JP2565908B2 - Compound semiconductor device - Google Patents
Compound semiconductor deviceInfo
- Publication number
- JP2565908B2 JP2565908B2 JP16448287A JP16448287A JP2565908B2 JP 2565908 B2 JP2565908 B2 JP 2565908B2 JP 16448287 A JP16448287 A JP 16448287A JP 16448287 A JP16448287 A JP 16448287A JP 2565908 B2 JP2565908 B2 JP 2565908B2
- Authority
- JP
- Japan
- Prior art keywords
- compound semiconductor
- layer
- substrate
- gaas
- semiconductor device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
Landscapes
- Recrystallisation Techniques (AREA)
- Led Devices (AREA)
- Photovoltaic Devices (AREA)
Description
【発明の詳細な説明】 〈産業上の利用分野〉 本発明は化合物半導体装置における半導体基板の改良
に関するもので、特に基板上にIII−V族化合物半導体
層をエピタキシャル成長によって形成した半導体装置に
関する。TECHNICAL FIELD The present invention relates to an improvement of a semiconductor substrate in a compound semiconductor device, and more particularly to a semiconductor device in which a III-V group compound semiconductor layer is formed on the substrate by epitaxial growth.
〈従来の技術〉 化合物半導体、特にGaAs系のようなIII−V族化合物
半導体は、従来のシリコン半導体に比べて移動度、禁止
帯幅の選択性に優れるだけでなく直接遷移を示すものが
あることから、太陽電池等のオプトエレクトロニクスデ
バイスの材料として近年注目を浴びている。<Prior Art> Compound semiconductors, particularly III-V group compound semiconductors such as GaAs, have not only superior mobility and selectivity of band gap but also direct transitions as compared with conventional silicon semiconductors. Therefore, it has attracted attention in recent years as a material for optoelectronic devices such as solar cells.
この種の材料を用いて半導体装置を構成する場合、材
料の経済性及び装置の軽量化等の点から、半導体基板全
体を化合物で作製することなく、少なくとも半導体とし
ての働きが要求される表面側だけを化合物半導体層で作
製することが提案されている。即ちシリコンを基板とし
てこの表面に例えばGaAs系化合物半導体層を堆積させ、
この堆積層にPN接合等の半導体素子に必要な加工を施こ
して発光デバイスや集積回路を作製している。When a semiconductor device is constructed using this kind of material, from the viewpoint of material economy and weight reduction of the device, at least the surface side that is required to function as a semiconductor is required without forming the entire semiconductor substrate with a compound. It has been proposed to make only a compound semiconductor layer. That is, using silicon as a substrate, a GaAs-based compound semiconductor layer is deposited on this surface,
The deposited layer is subjected to necessary processing for semiconductor elements such as PN junctions to manufacture light emitting devices and integrated circuits.
処でシリコンとGaAsは格子定数と熱膨脹係数が夫々4
%,50%も異なり、そのためシリコン基板上に高品質のG
aAsを堆積させるためには、上記格子定数や熱膨脹係数
の違いに起因する格子欠陥の発生等の問題点を克服しな
ければならない。Where, silicon and GaAs have lattice constants and thermal expansion coefficients of 4
%, 50% different, so high quality G on silicon substrate
In order to deposit aAs, it is necessary to overcome problems such as generation of lattice defects due to the difference in lattice constant and thermal expansion coefficient.
このような問題点に対して、Si基板上に例えば低温で
100Å程度のごく薄いGaAsのバッファ層と呼ばれる層を
まず堆積し、次に通常の成長温度でエピタキシャル成長
を行なう方法や、超格子を利用してミスフィット転位の
伝搬を防ぐ方法などが試みられられてきた。さらにこれ
らの方法によって得られたエピタキシャル成長層の転位
密度を低減させる方法も種々試みられており、これら成
長条件の改善によって高品質なGaAsの成長が可能になり
つつある。For such problems, on a Si substrate, for example, at low temperature
Attempts have been made to first deposit a very thin GaAs buffer layer of about 100 Å, then perform epitaxial growth at normal growth temperature, and to prevent the propagation of misfit dislocations by using a superlattice. It was Further, various methods for reducing the dislocation density of the epitaxially grown layer obtained by these methods have been tried, and improvement of these growth conditions has made it possible to grow high-quality GaAs.
