JP2553882B2 - Scanning optical system - Google Patents
Scanning optical systemInfo
- Publication number
- JP2553882B2 JP2553882B2 JP19854387A JP19854387A JP2553882B2 JP 2553882 B2 JP2553882 B2 JP 2553882B2 JP 19854387 A JP19854387 A JP 19854387A JP 19854387 A JP19854387 A JP 19854387A JP 2553882 B2 JP2553882 B2 JP 2553882B2
- Authority
- JP
- Japan
- Prior art keywords
- lens group
- scanning
- lens
- optical system
- focal length
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Mechanical Optical Scanning Systems (AREA)
- Lenses (AREA)
Description
【発明の詳細な説明】 (産業上の利用分野) この発明は、レーザープリンター等に用いられる走査
結像光学系に係り、特に光ビームを反射する回転多面鏡
の鏡面とその回転軸あるいは取付軸との平行度誤差(面
倒れ誤差)を補正する走査結像光学系の改良に関する。Description: BACKGROUND OF THE INVENTION (Industrial application field) The present invention relates to a scanning imaging optical system used for a laser printer or the like, and in particular, a mirror surface of a rotary polygon mirror for reflecting a light beam and a rotation axis or a mounting axis thereof. The present invention relates to an improvement in a scanning image forming optical system for correcting a parallelism error (plane tilt error) with the above.
(従来の技術) 従来、光源、回転多面鏡、走査結像レンズ(fθレン
ズ)の順に配置された光走査系において、光源から射出
された例えばレーザー光を回転多面鏡を回転させて機械
的に走査し、走査結像レンズで集光することにより結像
面をビーム走査することが知られている。この時、回転
多面鏡とその回転軸あるいは取付軸との平行度誤差によ
り回転多面鏡の反射面が傾くいわゆる面倒れが生じ走査
線画像の品質に影響を与えている。(Prior Art) Conventionally, in an optical scanning system in which a light source, a rotary polygon mirror, and a scanning imaging lens (fθ lens) are arranged in this order, for example, laser light emitted from a light source is mechanically rotated by rotating the rotary polygon mirror. It is known that the image plane is beam-scanned by scanning and condensing with a scanning image-forming lens. At this time, due to a parallelism error between the rotary polygon mirror and its rotation axis or mounting axis, a so-called surface tilt in which the reflecting surface of the rotary polygon mirror tilts occurs, which affects the quality of the scanning line image.
そこで、この面倒れを補正し改善する走査結像光学系
として以下の走査結像光学系が提案されている。特開昭
48−98844号公報(以下、第1例という)では、球面レ
ンズ系と結像走査面の間に走査方向と平行な方向に母線
を持つシリンドリカル・レンズが配置された走査結像光
学系が提案されており、特開昭58−132719号公報(以
下、第2例という)では、偏向反射面と走査レンズの間
にトロイダル・レンズが配置された走査結像光学系が提
案されており、特開昭58−49315号公報(以下、第3例
という)では、走査レンズと結像走査面の間にトロイダ
ル・レンズが配置された走査結像光学系が提案されてお
り、特開昭56−36622号公報(以下、第4例という)で
は、走査レンズにトーリック・レンズを用いる走査結像
光学系が提案されている。Therefore, the following scanning imaging optical system has been proposed as a scanning imaging optical system that corrects and improves this surface tilt. JPA
Japanese Patent Laid-Open No. 48-98844 (hereinafter referred to as the first example) proposes a scanning imaging optical system in which a cylindrical lens having a generatrix in a direction parallel to the scanning direction is arranged between a spherical lens system and an imaging scanning surface. Japanese Patent Application Laid-Open No. 58-132719 (hereinafter, referred to as a second example) proposes a scanning imaging optical system in which a toroidal lens is arranged between a deflecting reflection surface and a scanning lens. Japanese Laid-Open Patent Publication No. 58-49315 (hereinafter referred to as the third example) proposes a scanning image forming optical system in which a toroidal lens is arranged between a scanning lens and an image forming scanning surface. Japanese Patent No. 36622 (hereinafter, referred to as a fourth example) proposes a scanning imaging optical system using a toric lens as a scanning lens.
