≦ 0.4), and had a form in which part of La at the A site was replaced with a divalent metal element. In the present invention, a part of Mn at the B site of the above conventional material is also Ni.
Material in the form of substitution with Cr or Cr and other transition metal elements, namely La
Is obtained One tomb to solve the above problems by the form unprecedented represented by 1-x A x Mn 1- y B y O 3. As a result of the experiment, B is preferably Cr and Ni, and y is 0 <y ≦ 0.25 as estimated from the examples described later. Even if Co is used as B, the conductivity is improved, but there is a reaction with YSZ.
Not applicable to SOFCs using.

〔作用〕[Action]

SOFCの空気電極は電子伝導性を有する。これは電極材
料のバルクの導電率(オーム抵抗の逆数)に反映され
る。更に空気中の酸素を吸着し、電解質側へ移動させ、
捉えた酸素と電極内を流れる電子とを結合させて酸素イ
オンとなし、電解質へ送り込むという次の(1),
(2),(3)式で表わされる作用も有する。(1),
(2),(3)式を合わせて空気電極反応と称している
が、この反応の進み易さが電極界面導電率(電極界面抵
抗の逆数)に反映される。
The SOFC air electrode has electronic conductivity. This is reflected in the bulk conductivity of the electrode material (reciprocal of ohmic resistance). Furthermore, it absorbs oxygen in the air and moves it to the electrolyte side.
The following (1), in which the captured oxygen is combined with the electrons flowing in the electrode to form oxygen ions and sent to the electrolyte,
It also has the action represented by the equations (2) and (3). (1),
Although the equations (2) and (3) are collectively referred to as an air electrode reaction, the easiness of progress of this reaction is reflected in the electrode interface conductivity (the reciprocal of the electrode interface resistance).

O2(g)2Oad (1)(吸着解離) Oad表面拡散 (2)(表面拡散) 2Oad+4e2O2- (3)(電荷移動) 本発明の方法のごとくLaの一部をSrやCaで置換した上
にMnの一部もNiやCrで置換することによつて、バルクの
導電率(σ)も界面導電率(σE)も向上させることが
でき、その結果空気電極の抵抗と分極電位が低下し、SO
FCの発電効率の向上がはかられる。
O 2 (g) 2Oad (1) (adsorption dissociation) Oad surface diffusion (2) (surface diffusion) 2Oad + 4e2O 2- (3) (charge transfer) A part of La was replaced with Sr or Ca as in the method of the present invention. By substituting a part of Mn with Ni or Cr, both the bulk conductivity (σ) and the interfacial conductivity (σ E ) can be improved. As a result, the resistance and polarization potential of the air electrode can be improved. Drops and SO
The power generation efficiency of FC can be improved.

以下本発明を具体的に説明するに当つてLa−Mn系のペ
ロブスカイト型複合酸化物の製造例について説明する。
Before specifically explaining the present invention, a production example of a La-Mn-based perovskite complex oxide will be described.

酸化ランタン:La2O3、炭酸カルシウム:CaCO3(又は
炭酸ストロンチウム:SrCO3)、酸化マンガン:Mn2O3
よび酸化ニツケル:NiO(又は酸化クロム:Cr2O3)を所
定量秤量してボールミルに入れ、エチルアルコールを加
えて混合する。これを過し、110℃で乾燥後1200℃で
焼成する。焼成物を100μmアンダーとなるよう粉砕
し、再度1200℃で焼成してLa1-xCaxMn1-yNiyO3,La1-xC
axMn1-yCryO3,La1-xSrxMn1-yNiyO3,La1-xSrxMn1-yCry
O3なる組成のペロブスカイト型複合酸化物を得る。(粉
末混合法) このようにして得た酸化物材料粉末を加圧成形後1400
℃で大気中で焼成し、角柱状に切り出し、電極材料とし
てのバルクの導電率(σ)を第2図に示すような直流4
端子法により1000℃において測定した。第2図中6は電
極材料、7は白金線、8は電圧計、9は電流計であり、
記号lは長さ、Sは断面積、Iは電流、Vは電圧を表わ
す。この時の導電率(σ)は下記の式で表わされる。
Lanthanum oxide: La 2 O 3 , calcium carbonate: CaCO 3 (or strontium carbonate: SrCO 3 ), manganese oxide: Mn 2 O 3 and nickel oxide: NiO (or chromium oxide: Cr 2 O 3 ) are weighed in predetermined amounts. Put in a ball mill, add ethyl alcohol and mix. After passing through this, it is dried at 110 ° C and then baked at 1200 ° C. The fired product was crushed to 100 μm under, and fired again at 1200 ° C to produce La 1-x Ca x Mn 1-y Ni y O 3 , La 1-x C
a x Mn 1-y Cr y O 3 , La 1-x Sr x Mn 1-y Ni y O 3 , La 1-x Sr x Mn 1-y Cr y
A perovskite complex oxide having a composition of O 3 is obtained. (Powder mixing method) The oxide material powder thus obtained was subjected to pressure molding 1400
It is fired in the air at ℃, cut out into a prismatic shape, and the conductivity (σ) of the bulk as an electrode material is DC 4 as shown in Fig. 2.
It was measured at 1000 ° C. by the terminal method. In FIG. 2, 6 is an electrode material, 7 is a platinum wire, 8 is a voltmeter, 9 is an ammeter,
The symbol 1 represents length, S represents cross-sectional area, I represents current, and V represents voltage. The conductivity (σ) at this time is represented by the following formula.

また一部の酸化物材料粉末についてはテレビン油でペ
ースト化して、別に準備したYSZ(8モル%のY2O3を加
えて安定化させたZrO2)焼結体デイスク(10mmφ×3.5m
mt)の片面に塗布し、1100℃で焼きつけた。次にYSZ焼
結体デイスクのもう一方の面に白金ペーストを塗布し、
更に参照電極を取り付け、空気中1000℃で焼きつけ、第
3図に示すサンプルを得た。第3図中10はYSZ焼結体、1
1は酸化物電極、12は白金電極、13は参照電極(白金
線)である。この試験サンプルを用いて交流インピーダ
ンス法により1000℃において酸化物電極の界面導電率
(σE)を、またカレントインターラプター法により100
0℃における分極電位(η)を求めた。
Some oxide material powders were made into paste with turpentine oil and separately prepared YSZ (ZrO 2 stabilized by adding 8 mol% Y 2 O 3 ) sintered disk (10 mmφ × 3.5 m
mt) on one side and baked at 1100 ° C. Next, apply platinum paste to the other side of the YSZ sintered body disk,
Further, a reference electrode was attached and baked at 1000 ° C. in air to obtain a sample shown in FIG. In FIG. 3, 10 is a YSZ sintered body, 1
1 is an oxide electrode, 12 is a platinum electrode, and 13 is a reference electrode (platinum wire). Using this test sample, the interfacial conductivity (σ E ) of the oxide electrode at 1000 ° C was measured by the AC impedance method, and 100 by the current interrupter method.
The polarization potential (η) at 0 ° C was determined.

〔実施例〕〔Example〕

実施例1 前述の方法でLa0.6Ca0.4Mn1-yNiyO3およびLa0.6Ca0.4
Mn1-yCryO3を調製し、σおよび一部のサンプルについて
σEおよびηを測定した。結果を第1表に示す。La0.6Ca
0.4MnO3のMnの一部をNiやCrで置換することによつて、
σは1.8〜3倍、σEは11.5〜19.5倍と飛躍的に向上す
る。分極電位はほぼσEの上昇に追従して低下する。但
し比較例にもあるように余り多量の置換はマイナス効果
となる。
Example 1 La 0.6 Ca 0.4 Mn 1-y Ni y O 3 and La 0.6 Ca 0.4 were prepared by the method described above.
The Mn 1-y Cr y O 3 were prepared and measured sigma E and η for sigma and some samples. The results are shown in Table 1. La 0.6 Ca
By substituting a part of Mn of 0.4 MnO 3 with Ni or Cr,
σ is 1.8 to 3 times, and σ E is 11.5 to 19.5 times. The polarization potential decreases almost following the rise of σ E. However, as in the comparative example, too much substitution has a negative effect.

実施例2 La0.6Sr0.4Mn1-yNiyO3,La0.8Sr0.2Mn1-yNiyO3および
La0.8Ca0.2Mn1-yNiyO3を調製し、σを測定した。結果を
第2表に示す。いずれもMnの一部をNiで置換することに
よりσの向上が認められた。
Example 2 La 0.6 Sr 0.4 Mn 1-y Ni y O 3 , La 0.8 Sr 0.2 Mn 1-y Ni y O 3 and
La 0.8 Ca 0.2 Mn 1-y Ni y O 3 was prepared and σ was measured. The results are shown in Table 2. In each case, an improvement of σ was observed by substituting a part of Mn with Ni.

以上の実施例、特に実施例1より、Mnに対するNiやCr
の置換量は25モル%以下が好ましいことがわかる。
From the above examples, especially Example 1, Ni and Cr with respect to Mn
It is understood that the substitution amount of is preferably 25 mol% or less.

また以上の実施例ではMnをNiまたはCr単独で置換した
ものゝみをあげているが、MnをNi,Crで同時に置換して
もほゞ同様の結果が得られる。
Further, in the above examples, only the case where Mn is replaced with Ni or Cr alone is mentioned, but almost the same result can be obtained even when Mn is replaced with Ni and Cr at the same time.

〔発明の効果〕〔The invention's effect〕

本発明によつてLa−Mn系電極材料のバルクの導電率
(σ)や界面導電率(σE)を向上させることができ、
σEの向上にともなつて分極電位を下げることもでき、
従来にない優れた導電性をもつLa−Mn系の空気電極材料
を得ることが可能となる。
According to the present invention, it is possible to improve the bulk conductivity (σ) and interface conductivity (σ E ) of the La-Mn-based electrode material,
The polarization potential can be lowered as σ E improves.
It is possible to obtain a La-Mn-based air electrode material having unprecedented excellent conductivity.

【図面の簡単な説明】[Brief description of drawings]

第1図はSOFCの一態様の概略図、第2図は直流4端子法
による電極材料のバルクの導電率測定の態様を示す概略
図、第3図は交流インピーダンス法によつて界面導電率
(σE)を測定するサンプルの構成を示す概略図であ
る。
FIG. 1 is a schematic view of one embodiment of SOFC, FIG. 2 is a schematic view showing the embodiment of measuring the conductivity of the bulk of the electrode material by the direct current 4-terminal method, and FIG. 3 is the interface conductivity ( It is a schematic diagram showing the composition of the sample which measures (sigma) E.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】ランタンマンガナイト系のペロブスカイト
型複合酸化物においてLa1-xAxMn1-yByO3(A=Ca,Sr、
B=Ni,Cr、0≦x≦0.4、0<y≦0.25)で表わされる
組成を有してなることを特徴とする電極材料。
1. A lanthanum manganite-based perovskite-type complex oxide comprising La 1-x A x Mn 1- y By O 3 (A = Ca, Sr,
B = Ni, Cr, 0 ≦ x ≦ 0.4, 0 <y ≦ 0.25), an electrode material having a composition represented by the following:
JP63023973A 1988-02-05 1988-02-05 Electrode material Expired - Lifetime JP2511095B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63023973A JP2511095B2 (en) 1988-02-05 1988-02-05 Electrode material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63023973A JP2511095B2 (en) 1988-02-05 1988-02-05 Electrode material

Publications (2)

Publication Number Publication Date
JPH01200560A JPH01200560A (en) 1989-08-11
JP2511095B2 true JP2511095B2 (en) 1996-06-26

Family

ID=12125493

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63023973A Expired - Lifetime JP2511095B2 (en) 1988-02-05 1988-02-05 Electrode material

Country Status (1)

Country Link
JP (1) JP2511095B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2810104B2 (en) * 1989-04-28 1998-10-15 日本碍子株式会社 Ceramic electrode and fuel cell having the same
CA2099443A1 (en) * 1992-07-01 1994-01-02 Prabhakar Singh Fuel cell containing stable air electrode material
US5432024A (en) 1992-10-14 1995-07-11 Ngk Insulators, Ltd. Porous lanthanum manganite sintered bodies and solid oxide fuel cells
DE69403294T2 (en) * 1993-08-16 1997-12-11 Westinghouse Electric Corp Stable air electrode for high-temperature electrochemical cells with solid oxide electrolyte
JP3339983B2 (en) * 1995-02-28 2002-10-28 京セラ株式会社 Solid oxide fuel cell and method of manufacturing the same
ATE198519T1 (en) 1997-09-11 2001-01-15 Sulzer Hexis Ag ELECTROCHEMICALLY ACTIVE ELEMENT FOR A SOLID OXIDE FUEL CELL
GB0217794D0 (en) * 2002-08-01 2002-09-11 Univ St Andrews Fuel cell electrodes
JP2020149888A (en) * 2019-03-14 2020-09-17 東邦瓦斯株式会社 Air electrode material, air electrode, and solid oxide fuel cell
RU2743341C1 (en) * 2020-02-03 2021-02-17 Федеральное государственное бюджетное учреждение науки Ордена Трудового Красного Знамени Институт химии силикатов им. В.И. Гребенщикова Российской академии наук (ИХС РАН) Method for liquid-phase synthesis of nanoceramic materials in system of la2o3-mn2o3-nio for producing cathode electrodes of solid oxide fuel cell

Also Published As

Publication number Publication date
JPH01200560A (en) 1989-08-11

Similar Documents

Publication Publication Date Title
Ishihara et al. Nickel–Gd-doped CeO2 cermet anode for intermediate temperature operating solid oxide fuel cells using LaGaO3-based perovskite electrolyte
US7838141B2 (en) Cerium-modified doped strontium titanate compositions for solid oxide fuel cell anodes and electrodes for other electrochemical devices
Ishihara et al. Mixed electronic-oxide ionic conductor of BaCoO3 doped with La for cathode of intermediate-temperature-operating solid oxide fuel cell
Zhang et al. Interactions of a La0. 9Sr0. 1Ga0. 8Mg0. 2O3− δ electrolyte with Fe2O3, Co2O3 and NiO anode materials
US5731097A (en) Solid-electrolyte fuel cell
EP0552055A2 (en) A process for producing solid oxide fuel cells
Li et al. Electrochemical characterization of gradient Sm0. 5Sr0. 5CoO3− δ cathodes on Ce0. 8Sm0. 2O1. 9 electrolytes for solid oxide fuel cells
JP5144236B2 (en) Solid oxide fuel cell
JP2511095B2 (en) Electrode material
Wang et al. Investigation of LSM1. 1–ScSZ composite cathodes for anode-supported solid oxide fuel cells
JPH02236959A (en) Electrode material
JP3414657B2 (en) Air electrode materials for nickel-iron based perovskite solid fuel cells
JP3381544B2 (en) Composite air electrode material for low temperature operation solid fuel cells
JP5133787B2 (en) Solid oxide fuel cell
Fu Sm0. 5Sr0. 5Co0. 4Ni0. 6O3− δ–Sm0. 2Ce0. 8O1. 9 as a potential cathode for intermediate-temperature solid oxide fuel cells
JP3256919B2 (en) Solid electrolyte fuel cell
Zhang et al. A-site alkali metal-doped SrTi0. 3Fe0. 7O3-δ: A highly stable symmetrical electrode material for solid oxide electrochemical cells
US7758992B2 (en) Copper-substituted perovskite compositions for solid oxide fuel cell cathodes and oxygen reduction electrodes in other electrochemical devices
JP2592067B2 (en) Oxygen electrode of solid oxide fuel cell
JP5117834B2 (en) Solid oxide fuel cell
JP3403055B2 (en) Oxygen side electrode
JP3119084B2 (en) Air electrode and air electrode side current collector for solid oxide fuel cell
Chen et al. La 0.6 Sr 0.4 Co 0.8 Mn 0.2 O 3-δ cathode for an intermediate temperature SOFC.
JP3141911B2 (en) Air electrode material for solid fuel cell and solid fuel cell
JPH05234604A (en) Solid oxide fuel cell