〈発明が解決しようとする問題点〉 ところがGaAsを約3μm以上堆積した場合、上記の熱
膨脹係数の差に起因したクラックがGaAs成長層内に発生
することが実験的に確認された。<Problems to be Solved by the Invention> However, it has been experimentally confirmed that when GaAs is deposited to a thickness of about 3 μm or more, cracks are generated in the GaAs growth layer due to the difference in thermal expansion coefficient.
次に、GaAs成長層にPN接合を形成した場合の上記クラ
ックの影響について述べる。Next, the effect of the above crack when a PN junction is formed on the GaAs growth layer will be described.
第7図はSi基板上にn−GaAs(Sドープ,キャリア濃
度約1×1017/cm3)を所定厚さ堆積した後、P−GaAs
(Znドープ,キャリア濃度約2×1018/cm3)を約0.3μ
m堆積して形成したpn接合の逆方向飽和電流値の成長層
厚依存性を示したものである。FIG. 7 shows P-GaAs after depositing n-GaAs (S-doped, carrier concentration of about 1 × 10 17 / cm 3 ) to a predetermined thickness on a Si substrate.
(Zn-doped, carrier concentration about 2 × 10 18 / cm 3 ) about 0.3μ
It shows the dependency of the reverse saturation current value of the pn junction formed by m deposition on the growth layer thickness.
全成長層厚が厚くなるに伴なって逆方向飽和電流値の
減少が認められ、GaAs成長層の結晶性が著るしく改善さ
れていくことがわかった。It was found that the reverse saturation current value decreased as the total grown layer thickness increased, and the crystallinity of the GaAs grown layer was significantly improved.
しかし成長層厚が約3.5μm以上になるとクラックが
発生し、逆方向飽和電流値の急激な増加が見られた(第
7図中×印で示す)。これは上記クラックを通じて電極
金属材料のマイグレーションが発生し、局部的なpn接合
の短絡状態が起こるためと考えられる。このようなクラ
ックを含むGaAs成長層を用いて例えば太陽電池のような
基板に垂直な方向に電流輸送を行なうデバイスを製作し
た場合には、太陽電池の開放電圧や曲線因子に著るしい
劣化が生じ、所期の変換効率を達成できない。However, when the thickness of the grown layer was about 3.5 μm or more, cracks were generated and a rapid increase in the reverse saturation current value was observed (indicated by X in FIG. 7). It is considered that this is because migration of the electrode metal material occurs through the cracks and a local short circuit of the pn junction occurs. When a device that carries current in the direction perpendicular to the substrate, such as a solar cell, is manufactured using a GaAs growth layer containing such cracks, the solar cell's open circuit voltage and fill factor significantly deteriorate. Occurs, and the desired conversion efficiency cannot be achieved.
以上の様に現状ではSi基板上に高品質のGaAs成長層を
得ることとクラックの発生していない成長層を得ること
はGaAsエピタキシャル成長に相反する条件を要請してお
り、その結果として、Si基板上に形成するGaAs系化合物
半導体デバイスの自由度を大きく制限していると言え
る。As described above, at present, obtaining a high-quality GaAs growth layer on a Si substrate and obtaining a growth layer with no cracks require conditions that contradict the GaAs epitaxial growth. It can be said that the degree of freedom of the GaAs compound semiconductor device formed above is greatly limited.