(発明が解決しようとする問題点) ところで、前記第1例の走査結像光学系において、シ
リンドリカル・レンズを結像走査面から離して球面レン
ズ系に近づけて配置しようとすると、サジタル像面湾曲
に相当する走査直角方向(以下、副走査方向という)の
像面湾曲量が急激に大きくなるため、シリンドリカル・
レンズは結像走査面の近くに配置しなくてはならず、シ
リンドリカル・レンズと結像走査面の間の距離を大きく
することができない。またそのために、シリンドリカル
・レンズの寸法は走査長と同等の長尺な長さが必要にな
るという欠点がある。(Problems to be Solved by the Invention) By the way, in the scanning image forming optical system of the first example, when an attempt is made to dispose the cylindrical lens away from the image forming scanning surface and close to the spherical lens system, sagittal field curvature is generated. The field curvature in the direction perpendicular to the scanning direction (hereinafter referred to as the sub-scanning direction) corresponding to
The lens must be located close to the imaging scan plane, and the distance between the cylindrical lens and the imaging scan plane cannot be increased. For this reason, there is a disadvantage that the cylindrical lens needs to be as long as the scanning length.
前記第2例の走査結像光学系は、トロイダル・レンズ
の製造が非常に難しいという欠点の他に、副走査方向断
面での偏向反射面と結像走査面間の結像倍率が−10×−
20×程度の拡大倍率となり、偏向反射面の位置精度が非
常に高く要求されるという欠点を有する。In addition to the drawback that the toroidal lens is very difficult to manufacture, the scanning image forming optical system of the second example has an image forming magnification of −10 × between the deflective reflecting surface and the image forming scanning surface in the sub-scanning direction cross section. −
The enlargement magnification is about 20 ×, and there is a drawback that the positional accuracy of the deflective reflection surface is required to be very high.
前記第3例の走査結像光学系は、副走査方向の像面湾
曲量は改善されるが、トロイダル・レンズの寸法はかな
り大型で製造が非常に難しいという欠点がある。The scanning image forming optical system of the third example improves the amount of field curvature in the sub-scanning direction, but has the drawback that the size of the toroidal lens is quite large and very difficult to manufacture.
前記第4例の走査結像光学系は、寸法的にコンパクト
になり、副走査方向断面での偏向反射面と結像走査面間
の結像倍率が−3×−5×程度の拡大倍率のため、偏向
反射面の位置精度が第2例の走査光学系程必要とされな
いがトーリック・レンズの製造は容易でないという欠点
を有する。The scanning and imaging optical system of the fourth example is dimensionally compact, and the imaging magnification between the deflective reflection surface and the imaging scanning surface in the cross section in the sub-scanning direction is an enlargement magnification of about -3 × -5 ×. Therefore, the positional accuracy of the deflecting / reflecting surface is not required as much as that of the scanning optical system of the second example, but it has a drawback that the toric lens is not easily manufactured.
そこで、この発明の目的は、走査結像胃光学系に製作
が困難で高価なトロイダル・レンズやトーリック・レン
ズを用いずに、鏡面等の光軸に対し回転対称な面とシリ
ンダー状の面とで構成するとともに、集光スポットを小
さくするめたに歪曲収差を小さくし、像面を平坦にする
ため非点収差を小さくした、コンパクトで安価な面倒れ
補正機能を有する走査結像光学系を提供するものであ
る。Therefore, an object of the present invention is to provide a surface that is rotationally symmetric with respect to the optical axis such as a mirror surface and a cylindrical surface without using a toroidal lens or toric lens that is difficult and expensive to manufacture in a scanning imaging gastric optical system. Provided is a compact and inexpensive scanning and image forming optical system having a surface tilt correction function, which is configured as described above, and which reduces distortion as well as a focused spot to reduce astigmatism to flatten the image plane. To do.
(問題点を解決するための手段) この発明の走査結像光学系は、偏向器により、反射偏
向された光ビームを結像面に走査する走査結像光学系に
おいて、前記走査結像光学系を偏向器から順に、全体と
して負の焦点距離を持つ第1レンズ群と、全体として正
の焦点距離を持つ第2レンズ群と、前記結像面の主走査
方向に平行な方向に母線を持ち主走査直角方向断面が二
次曲線を有する凹の光学反射素子とで構成し、主走査直
角方向断面にて前記偏向器の偏向反射面と前記結像面を
光学的共役関係を持たせるとともに、次の各条件を満足
する走査結像光学系である。(Means for Solving the Problems) The scanning and imaging optical system according to the present invention is a scanning and imaging optical system for scanning a light beam reflected and deflected by a deflector onto an imaging surface. In order from the deflector, a first lens group having a negative focal length as a whole, a second lens group having a positive focal length as a whole, and a main line having a generatrix in a direction parallel to the main scanning direction of the image plane. And a concave optical reflection element having a quadratic curve in a cross section in the direction perpendicular to the scanning direction. The cross section in the direction perpendicular to the main scanning makes the deflective reflection surface of the deflector and the image formation surface have an optical conjugate relationship. It is a scanning and imaging optical system that satisfies the above conditions.
(1) −2.523f≦f1≦−1.083f (2) 0.557f≦f2≦0.821f (4) −0.579f≦γ≦−0.321f (5) 0.108f≦d≦0.432f (6) 0.229f≦|R・cosψ|≦0.813f 但し、f:全系の主走査方向断面の焦点距離 f1:第1レンズ群の焦点距離 f2:第2レンズ群の焦点距離 d:第1レンズ群の第1面から第2レンズ群の最後面まで
の光軸上の長さ γ:第2レンズ群の最終面(被走査面側)の曲率半径 R:凹の光学反射素子の主走査直角方向断面の曲率半径 ψ:第1レンズ群及び第2レンズ群の光軸と、該光軸と
凹の光学反射素子の交点上の法線とのなす角。 (1) -2.523f ≦ f 1 ≦ -1.083f (2) 0.557f ≦ f 2 ≦ 0.821f (4) -0.579f ≤ γ ≤ -0.321f (5) 0.108f ≤ d ≤ 0.432f (6) 0.229f ≤ | R ・ cosψ | ≤ 0.813f where f: focal length of cross section of main system in main scanning direction f 1 : focal length of the first lens group f 2 : focal length of the second lens group d: length on the optical axis from the first surface of the first lens group to the last surface of the second lens group γ: second Radius of curvature of the final surface (surface to be scanned) of the lens group R: Radius of curvature of the cross section of the concave optical reflection element in the direction perpendicular to the main scanning direction ψ: Optical axes of the first lens group and the second lens group, and the optical axis The angle formed by the normal line on the intersection of the concave optical reflection elements.
(実施例) 以下、この発明の走査結像光学系を添付図面に示した
一実施例に従って詳細に説明する。(Embodiment) Hereinafter, a scanning imaging optical system according to the present invention will be described in detail with reference to an embodiment shown in the accompanying drawings.
第1図は、この発明に係る走査結像光学系の斜視図で
あり、第2図は第1図の主走査直角方向(副走査方向)
の断面図である。この発明に走査結像光学系は、主走査
方向断面にて全体で負の屈折力を有する第1レンズ群
6、主走査方向断面にて全体で正の屈折力を有する第2
レンズ群7、主走査方向と平行な方向に母線を持つシリ
ンドリカル・ミラー8とから構成される。第1図におい
て、レーザー光源1から発せられたほぼ円形若しくは楕
円形の光ビームは、コリメーターレンズやビームエクス
パンダあるいはそれらの組合せから成る光学系2を通
り、シリンドリカル・レンズ3により、回転多面鏡4の
回転軸20に垂直な線像として回転多面鏡4の偏向反射面
5またはその近傍に集光される。この線像は前記偏向反
射面5により反射偏向後、この発明走査結像光学系の第
1レンズ群6及び第2レンズ群7で屈折透過され、さら
にシリンドリカル・ミラー8で反射されて走査面9上に
スポット状に集光結像される。そして、この集光された
ビームは、回転多面鏡4のC方向の回転により走査面9
上をA方向に主走査される。この時、主走査A方向と直
角方向の副走査B方向の光束に関しては、回転多面鏡4
の偏向反射面5と走査面9とがほぼ光学的に共役な位置
関係にあるので、回転多面鏡4の回転軸20の傾き等によ
り偏向反射面5が正規の状態から傾いて面倒れが生じて
も、前記集光されたビームが、所定位置から走査面9上
の副走査方向Bへの位置ずれはほとんど生じない。ま
た、前記偏向反射面5と走査面9との間の結像倍率が−
0.3×−0.5×程度の低倍率のため、偏向反射面5の位置
精度は高精度を必要としない。FIG. 1 is a perspective view of a scanning image forming optical system according to the present invention, and FIG. 2 is a direction perpendicular to the main scanning direction (sub scanning direction) of FIG.
FIG. The scanning and imaging optical system according to the present invention includes a first lens group 6 having a negative refracting power as a whole in the main scanning direction section, and a second lens group 2 having a positive refracting power as a whole in the main scanning direction section
The lens group 7 and a cylindrical mirror 8 having a generatrix in a direction parallel to the main scanning direction. In FIG. 1, a substantially circular or elliptical light beam emitted from a laser light source 1 passes through an optical system 2 including a collimator lens, a beam expander, or a combination thereof, and a cylindrical lens 3 rotates a polygon mirror. The light is focused on the deflecting / reflecting surface 5 of the rotating polygon mirror 4 or in the vicinity thereof as a line image perpendicular to the rotation axis 20 of 4. This line image is reflected and deflected by the deflecting / reflecting surface 5, then refracted and transmitted by the first lens group 6 and the second lens group 7 of the scanning and imaging optical system of the present invention, further reflected by the cylindrical mirror 8 and then scanned by the scanning surface 9. The light is focused and imaged in a spot shape on the top. The condensed beam is rotated by the rotating polygonal mirror 4 in the C direction to scan the scanning surface 9
The upper part is main-scanned in the A direction. At this time, with respect to the light flux in the sub-scanning B direction perpendicular to the main scanning A direction, the rotary polygon mirror 4
Since the deflecting / reflecting surface 5 and the scanning surface 9 have a substantially optically conjugate positional relationship, the deflecting / reflecting surface 5 is inclined from the normal state due to the inclination of the rotation axis 20 of the rotary polygonal mirror 4 and the like to cause surface tilt. However, the position of the condensed beam in the sub-scanning direction B on the scanning surface 9 from the predetermined position hardly occurs. Further, the imaging magnification between the deflective reflection surface 5 and the scanning surface 9 is −
Since the magnification is as low as 0.3 × −0.5 ×, high precision is not required for the position accuracy of the deflective reflection surface 5.
第3図乃至第8図は、この発明の実施例を示す走査結
像光学系の構成図である。第3図において、第1レンズ
群6は偏向反射面5側に凹面を向けた負のメニスカス・
レンズ6aと偏向反射面5側に凹面を向けた正のメニスカ
ス・レンズ6bとからなり、第2レンズ群7は両凸レンズ
からなる。第4図において、第1レンズ群6を両凹レン
ズからなり、第2レンズ群7は両凸レンズからなる。第
5図において、第1レンズ群6は偏向反射面5側に凹面
を向けた負のメニスカス・レンズからなり、第2レンズ
群7は両凸レンズ7aと偏向反射面5側に凹面を向けた負
のメニスカス・レンズ7bとの接合レンズからなる。第6
図において、第1レンズ群6は偏向反射面5側に凸面を
向けた負のメニスカス・レンズからなり、第2レンズ群
7は両凸レンズからなる。第7図において、第1レンズ
群6は両凹レンズからなり、第2レンズ群7は正の平凸
レンズからなる。第8図において、第1レンズ群6は偏
向反射面5側に凸面を向けた負のメニスカス・レンズか
らなり、第2レンズ群7は正の平凸レンズからなる。3 to 8 are configuration diagrams of a scanning image forming optical system showing an embodiment of the present invention. In FIG. 3, the first lens group 6 has a negative meniscus with a concave surface facing the deflective reflection surface 5 side.
The second lens group 7 is composed of a lens 6a and a positive meniscus lens 6b having a concave surface facing the deflective reflection surface 5, and the second lens group 7 is composed of a biconvex lens. In FIG. 4, the first lens group 6 is a biconcave lens, and the second lens group 7 is a biconvex lens. In FIG. 5, the first lens group 6 is composed of a negative meniscus lens having a concave surface facing the deflective reflecting surface 5, and the second lens group 7 is a biconvex lens 7a and a negative lens having a concave surface facing the deflective reflecting surface 5 side. It consists of a cemented lens with the meniscus lens 7b. Sixth
In the figure, the first lens group 6 is composed of a negative meniscus lens having a convex surface facing the deflective reflection surface 5, and the second lens group 7 is composed of a biconvex lens. In FIG. 7, the first lens group 6 is a biconcave lens, and the second lens group 7 is a positive plano-convex lens. In FIG. 8, the first lens group 6 is composed of a negative meniscus lens having a convex surface facing the deflective reflection surface 5, and the second lens group 7 is composed of a positive plano-convex lens.
前記各走査結像光学系は良好な結像性能を得るため、
次の条件を満足している。In order to obtain a good imaging performance, each scanning imaging optical system,
The following conditions are satisfied.
(1) −2.523f≦f1≦−1.083f (2) 0.557f≦f2≦0.821f (4) −0.579f≦γ≦−0.321f (5) 0.108f≦d≦0.432f (6) 0.229f≦|R・cosψ|≦0.813f 但し、f:全系の主走査方向断面の焦点距離 f1:第1レンズ群の焦点距離 f2:第2レンズ群の焦点距離 d:第1レンズ群の第1面から第2レンズ群の最後面まで
の光軸上の長さ γ:第2レンズ群の最終面(被走査面側)の曲率半径 R:凹の光学反射素子の主走査直角方向断面の曲率半径 ψ:第1レンズ群及び第2レンズ群の光軸と、該光軸と
凹の光学反射素子の交点上の法線とのなす角。 (1) -2.523f ≦ f 1 ≦ -1.083f (2) 0.557f ≦ f 2 ≦ 0.821f (4) -0.579f ≤ γ ≤ -0.321f (5) 0.108f ≤ d ≤ 0.432f (6) 0.229f ≤ | R ・ cosψ | ≤ 0.813f where f: focal length of cross section of main system in main scanning direction f 1 : focal length of the first lens group f 2 : focal length of the second lens group d: length on the optical axis from the first surface of the first lens group to the last surface of the second lens group γ: second Radius of curvature of the final surface (surface to be scanned) of the lens group R: Radius of curvature of the cross section of the concave optical reflection element in the direction perpendicular to the main scanning direction ψ: Optical axes of the first lens group and the second lens group, and the optical axis The angle formed by the normal line on the intersection of the concave optical reflection elements.
条件(1)乃至(4)は、主走査方向の像面湾曲収差
の補正及び偏向器の偏向角速度が一定のとき、走査面上
のスポットの走査速度を一定とするfθ特性に関する条
件である。条件(1)乃至(4)をはずれると、主走査
方向の像面湾曲収差の補正とfθ特性を良好に保つこと
が困難となる。Conditions (1) to (4) are conditions relating to the fθ characteristic that the scanning speed of the spot on the scanning surface is constant when the field curvature aberration in the main scanning direction is corrected and the deflection angular velocity of the deflector is constant. If the conditions (1) to (4) are not satisfied, it becomes difficult to correct the field curvature aberration in the main scanning direction and keep the fθ characteristic excellent.
条件(5)はレンズ形状に関する条件である。条件
(5)の上限を超えると、レンズの形状が大きくなり重
量的にも経済的にも実用的でなくなり、条件(5)の下
限を下まわると主走査方向の像面湾曲収差及びfθ特性
の補正が困難となる。The condition (5) is a condition regarding the lens shape. When the upper limit of the condition (5) is exceeded, the lens shape becomes large, which makes it impractical in terms of weight and economy. When the lower limit of the condition (5) is exceeded, the field curvature aberration in the main scanning direction and the fθ characteristic are obtained. Is difficult to correct.
条件(6)は、像面湾曲収差の補正及びシリンドリカ
ル・ミラーと走査面間の距離に関する条件である。条件
(6)の上限値を超えると、副走査方向の像面湾曲収差
が悪化して走査面上での結像光点の大きさを全画面で均
一にすることができなくなる。条件(6)の下限値を下
まわると、副走査方向の像面湾曲収差は小さくなるが、
シリンドリカル・ミラーと走査面が近づき過ぎることに
なり走査面に感光材料を適正に配置することが困難とな
る。The condition (6) relates to the correction of the field curvature aberration and the distance between the cylindrical mirror and the scanning surface. When the value exceeds the upper limit of the condition (6), the field curvature aberration in the sub-scanning direction deteriorates, and it becomes impossible to make the size of the image forming light spot on the scanning surface uniform over the entire screen. When the value goes below the lower limit of the condition (6), the field curvature aberration in the sub-scanning direction becomes small,
Since the cylindrical mirror and the scanning surface are too close to each other, it is difficult to properly dispose the photosensitive material on the scanning surface.
なお、前記実施例において、第2レンズ群7と被走査
面9との間に設けられる凹の光学反射素子として、主走
査A方向に平行な方向に母線を持ち、主走査A方向と直
角方向断面が放物線などの二次曲線を有する光学反射素
子を用いてもよい。In the above-described embodiment, the concave optical reflection element provided between the second lens group 7 and the surface 9 to be scanned has a generatrix in a direction parallel to the main scanning A direction and has a direction perpendicular to the main scanning A direction. An optical reflection element whose cross section has a quadratic curve such as a parabola may be used.
以下、この発明の走査結像光学系の第3図乃至第8図
に対応する数値実施例をそれぞれ表1乃至表6に示す。
各表において、d0は偏向反射面5から走査結像光学系第
1レンズ群6の第1面までの距離、λは光源1から射出
される光の波長、γはレンズの曲率半径、Dは光学面間
の距離あるいは空気間隔、Nは光学素子の硝材の屈折率
を表わす。Numerical examples corresponding to FIGS. 3 to 8 of the scanning image forming optical system of the present invention are shown in Tables 1 to 6, respectively.
In each table, d 0 is the distance from the deflective reflection surface 5 to the first surface of the scanning imaging optical system first lens group 6, λ is the wavelength of light emitted from the light source 1, γ is the radius of curvature of the lens, and Is the distance between the optical surfaces or the air gap, and N is the refractive index of the glass material of the optical element.
但、第7面は リンドリカル・ミラー面である。 However, the 7th surface is a cylindrical mirror surface.
但し、第5面はシリンドリカル・ミラー面である。 However, the fifth surface is a cylindrical mirror surface.
但し、第7面はシリンドリカル・ミラー面である。 However, the seventh surface is a cylindrical mirror surface.
但し、第5面はシリンドリカル・ミラー面である。 However, the fifth surface is a cylindrical mirror surface.
但し、第5面はシリンドリカル・ミラー面である。 However, the fifth surface is a cylindrical mirror surface.
但し、第5面はシリンドリカル・ミラー面である。 However, the fifth surface is a cylindrical mirror surface.
第9図乃至第14図は、それぞれ表1乃至表6の数値実
施例に対応する収差曲線図である。これらの収差曲線図
において、Hは主走査方向像面湾曲収差、Vは副走査方
向像面湾曲収差を表わし、歪曲収差は走査角θに対する
理想像位置をf・θとしたとき、その理想像位置からの
ずれ量を%表示してある。走査角θは半画角を表わす。9 to 14 are aberration curve diagrams corresponding to the numerical examples of Tables 1 to 6, respectively. In these aberration curve diagrams, H represents the field curvature aberration in the main scanning direction, V represents the field curvature aberration in the sub scanning direction, and the distortion aberration is the ideal image when the ideal image position with respect to the scanning angle θ is f · θ. The amount of deviation from the position is displayed in%. The scanning angle θ represents a half angle of view.
(発明の効果) この発明の走査結像光学系は、回転多面鏡から順に全
体として負の屈折率を有する第1レンズ群、全体として
正の屈折率を有する第2レンズ群、主走査方向に平行な
方向に母線をもつ凹シリンドリカル・ミラーとで構成
し、且つ前記各条件を満足させるようにしたから、製作
が困難で高価なトロイダル・レンズやトーリック・レン
ズを用いずに安価に構成できるとともに、良好な結像性
能を提供できる。(Effect of the Invention) The scanning and imaging optical system of the present invention comprises, in order from the rotary polygonal mirror, a first lens group having a negative refractive index as a whole, a second lens group having a positive refractive index as a whole, and a main lens in the main scanning direction. Since it is configured with a concave cylindrical mirror having a generatrix in a parallel direction and satisfies the above-mentioned conditions, it can be inexpensively constructed without using an expensive toroidal lens or toric lens that is difficult to manufacture. It is possible to provide good imaging performance.
第1図は、この発明に係る走査結像光学系の斜視図、第
2図は第1図の主走査直角方向断面図、第3図乃至第8
図はこの発明の実施例を示す走査結像光学系構成図、第
9図乃至第14図はそれぞれ第3図乃至第8図に対応する
収差曲線図である。 1……光源、2……光学系、3……シリンドリカル・レ
ンズ、4……回転多面鏡、5……偏向反射面、6……第
1レンズ群、7……第2レンズ群、8……シリンドリカ
ル・ミラー、9……走査面、A……主走査方向、B……
副走査方向。FIG. 1 is a perspective view of a scanning image forming optical system according to the present invention, FIG. 2 is a sectional view in a direction perpendicular to the main scanning direction of FIG. 1, and FIGS.
FIG. 9 is a configuration diagram of a scanning imaging optical system showing an embodiment of the present invention, and FIGS. 9 to 14 are aberration curve diagrams corresponding to FIGS. 3 to 8, respectively. 1 ... Light source, 2 ... Optical system, 3 ... Cylindrical lens, 4 ... Rotating polygonal mirror, 5 ... Deflection / reflection surface, 6 ... First lens group, 7 ... Second lens group, 8 ... ... Cylindrical mirror, 9 ... Scanning plane, A ... Main scanning direction, B ...
Sub scanning direction.
Claims (1)
像面に走査する走査結像光学系において、前記走査結像
光学系を偏向器から順に、全体として負の焦点距離を持
つ第1レンズ群と、全体として正の焦点距離を持つ第2
レンズ群と、前記結像面の主走査方向に平行な方向に母
線を持ち主走査直角方向断面が二次曲線を有する凹の光
学反射素子とで構成し、主走査直角方向断面にて前記偏
向器の偏向反射面と前記結像面を光学的共役関係を持た
せるとともに、下記の各条件を満足することを特徴とす
る走査結像光学系 (1) −2.523f≦f1≦−1.083f (2) 0.557f≦f2≦0.821f (4) −0.579f≦γ≦−0.321f (5) 0.108f≦d≦0.432f (6) 0.229f≦|R・cosψ|≦0.813f 但し、f:全系の主走査方向断面の焦点距離 f1:第1レンズ群の焦点距離 f2:第2レンズ群の焦点距離 d:第1レンズ群の第1面から第2レンズ群の最後面まで
の光軸上の長さ γ:第2レンズ群の最終面(被走査面側)の曲率半径 R:凹の光学反射素子の主走査直角方向断面の曲率半径 ψ:第1レンズ群及び第2レンズ群の光軸と、該光軸と
凹の光学反射素子の交点上の法線とのなす角。1. A scanning imaging optical system for scanning an image plane with a light beam reflected and deflected by a deflector, wherein the scanning imaging optical system has a negative focal length as a whole in order from the deflector. A second lens group, which has a positive focal length as a whole
The deflector is composed of a lens group and a concave optical reflecting element having a generatrix in a direction parallel to the main scanning direction of the image plane and having a quadratic curve in the cross section in the main scan orthogonal direction. (1) -2.523f ≤ f 1 ≤ -1.083f (1)-(23) ≤ f 1 ≤ -1.083f ( 2) 0.557f ≦ f 2 ≦ 0.821f (4) -0.579f ≤ γ ≤ -0.321f (5) 0.108f ≤ d ≤ 0.432f (6) 0.229f ≤ | R ・ cosψ | ≤ 0.813f where f: focal length of cross section of main system in main scanning direction f 1 : focal length of the first lens group f 2 : focal length of the second lens group d: length on the optical axis from the first surface of the first lens group to the last surface of the second lens group γ: second Radius of curvature of the final surface (surface to be scanned) of the lens group R: Radius of curvature of the cross section of the concave optical reflection element in the direction perpendicular to the main scanning direction ψ: Optical axes of the first lens group and the second lens group, and the optical axis The angle formed by the normal line on the intersection of the concave optical reflection elements.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19854387A JP2553882B2 (en) | 1987-08-08 | 1987-08-08 | Scanning optical system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19854387A JP2553882B2 (en) | 1987-08-08 | 1987-08-08 | Scanning optical system |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6442625A JPS6442625A (en) | 1989-02-14 |
JP2553882B2 true JP2553882B2 (en) | 1996-11-13 |
Family
ID=16392910
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP19854387A Expired - Lifetime JP2553882B2 (en) | 1987-08-08 | 1987-08-08 | Scanning optical system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2553882B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02271314A (en) * | 1989-04-12 | 1990-11-06 | Canon Inc | Optical scanner |
SI20150A (en) * | 1999-02-19 | 2000-08-31 | Lek, Tovarna Farmacevtskih In | Directly compressible matrix for controlled release of the daily dose of clarytomicyne |
-
1987
- 1987-08-08 JP JP19854387A patent/JP2553882B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS6442625A (en) | 1989-02-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH10142543A (en) | Optical scanning device | |
JPH06265810A (en) | Reflection type scanning optical system | |
JP2563260B2 (en) | Optical beam scanning device | |
US6239894B1 (en) | Scanning optical system and image forming apparatus using the same | |
JP2000098288A (en) | Optical scanning optical system and image forming device using the same | |
JPH07113950A (en) | Light beam scanning device and image forming lens | |
JP2718735B2 (en) | Fθ lens system in optical scanning device | |
JPH0727123B2 (en) | Surface tilt correction scanning optical system | |
US5206755A (en) | Optical beam scanner | |
JP2553882B2 (en) | Scanning optical system | |
JPH1090620A (en) | Optical scanner | |
US6670980B1 (en) | Light-scanning optical system | |
JPH08248345A (en) | Optical scanner | |
JP3003065B2 (en) | Optical scanning device | |
JPH0862492A (en) | Scanning lens system | |
US6643044B1 (en) | Scanning optical system | |
JPH08262355A (en) | Optical scanner | |
JP2626708B2 (en) | Scanning optical system | |
JP2811949B2 (en) | Optical scanning optical system | |
JPH0968664A (en) | Optical system for light beam scanning | |
JPH09146030A (en) | Optical scanner | |
JPH01200221A (en) | Light beam scanning optical system | |
JP3729286B2 (en) | Optical scanning device | |
JP2602716B2 (en) | Optical system for light beam scanning | |
JP3658439B2 (en) | Scanning imaging lens and optical scanning device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313532 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313532 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |