Nothing Special   »   [go: up one dir, main page]

JP2596996B2 - Method for manufacturing solid electrolytic capacitor - Google Patents

Method for manufacturing solid electrolytic capacitor

Info

Publication number
JP2596996B2
JP2596996B2 JP32440088A JP32440088A JP2596996B2 JP 2596996 B2 JP2596996 B2 JP 2596996B2 JP 32440088 A JP32440088 A JP 32440088A JP 32440088 A JP32440088 A JP 32440088A JP 2596996 B2 JP2596996 B2 JP 2596996B2
Authority
JP
Japan
Prior art keywords
layer
electrolytic capacitor
drying
solid electrolytic
conductor layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP32440088A
Other languages
Japanese (ja)
Other versions
JPH02177311A (en
Inventor
一美 内藤
晴義 渡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP32440088A priority Critical patent/JP2596996B2/en
Publication of JPH02177311A publication Critical patent/JPH02177311A/en
Application granted granted Critical
Publication of JP2596996B2 publication Critical patent/JP2596996B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は耐湿性能の良好な固体電解コンデンサの製造
方法に関する。
Description: TECHNICAL FIELD The present invention relates to a method for manufacturing a solid electrolytic capacitor having good moisture resistance.

〔従来の技術〕[Conventional technology]

一般に固体電解コンデンサの素子は、弁作用金属から
なる陽極基体に酸化皮膜層を形成し、この酸化皮膜層の
外面に対向電極として二酸化マンガンなどの半導体層を
形成している。さらに接触抵抗を減らすために導電ペー
スト等の層を設けて導電体層を形成している。そして、
この固体電解コンデンサの素子は、耐熱性や耐湿性を付
与するために、一般にエポキシ樹脂やフェノール樹脂等
の高分子の封止材料で樹脂層が形成され、実用に供せら
れている。
In general, an element of a solid electrolytic capacitor has an oxide film layer formed on an anode substrate made of a valve metal, and a semiconductor layer such as manganese dioxide is formed on the outer surface of the oxide film layer as a counter electrode. In order to further reduce contact resistance, a layer of a conductive paste or the like is provided to form a conductor layer. And
In order to provide heat resistance and moisture resistance, the element of this solid electrolytic capacitor has a resin layer formed of a polymer sealing material such as an epoxy resin or a phenol resin, and is put to practical use.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

しかしながら、前述した封止材料で外装した場合、樹
脂の封止後の収縮が導電体層におよぼす影響により、導
電体層にピンホールが入るという問題があり、その結
果、作製した固体電解コンデンサの耐湿性が劣化すると
いう問題があった。
However, in the case of packaging with the above-described sealing material, there is a problem that pinholes are formed in the conductive layer due to the influence of shrinkage of the resin after sealing on the conductive layer. There is a problem that the moisture resistance is deteriorated.

〔課題を解決するための手段〕[Means for solving the problem]

本発明は、前述した問題点を解決するためになされた
もので、弁作用を有する金属からなる陽極基体の表面
に、誘電体酸化皮膜層、半導体層、および導電体層を順
次形成し、この導電体層を乾燥硬化した後に導電体層上
に樹脂層を積層して乾燥硬化するに際し、導電体層の乾
燥硬化温度を樹脂層の乾燥硬化温度より高くして固体電
解コンデンサを製造する方法にある。
The present invention has been made to solve the above-described problems, and a dielectric oxide film layer, a semiconductor layer, and a conductor layer are sequentially formed on the surface of an anode substrate made of a metal having a valve action. When laminating a resin layer on the conductor layer after drying and curing the conductor layer and drying and curing, the method for manufacturing a solid electrolytic capacitor by setting the drying and curing temperature of the conductor layer higher than the drying and curing temperature of the resin layer is there.

以下、本発明の固体電解コンデンサの製造方法につい
て説明する。
Hereinafter, a method for manufacturing the solid electrolytic capacitor of the present invention will be described.

本発明の固体電解コンデンサの陽極として用いられる
弁金属基体としては、例えば、アルミニウム、タンタ
ル、ニオブ、チタンおよびこれらを基質とする合金等、
弁作用を有する金属がいずれも使用できる。
As the valve metal substrate used as the anode of the solid electrolytic capacitor of the present invention, for example, aluminum, tantalum, niobium, titanium and alloys using these as a substrate,
Any metal having a valve action can be used.

陽極基体の表面に形成する誘電体酸化皮膜層は陽極基
体表層部分に設けられた陽極基体自体の酸化物層であっ
ても良く、あるいは陽極基体の表面上に設けられた他の
誘電体酸化物の層であってもよいが、特に陽極弁金属自
体の酸化物からなる層であることが望ましい。いずれの
場合にも酸化物層を設ける方法としては、従来公知の方
法を用いることができる。
The dielectric oxide film layer formed on the surface of the anode substrate may be the oxide layer of the anode substrate itself provided on the surface layer portion of the anode substrate, or may be another dielectric oxide layer provided on the surface of the anode substrate. But a layer composed of an oxide of the anode valve metal itself is particularly desirable. In any case, as a method of providing the oxide layer, a conventionally known method can be used.

また、本発明において使用する半導体層の組成および
作製方法に特に制限はないが、コンデンサの性能を高め
るためには二酸化鉛もしくは二酸化鉛と硫酸鉛を主成分
として、従来公知の化学的析出法或いは、電気化学的析
出法で作製するのが好ましい。
Although there is no particular limitation on the composition and manufacturing method of the semiconductor layer used in the present invention, in order to enhance the performance of the capacitor, a conventionally known chemical deposition method using lead dioxide or lead dioxide and lead sulfate as main components is used. It is preferable that the electrode is formed by an electrochemical deposition method.

化学的析出法としては、例えば本発明者が提案した鉛
含有化合物と酸化剤を含んだ反応母液から化学的に析出
させる方法(特開昭63−51621号公報)、電気化学的析
出法としては高濃度の鉛含有化学物を含んだ電解液中で
電解酸化により析出させる方法(特開昭62−185307号公
報)などを採用することができる。
As the chemical deposition method, for example, a method of chemically depositing from a reaction mother liquor containing a lead-containing compound and an oxidizing agent proposed by the present inventors (JP-A-63-51621). A method of precipitating by electrolytic oxidation in an electrolytic solution containing a high-concentration lead-containing chemical substance (JP-A-62-185307) can be employed.

本発明における導電体層は、半導体層上に導電ペース
トを接触させることによって形成される。本発明の導電
ペーストとして、従来公知の導電ペーストを一種以上使
用することができる。
The conductor layer in the present invention is formed by bringing a conductive paste into contact with the semiconductor layer. As the conductive paste of the present invention, one or more conventionally known conductive pastes can be used.

本発明の導電体層の乾燥硬化温度は後述する樹脂層の
乾燥硬化温度より高くすることが肝要である。樹脂層の
乾燥硬化温度より低いと作製した固体電解コンデンサの
耐湿性は不充分なのとなる。導電体層の乾燥硬化温度
は、使用する導電ペーストの分解温度以下で樹脂層の乾
燥硬化温度より高いのであるが、最適の乾燥硬化温度
は、予め行う予備実験により決定される。
It is important that the drying and curing temperature of the conductor layer of the present invention be higher than the drying and curing temperature of the resin layer described later. If the temperature is lower than the drying and curing temperature of the resin layer, the produced solid electrolytic capacitor will have insufficient moisture resistance. Although the drying and curing temperature of the conductor layer is lower than the decomposition temperature of the conductive paste to be used and higher than the drying and curing temperature of the resin layer, the optimal drying and curing temperature is determined by preliminary experiments performed in advance.

次に本発明の樹脂層は、エポキシ樹脂、フェノール樹
脂等の公知の高分子によりディッピング、キャスティン
グ、モールディング、ポッティング、粉体塗装等の公知
の方法により形成されるがいずれの場合にも、樹脂層の
乾燥硬化温度は、前述した導電体層の乾燥硬化温度より
も低くすることが肝要である。
Next, the resin layer of the present invention is formed by a known method such as dipping, casting, molding, potting, and powder coating using a known polymer such as an epoxy resin or a phenol resin. It is important that the drying and curing temperature is lower than the drying and curing temperature of the conductor layer described above.

〔作用〕[Action]

弁作用金属の陽極基体の表面に、誘電体酸化皮膜層、
半導体層、導電体層を順次形成して誘電体層を乾燥硬化
するに際し、導電体層の乾燥硬化温度を導電体層上に積
層する樹脂層の乾燥硬化温度より高くすることによっ
て、樹脂層の封止後の収縮が導電体層に及ぼす影響を緩
和することができ、その結果導電体層のピンホール数を
減少させるものと考えられる。
A dielectric oxide film layer on the surface of the valve metal anode substrate,
When the semiconductor layer and the conductor layer are sequentially formed and the dielectric layer is dried and cured, by setting the drying and curing temperature of the conductor layer higher than the drying and curing temperature of the resin layer laminated on the conductor layer, It is considered that the influence of shrinkage after sealing on the conductor layer can be reduced, and as a result, the number of pinholes in the conductor layer is reduced.

〔実 施 例〕〔Example〕

以下、実施例および比較例を示して、本発明をさらに
詳しく説明する。
Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples.

実施例1〜4 比較例1〜4 長さ1cm、幅1cmのアルミニウム箔を陽極とし、交流に
より箔の表面を電気化学的にエッチング処理した後、エ
ッチングアルミニウム箔に陽極端子をかしめ付けし、陽
極リード線を接続した。次いで、りん酸とりん酸アルミ
ニウムの水溶液中で電気化学的に処理してアルミナの酸
化皮膜を形成し、低圧用エッチングアルミニウム化成箔
(約10μF/cm2)を得た。この化成箔の陽極リード線以
外の部分を酢酸鉛三水和物1.0モル/の水溶液に浸漬
した。この化成箔を陽極側に、通常のエッチングされて
いないアルミニウム箔を陰極側として、15Vで電解酸化
を行った。3時間後、化成箔上に形成された二酸化鉛か
らなる半導体層を水洗して未反応物を除いた後、120℃
で1時間減圧乾燥した。一方別に用意した市販の銀ペー
ストを半導体層上に塗布し導電体層を形成した。このよ
うに導電体層まで形成した素子を240点用意し、実施例
1〜4、比較例1〜4の各試験例に、30点ずつ割り当
て、第1表に示した条件で導電体層の乾燥硬化を行っ
た。次いで実施例1,2と比較例1,2では硬化温度が165℃
である日本ペルノックス(株)製粉体エポキシ樹脂PCE2
73で5回粉体塗装を165℃で行い樹脂層を形成した。
又、実施例3,4と比較例3,4では硬化温度が150℃である
日本チガガイギー(株)製液状エポキシ樹脂XNR1218で
ディッピングを1回行い、乾燥硬化を150℃で2時間行
って樹脂層を形成し固体電解コンデンサを作製した。
Examples 1 to 4 Comparative Examples 1 to 4 After an aluminum foil having a length of 1 cm and a width of 1 cm was used as an anode and the surface of the foil was electrochemically etched by an alternating current, an anode terminal was caulked to the etched aluminum foil. Lead wire was connected. Next, an oxide film of alumina was formed by electrochemical treatment in an aqueous solution of phosphoric acid and aluminum phosphate to obtain a low-pressure etched aluminum conversion foil (about 10 μF / cm 2 ). The part of this chemical conversion foil other than the anode lead wire was immersed in an aqueous solution of lead acetate trihydrate at 1.0 mol / mol. Electrolysis was carried out at 15 V using this chemically formed foil on the anode side and a normal unetched aluminum foil on the cathode side. After 3 hours, the semiconductor layer made of lead dioxide formed on the chemical conversion foil was washed with water to remove unreacted substances, and then heated at 120 ° C.
For 1 hour under reduced pressure. On the other hand, a commercially available silver paste prepared separately was applied on the semiconductor layer to form a conductor layer. 240 elements thus prepared up to the conductor layer were prepared, and 30 points were allocated to each of the test examples of Examples 1 to 4 and Comparative Examples 1 to 4 under the conditions shown in Table 1. Dry curing was performed. Next, in Examples 1 and 2 and Comparative Examples 1 and 2, the curing temperature was 165 ° C.
Nippon Pernox Co., Ltd. powder epoxy resin PCE2
Powder coating was performed 5 times at 165 ° C. at 73 to form a resin layer.
In Examples 3 and 4 and Comparative Examples 3 and 4, dipping was performed once with a liquid epoxy resin XNR1218 manufactured by Nippon Chiga Geigy Co., Ltd. having a curing temperature of 150 ° C., and drying and curing were performed at 150 ° C. for 2 hours. Was formed to produce a solid electrolytic capacitor.

実施例5〜6 比較例5〜6 実施例1と同様な化成箔を、酢酸鉛三水和物2.4モル
/の水溶液と過硫酸アンモニウム4モル/の水溶液
の混合液に浸漬し、60℃で30分反応させ、誘電体酸化皮
膜層上に生じた二酸化鉛と硫酸鉛からなる半導体層を水
で充分洗浄した後120℃で1時間減圧乾燥した。生成し
た半導体層は、二酸化鉛と硫酸鉛からなり、二酸化鉛が
約25重量%含まれることをX選分析および赤外分光分析
により確認した。次に実施例1と同様にして導電体層を
形成した素子を120点用意し、実施例5,6、比較例5,6の
各試験例に30点ずつ割り当て、第1表に示した条件で導
電体層の乾燥硬化を行った。次いで実施例1と同様な条
件で樹脂層を形成し固体電解コンデンサを作製した。
Examples 5 to 6 Comparative Examples 5 to 6 The same chemical conversion foil as in Example 1 was immersed in a mixture of an aqueous solution of lead acetate trihydrate 2.4 mol / and an aqueous solution of ammonium persulfate 4 mol / 30 at 60 ° C. The semiconductor layer composed of lead dioxide and lead sulfate formed on the dielectric oxide film layer was sufficiently washed with water and then dried under reduced pressure at 120 ° C. for 1 hour. The formed semiconductor layer was composed of lead dioxide and lead sulfate, and it was confirmed by X-selective analysis and infrared spectroscopic analysis that about 25% by weight of lead dioxide was contained. Next, 120 elements each having a conductor layer formed in the same manner as in Example 1 were prepared, and 30 points were assigned to each of the test examples of Examples 5 and 6 and Comparative Examples 5 and 6, and the conditions shown in Table 1 were used. To dry and cure the conductor layer. Next, a resin layer was formed under the same conditions as in Example 1 to produce a solid electrolytic capacitor.

実施例 7〜8 実施例1〜4と同様に導電体層まで形成した素子30点
を2組用意し、その内の1組について実施例7では硬化
温度が160℃である昭和高分子(株)製フェノール樹脂B
RS−330でディッピングを行い、160℃で2時間乾燥硬化
を行って樹脂層を形成し固体電解コンデンサを作製し
た。又、実施例8では残りの1組の素子について同じく
硬化温度が160℃である東都化成(株)製ジアリルフタ
レート樹脂ダップトートでディッピングを行い、160℃
で3時間乾燥硬化を行って樹脂層を形成し固体電解コン
デンサを作製した。
Examples 7 to 8 In the same manner as in Examples 1 to 4, two sets of 30 elements formed up to the conductor layer were prepared, and in Example 7, one of them was set at Showa Kogaku Co., Ltd. ) Phenolic resin B
Dipping was performed with RS-330, and drying and curing were performed at 160 ° C. for 2 hours to form a resin layer, thereby producing a solid electrolytic capacitor. Further, in Example 8, the remaining one set of devices was dipped with a diallyl phthalate resin dup tote manufactured by Toto Kasei Co., Ltd. having a curing temperature of 160 ° C.
For 3 hours to form a resin layer to produce a solid electrolytic capacitor.

実施例 9 実施例1で導電体層を銀粉35wt%、二酸化鉛粉53wt
%、アクリル樹脂12wt%からなる導電ペーストで形成
し、乾燥硬化を180℃で2時間行った以外は実施例1と
同様にして固体電解コンデンサを作製した。
Example 9 In Example 1, the conductor layer was composed of 35% by weight of silver powder and 53% by weight of lead dioxide powder.
% And an acrylic resin of 12 wt%, and a solid electrolytic capacitor was produced in the same manner as in Example 1 except that drying and curing were performed at 180 ° C. for 2 hours.

実施例 10 実施例1で導電体層を15wt%銀コート銅粉50wt%、銀
粉35wt%、フッ素樹脂15wt%からなるペーストで形成
し、乾燥硬化を170℃で2時間行った以外は実施例1と
同様にして固体電解コンデンサを作製した。
Example 10 Example 1 was the same as Example 1 except that the conductor layer was formed of a paste composed of 50% by weight of silver-coated copper powder, 35% by weight of silver powder and 15% by weight of fluororesin, and was dried and cured at 170 ° C. for 2 hours. A solid electrolytic capacitor was produced in the same manner as described above.

実施例1〜10、比較例1〜6で作製した固体電解コン
デンサの初期特性およびプレッシャークッカーテスト
(PCTと略す)後の性能を第2表に示し耐湿性を評価し
た。
Table 2 shows the initial characteristics and the performance after the pressure cooker test (abbreviated as PCT) of the solid electrolytic capacitors produced in Examples 1 to 10 and Comparative Examples 1 to 6, and the moisture resistance was evaluated.

第2表の結果から、導電体層の乾燥硬化温度を、樹脂
層の乾燥硬化温度より高くした固体電解コンデンサ素子
のPCT後の性能は、比較例より著しく改善されているこ
とがわかる。
From the results in Table 2, it can be seen that the performance after PCT of the solid electrolytic capacitor element in which the drying and curing temperature of the conductor layer was higher than the drying and curing temperature of the resin layer was significantly improved as compared with the comparative example.

〔発明の効果〕 以上のように、本発明の固体電解コンデンサの製造方
法によれば、導電体層の乾燥硬化温度が樹脂層の乾燥硬
化温度より高くなっているので、耐湿性能の良好な固体
電解コンデンサを作製することができる。
[Effects of the Invention] As described above, according to the method for manufacturing a solid electrolytic capacitor of the present invention, since the dry curing temperature of the conductor layer is higher than the dry curing temperature of the resin layer, the solid An electrolytic capacitor can be manufactured.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】弁作用を有する金属からなる陽極基体の表
面に、誘電体酸化皮膜層、半導体層、および導電体層を
順次形成してこの導電体層を乾燥硬化し、しかる後この
導電体層上に樹脂層を積層して乾燥硬化を行うに際し、
前記導電体層の乾燥硬化温度が、前記樹脂層の乾燥硬化
温度より高いことを特徴とする固体電解コンデンサの製
造方法。
1. A dielectric oxide film layer, a semiconductor layer, and a conductor layer are sequentially formed on the surface of an anode substrate made of a metal having a valve action, and the conductor layer is dried and cured. When laminating a resin layer on the layer and performing drying and curing,
A method for manufacturing a solid electrolytic capacitor, wherein a drying and curing temperature of the conductor layer is higher than a drying and curing temperature of the resin layer.
JP32440088A 1988-12-22 1988-12-22 Method for manufacturing solid electrolytic capacitor Expired - Lifetime JP2596996B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32440088A JP2596996B2 (en) 1988-12-22 1988-12-22 Method for manufacturing solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32440088A JP2596996B2 (en) 1988-12-22 1988-12-22 Method for manufacturing solid electrolytic capacitor

Publications (2)

Publication Number Publication Date
JPH02177311A JPH02177311A (en) 1990-07-10
JP2596996B2 true JP2596996B2 (en) 1997-04-02

Family

ID=18165374

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32440088A Expired - Lifetime JP2596996B2 (en) 1988-12-22 1988-12-22 Method for manufacturing solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP2596996B2 (en)

Also Published As

Publication number Publication date
JPH02177311A (en) 1990-07-10

Similar Documents

Publication Publication Date Title
JPH0766901B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP2596996B2 (en) Method for manufacturing solid electrolytic capacitor
JP2637207B2 (en) Solid electrolytic capacitors
JP3546451B2 (en) Method for manufacturing solid electrolytic capacitor
JP3493042B2 (en) Method for manufacturing solid electrolytic capacitor
JPH0777180B2 (en) Method for manufacturing solid electrolytic capacitor
JPH0727850B2 (en) Method for manufacturing solid electrolytic capacitor
JP3546661B2 (en) Capacitor and manufacturing method thereof
JPS62185307A (en) Solid electrolytic capacitor
JP2637199B2 (en) Method for manufacturing solid electrolytic capacitor
JPH084058B2 (en) Solid electrolytic capacitor
JPS6323309A (en) Manufacture of winding type solid electrolytic capacitor
JPH02187008A (en) Manufacture of solid electrolytic capacitor
JPH0770438B2 (en) Method for manufacturing solid electrolytic capacitor
JPS6323307A (en) Solid electrolytic capacitor
JPS62277714A (en) Solid electrolytic capacitor
JPH0594927A (en) Chip solid electrolytic capacitor
JPS62216211A (en) Solid electrolytic capacitor
JPS62279623A (en) Solid electrolytic capacitor
JPS62274615A (en) Manufacture of winding type solid electrolytic capacitor
JPH08316103A (en) Aluminum solid capacitor
JPH04354318A (en) Production of chip-shaped solid-state electrolytic capacitor
JPH04307913A (en) Manufacture of solid electrolytic capacitor
JP2004342666A (en) Solid electrolytic capacitor
JPH0727849B2 (en) Manufacturing method of solid electrolytic capacitor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080109

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090109

Year of fee payment: 12

EXPY Cancellation because of completion of term