本発明は上記の点に鑑みて創案されたものであり、化
合物半導体層とその基板との間に例え熱膨脹や格子定数
等の物理的な性質に大きな差があったとしても半導体層
を高品質に保った化合物半導体装置を提供することを目
的としている。The present invention was devised in view of the above points, and a high quality semiconductor layer can be obtained even if there is a large difference in physical properties such as thermal expansion and lattice constant between the compound semiconductor layer and its substrate. It is an object of the present invention to provide a compound semiconductor device maintained at
〈問題点を解決するための手段〉 上記の目的を達成するため、本発明は基板上に化合物
半導体層を堆積してなる化合物半導体装置において、上
記の化合物半導体層中に発生しているクラックう非晶質
もしくは微少粒径からなる多結晶構造の半導体材料で充
填してなるように構成しており、また上記のような構造
を実現するため、本発明の実施態様にあっては、Si基板
上にクラック発生の臨界厚さ以上の高品質GaAs成長層を
堆積し、いったん室温付近まで降温してクラックを発生
させ、その後再び昇温して非晶質もしくは微少粒径から
なる多結晶構造のGaAsで上記のクラックを充填すること
によって電極金属のマイグレーション等による半導体装
置としての不都合が発生することを防止した化合物半導
体装置を得るように成している。<Means for Solving Problems> In order to achieve the above-mentioned object, the present invention provides a compound semiconductor device in which a compound semiconductor layer is deposited on a substrate, and a crack generated in the compound semiconductor layer is generated. In the embodiment of the present invention, in order to realize the structure as described above, the Si substrate is composed of an amorphous semiconductor or a polycrystalline semiconductor material having a fine grain size. A high-quality GaAs growth layer with a thickness greater than the critical thickness for cracking is deposited on top of it, and the temperature is once lowered to around room temperature to generate cracks, and then the temperature is raised again to obtain a polycrystalline structure of amorphous or fine grain size. By filling the cracks with GaAs, it is possible to obtain a compound semiconductor device in which any inconvenience as a semiconductor device due to migration of electrode metal or the like is prevented.
〈作用〉 基板上に堆積する化合物半導体層中に、両者の熱膨脹
係数の差に起因したクラックが発生したとしても、発生
したクラックは非晶質もしくは微少粒径からなる多結晶
構造の半導体で充填されているので、表面に作製された
電極材料が、例えば化合物半導体層中に厚さ方向に形成
されたPN接合等のデバイスを短絡することがなく、この
ような化合物半導体層を用いて太陽電池,発光ダイオー
ド等のデバイスを作製してもその動作を損うことがな
い。<Operation> Even if a crack is generated in the compound semiconductor layer deposited on the substrate due to the difference in thermal expansion coefficient between the two, the generated crack is filled with a semiconductor having an amorphous or polycrystalline structure with a minute grain size. Therefore, the electrode material formed on the surface does not short-circuit a device such as a PN junction formed in the compound semiconductor layer in the thickness direction, and a solar cell using such a compound semiconductor layer. Even if a device such as a light emitting diode is manufactured, its operation is not impaired.
〈実施例〉 以下、図面を参照して本発明の一実施例をその製造工
程にしたがって詳細に説明する。<Embodiment> An embodiment of the present invention will be described below in detail with reference to the manufacturing steps with reference to the drawings.
第1図はSi基板1上にGe,GaP,GaAlAs等の緩衝層2を
介してMOCVD法,MBE法等の結晶成長法を用いてGaAs層3
を3.5μm以上の厚さに堆積した半導体基板の構造の断
面を示す図である。この場合、緩衝層2はGaAsエピタキ
シャル成長条件を適切に選ぶことによって省くことが出
来、Si基板1上に直ちにGaAs層3を堆積して構成するこ
とも出来る。GaAs層3の堆積時の代表的な温度は700℃
である。FIG. 1 shows a GaAs layer 3 formed on a Si substrate 1 via a buffer layer 2 of Ge, GaP, GaAlAs or the like by a crystal growth method such as MOCVD or MBE.
FIG. 3 is a diagram showing a cross section of a structure of a semiconductor substrate in which is deposited to a thickness of 3.5 μm or more. In this case, the buffer layer 2 can be omitted by appropriately selecting the GaAs epitaxial growth conditions, and the GaAs layer 3 can be immediately deposited on the Si substrate 1 to form the buffer layer 2. Typical temperature during deposition of GaAs layer 3 is 700 ° C
Is.
GaAs堆積終了後、室温付近まで降温した段階でGaAs層
3にはSiとGaAsの熱膨脹係数の差に起因するクラック4
が多数発生する。クラック4はGaAs堆積層3全体を貫く
ものもあれば、途中で止まっているものもある。緩衝層
2まで及んでいるものもあればそうでないものもある。
クラック4の発生部の拡大図の一例を第2図に示してい
る。After completion of GaAs deposition, cracks 4 caused by the difference in thermal expansion coefficient between Si and GaAs were formed in the GaAs layer 3 when the temperature was lowered to near room temperature.
Occurs a lot. Some cracks 4 penetrate the entire GaAs deposited layer 3 and some cracks stop halfway. Some extend to the buffer layer 2 and some do not.
An example of an enlarged view of the portion where the crack 4 is generated is shown in FIG.
次にいったん室温付近まで降温させた後、同一反応炉
内で再び約400℃まで昇温して、例えばGaAlAs5を0.05μ
m程度堆積する。以下この層を低温堆積層と呼ぶ。Then, once the temperature is lowered to around room temperature, the temperature is raised again to about 400 ° C in the same reaction furnace, and for example, GaAlAs5 is 0.05μ.
about m. Hereinafter, this layer is referred to as a low temperature deposition layer.
上記低温堆積層5は非晶質もしくは微少粒径からなる
多結晶構造を有している。The low-temperature deposition layer 5 has an amorphous structure or a polycrystalline structure having a small grain size.
低温堆積層5は第3図に示すようにGaAs層3表面だけ
でなくクラック4の内部にも形成され、クラック4のく
ぼみを充填する効果を有している。As shown in FIG. 3, the low-temperature deposition layer 5 is formed not only on the surface of the GaAs layer 3 but also inside the crack 4, and has an effect of filling the recess of the crack 4.
その後再び室温まで降温しても上記クラック4のくぼ
みを充填した低温堆積層5がGaAsとSiの熱膨脹係数の差
に起因して発生する応力を緩和するため、新たなクラッ
クの発生は認められない。After that, even when the temperature is lowered to room temperature again, the low-temperature deposition layer 5 filling the depressions of the cracks 4 relaxes the stress generated due to the difference in the thermal expansion coefficient between GaAs and Si, and no new cracks are observed. .
なお、低温堆積層5を形成する半導体材料は、GaAlAs
に限定されるものではなく、Ge,GaP等の緩衝層2の材料
や、GaAsであってもよい。また必要に応じて不純物ドー
ピングが行なわれていてもよい。またGaAs堆積温度室
温低温堆積層形成→室温のサイクルを複数回繰返して
も良い。The semiconductor material forming the low temperature deposition layer 5 is GaAlAs.
However, the material of the buffer layer 2 such as Ge and GaP, or GaAs may be used. Further, impurity doping may be performed as necessary. Further, the cycle of GaAs deposition temperature room temperature low temperature deposition layer formation → room temperature may be repeated a plurality of times.
第4図及び第5図は上記の工程で製作された半導体基
板表面にメタル層6を形成する場合の例をそれぞれ示し
たものである。FIG. 4 and FIG. 5 respectively show examples in the case of forming the metal layer 6 on the surface of the semiconductor substrate manufactured by the above process.
第4図は低温堆積層5の上にメタル層6を形成した場
合を示しており、また第5図はメタル層形成部以外のGa
As表面の低温堆積層5を選択エッチングで除去した場合
を示しており、所望のデバイス構造に応じて、低温成長
層やメタル層を加工することが出来る。FIG. 4 shows the case where the metal layer 6 is formed on the low temperature deposition layer 5, and FIG. 5 shows the Ga other than the metal layer forming portion.
The case where the low temperature deposition layer 5 on the As surface is removed by selective etching is shown, and the low temperature growth layer and the metal layer can be processed according to the desired device structure.
以上の工程によって製作される具体的な半導体デバイ
スの一例として第6図に、Si基板上に形成されたGaAs太
陽電池の断面を示している。FIG. 6 shows a cross section of a GaAs solar cell formed on a Si substrate as an example of a specific semiconductor device manufactured by the above steps.
第6図において、Si基板1上に緩衝層2を介してn−
GaAs層3a,p−GaAs層3b,及びp−GaAlAs層3cが金属厚で
3μm以上堆積され、発生したクラック4がp−GaAs低
温堆積層5aで充填されている。受光面側は受光面側電極
6aの下部以外の低温堆積層が選択エッチングにて除去さ
れる。裏面側は裏面側電極7が全面に形成されている。In FIG. 6, n− is formed on the Si substrate 1 via the buffer layer 2.
The GaAs layer 3a, the p-GaAs layer 3b, and the p-GaAlAs layer 3c are deposited with a metal thickness of 3 μm or more, and the generated cracks 4 are filled with the p-GaAs low temperature deposition layer 5a. The light-receiving surface side is the light-receiving surface side electrode
The low temperature deposition layer other than the lower part of 6a is removed by selective etching. The back surface side electrode 7 is formed on the entire back surface side.
上記実施例は基板としてSi,化合物半導体層としてGaA
sを例に挙げて説明したが本発明は熱膨脹係数に大きな
差を有する他の基板−半導体材料の組合せでも同様に適
当することが出来る。In the above example, Si is used as the substrate and GaA is used as the compound semiconductor layer.
Although s has been described as an example, the present invention can be similarly applied to other substrate-semiconductor material combinations having a large difference in thermal expansion coefficient.
〈発明の効果〉 以上のように本発明によれば、他の材料を基板として
その上に化合物半導体層をエピタキシャル成長させて半
導体装置の基板とする場合、化合物半導体層とその基板
との間にたとえ熱膨脹や格子定数等の物理的な性質に大
きな差があったとしても半導体層を高品質に保つことが
でき、化合物半導体装置の製造が非常に容易になると共
に、材料の選択範囲が広くなり、経済性にすぐれた化合
物半導体装置を得ることができる。<Effect of the Invention> As described above, according to the present invention, when another material is used as a substrate and a compound semiconductor layer is epitaxially grown thereon to form a substrate of a semiconductor device, even if the compound semiconductor layer and the substrate are Even if there is a large difference in physical properties such as thermal expansion and lattice constant, the semiconductor layer can be kept in high quality, the manufacturing of the compound semiconductor device becomes very easy, and the selection range of materials becomes wide, A compound semiconductor device excellent in economic efficiency can be obtained.
第1図乃至第5図はそれぞれ本発明の一実施例としての
化合物半導体装置の製造工程を示す断面図、第6図はよ
り具体的な実施例としての太陽電池の構造を示す断面
図、第7図は本発明が解決しようとする問題点を具体的
に示す実験データを表わした図である。 1……Si基板、2……緩衝層、3……GaAs成長層、3a…
…n−GaAs成長層、3b……p−GaAs成長層、3c……p−
GaAlAs成長層、4……クラック、5……低温堆積層、5a
……p−GaAs低温堆積層、6……メタル層、6a……受光
面側電極、7……裏面電極。1 to 5 are sectional views showing a manufacturing process of a compound semiconductor device as one embodiment of the present invention, and FIG. 6 is a sectional view showing a structure of a solar cell as a more specific embodiment, FIG. 7 is a diagram showing experimental data specifically showing the problems to be solved by the present invention. 1 ... Si substrate, 2 ... buffer layer, 3 ... GaAs growth layer, 3a ...
... n-GaAs growth layer, 3b ... p-GaAs growth layer, 3c ... p-
GaAlAs growth layer, 4 ... crack, 5 ... low temperature deposition layer, 5a
...... p-GaAs low temperature deposition layer, 6 …… metal layer, 6a …… light receiving surface side electrode, 7 …… back surface electrode.
Claims (6)
導体装置において、 上記化合物半導体層中に発生しているクラックを非晶質
もしくは微少粒径からなる多結晶構造の半導体材料で充
填してなることを特徴とする化合物半導体装置。1. A semiconductor device comprising a compound semiconductor layer deposited on a substrate, wherein the cracks occurring in the compound semiconductor layer are filled with a semiconductor material having an amorphous or polycrystalline structure of fine grain size. A compound semiconductor device comprising:
晶構造の半導体材料が、該化合物半導体層の堆積後、同
一堆積装置内にて該化合物半導体層堆積時の温度より低
温で堆積して形成してなることを特徴とする特許請求の
範囲第1項記載の化合物半導体装置。2. The amorphous or polycrystalline semiconductor material having a fine grain size is deposited at a temperature lower than the temperature at which the compound semiconductor layer is deposited in the same deposition apparatus after the deposition of the compound semiconductor layer. The compound semiconductor device according to claim 1, wherein the compound semiconductor device is formed by:
厚さ3μm以上のIII−V族化合物半導体層を堆積して
なることを特徴とする特許請求の範囲第1項又は第2項
記載の化合物半導体装置。3. The substrate according to claim 1 or 2, wherein the substrate is a Si substrate, and a III-V group compound semiconductor layer having a thickness of 3 μm or more is deposited on the Si substrate. A compound semiconductor device according to the item.
ことを特徴とする特許請求の範囲第1項,第2項又は第
3項記載の化合物半導体装置。4. The compound semiconductor device according to claim 1, 2, or 3, wherein a part of said compound semiconductor layer is made of GaAs.
してなることを特徴とする特許請求の範囲第3項又は第
4項記載の化合物半導体装置。5. The compound semiconductor device according to claim 3 or 4, wherein the compound semiconductor layer is formed by forming a solar cell element.
成してなることを特徴とする特許請求の範囲第3項又は
第4項記載の化合物半導体装置。6. The compound semiconductor device according to claim 3, wherein the compound semiconductor layer forms a light emitting diode.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16448287A JP2565908B2 (en) | 1987-06-30 | 1987-06-30 | Compound semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16448287A JP2565908B2 (en) | 1987-06-30 | 1987-06-30 | Compound semiconductor device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS648612A JPS648612A (en) | 1989-01-12 |
JP2565908B2 true JP2565908B2 (en) | 1996-12-18 |
Family
ID=15794010
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16448287A Expired - Fee Related JP2565908B2 (en) | 1987-06-30 | 1987-06-30 | Compound semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2565908B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2542447B2 (en) * | 1990-04-13 | 1996-10-09 | 三菱電機株式会社 | Solar cell and method of manufacturing the same |
FR2954947B1 (en) * | 2010-01-04 | 2012-01-20 | Acta Alga | FIRMLY PHOTOBIOREACTOR FOR THE CULTURE OF PHOTOSYNTHETIC MICROORGANISMS |
-
1987
- 1987-06-30 JP JP16448287A patent/JP2565908B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPS648612A (en) | 1989-01-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0331467B1 (en) | Method of forming semiconductor thin film | |
JP3027473B2 (en) | Semiconductor components | |
US4845044A (en) | Producing a compound semiconductor device on an oxygen implanted silicon substrate | |
KR101216541B1 (en) | Formation of devices by epitaxial layer overgrowth | |
US4159354A (en) | Method for making thin film III-V compound semiconductors for solar cells involving the use of a molten intermediate layer | |
US5959308A (en) | Epitaxial layer on a heterointerface | |
US5659188A (en) | Capped anneal | |
EP0447327B1 (en) | Heterostructure semiconductor device | |
US6372981B1 (en) | Semiconductor substrate, solar cell using same, and fabrication methods thereof | |
JP2012533906A (en) | Semiconductor structure using quantum dot structure and related structure, and method of manufacturing semiconductor device | |
JPH0831419B2 (en) | Method for producing compound semiconductor single crystal on single crystal silicon substrate | |
JPH06140346A (en) | Manufacture of heteroepitaxial thin layer and of electronic device | |
US5107317A (en) | Semiconductor device with first and second buffer layers | |
US11232950B2 (en) | Structure of epitaxy on heterogeneous substrate and method for fabricating the same | |
US4925810A (en) | Compound semiconductor device and a method of manufacturing the same | |
JP2565908B2 (en) | Compound semiconductor device | |
US5183776A (en) | Heteroepitaxy by growth of thermally strained homojunction superlattice buffer layers | |
US20100187572A1 (en) | Suspended mono-crystalline structure and method of fabrication from a heteroepitaxial layer | |
US5183778A (en) | Method of producing a semiconductor device | |
JP2687445B2 (en) | Heteroepitaxial growth method | |
EP0284434A2 (en) | Method of forming crystals | |
JP2756320B2 (en) | Crystal formation method | |
JP2001126985A (en) | Compound semiconductor substrate | |
CN109378368B (en) | Method for epitaxial growth of GaN substrate on PSS substrate along semi-polar surface | |
JPH08264456A (en) | Growing method for crystal of compound semiconductor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |