Nothing Special   »   [go: up one dir, main page]

JP2542533B2 - Fluorine-based separation membrane - Google Patents

Fluorine-based separation membrane

Info

Publication number
JP2542533B2
JP2542533B2 JP2299274A JP29927490A JP2542533B2 JP 2542533 B2 JP2542533 B2 JP 2542533B2 JP 2299274 A JP2299274 A JP 2299274A JP 29927490 A JP29927490 A JP 29927490A JP 2542533 B2 JP2542533 B2 JP 2542533B2
Authority
JP
Japan
Prior art keywords
separation membrane
separation
membrane
oxygen
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2299274A
Other languages
Japanese (ja)
Other versions
JPH03221130A (en
Inventor
輝彦 杉森
隆 山本
邦廣 青木
鶴義 松本
宏明 大西
洋 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Publication of JPH03221130A publication Critical patent/JPH03221130A/en
Application granted granted Critical
Publication of JP2542533B2 publication Critical patent/JP2542533B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明はフッ素系高分子からなる混合気体の分離等に
適した分離膜に関する。
DETAILED DESCRIPTION OF THE INVENTION <Field of Industrial Application> The present invention relates to a separation membrane suitable for separating a mixed gas composed of a fluoropolymer.

〈従来技術〉 近年、流体混合物の分離、精製を、蒸留、深冷等の相
変化を伴うエネルギー多消費プロセスに代えて、選択透
過性膜により行なうことが積極的に検討されている。
<Prior Art> In recent years, it has been actively studied to perform separation and purification of a fluid mixture by a permselective membrane instead of an energy-intensive process involving a phase change such as distillation or deep cooling.

流体混合物の膜分離、精製プロセスのうち、工業的規
模で実用化されているのは、海水の淡水化、工場廃水の
処理などの液体−液体分離および液体−固体分離が主で
あって、気体−気体の分離についてはほとんどなされて
いない。ガスの膜分離が実用化され難い理由としては、
選択透過性が小さいこと、すなわち特定の気体を選択的
に通し、他の気体をほとんど通さないという膜がない
為、高純度の気体を得る為には、膜分離を何回か繰り返
す多段方式を採用する必要があり、その為に装置が大型
になることと、透過量が小さい為、大量の気体を処理し
難いことの2点が主としてあげられる。
Among the membrane separation and purification processes of fluid mixtures, the ones that have been put to practical use on an industrial scale are mainly liquid-liquid separation and liquid-solid separation such as desalination of seawater and treatment of industrial wastewater, and gas. -Little is done on gas separation. The reason why gas membrane separation is difficult to put into practical use is
In order to obtain high-purity gas, a multi-stage method in which membrane separation is repeated several times is used because it has low selective permeability, that is, it does not have a membrane that selectively allows a specific gas to pass and hardly allows other gases to pass. It is necessary to adopt it, and for that reason, the apparatus is large, and because the amount of permeation is small, it is difficult to process a large amount of gas.

しかし、選択透過の点からみれば気体の最終用途とし
て必ずしも高純度の気体を必要としない分野も多い。例
えば酸素の場合、高温送風用や燃焼補助用等の用途では
高純度酸素は必ずしも必要としない。そればかりか、高
純度酸素は炉の損傷や火災の危険等、かえって不都合な
場合もある。これら用途には高い選択性よりも大量の気
体を生産する為の透過速度および膜を含めた分離装置の
耐久性、特に耐熱安定性や耐薬品性が重要になってく
る。
However, from the viewpoint of selective permeation, there are many fields that do not necessarily require high-purity gas as the final use of gas. For example, in the case of oxygen, high-purity oxygen is not always necessary for applications such as high temperature air blowing and combustion assistance. In addition, high-purity oxygen may be inconvenient because of damage to the furnace, risk of fire, etc. For these applications, the permeation rate for producing a large amount of gas and the durability of the separation device including the membrane, particularly the heat stability and the chemical resistance, are more important than the high selectivity.

従来、低純度ないし中間純度の酸素富化空気を大量に
得る為の膜材料としては、オルガノシロキサン−ポリカ
ーボネート共重合体、あるいはポリ(4−メチルペンテ
ン−1)が知られている。
Conventionally, an organosiloxane-polycarbonate copolymer or poly (4-methylpentene-1) is known as a membrane material for obtaining a large amount of low-purity to intermediate-purity oxygen-enriched air.

又、パーフルオロ−(2,2−ジメチル−1,3−ジオキソ
ール)とエチレン系不飽和単量体からなるフッ素系共重
合体は米国特許第3978030号公報や特開昭58−38707号公
報に開示されている。
Further, a fluorine-based copolymer composed of perfluoro- (2,2-dimethyl-1,3-dioxole) and an ethylenically unsaturated monomer is disclosed in U.S. Pat. No. 3,978,030 and JP-A-58-38707. It is disclosed.

〈発明が解決しようとする課題〉 しかしながらオルガノシロキサン−ポリカーボネート
は酸素透過係数は10-7〜10-8cm3・cm/cm2・sec・cmHgと
大きいものの耐薬品性に乏しく汚染空気あるいは減圧又
は加圧する為の油入りポンプ又はコンデンサーの油によ
り劣化する恐れがある。又、ポリ(4−メチルペンテン
−1)は選択性が3〜4と大きいものの酸素透過係数が
10-8〜10-9cm3・cm/cm2・sec・cmHgと低い為大面積ある
いは極薄膜にする必要がある。
<Problems to be Solved by the Invention> However, although the organosiloxane-polycarbonate has a large oxygen permeability coefficient of 10 −7 to 10 −8 cm 3 · cm / cm 2 · sec · cmHg, it is poor in chemical resistance and polluted air or reduced pressure or There is a risk of deterioration due to the oil pump or condenser oil for pressurization. In addition, poly (4-methylpentene-1) has a high selectivity of 3 to 4 but has a high oxygen permeability coefficient.
Since it is as low as 10 -8 to 10 -9 cm 3 · cm / cm 2 · sec · cmHg, it is necessary to use a large area or an ultra-thin film.

すなわち高い酸素透過性能、耐熱性と耐薬品性を充分
に具備した膜は知られてないのが現状である。
That is, at present, a film having sufficient oxygen permeability, heat resistance and chemical resistance is not known.

そして、前記公報においてフッ素系共重合体は化学反
応器の窓等としての用途が示されているのみであって分
離膜への適用を示唆する記載はない。
Further, in the above-mentioned publication, the use of the fluorine-based copolymer only as a window of a chemical reactor is shown, and there is no description suggesting its application to a separation membrane.

〈課題を解決するための手段〉 本発明者らは酸素透過性に優れておりかつ耐熱性・耐
薬品性を有する気体分離膜を開発すべく鋭意検討し本発
明を完成した。
<Means for Solving the Problems> The present inventors completed the present invention by earnestly studying to develop a gas separation membrane having excellent oxygen permeability, heat resistance and chemical resistance.

すなわち本発明の要旨は、パーフルオロ−(2,2−ジ
メチル−1,3−ジオキソール)とテトラフルオロエチレ
ンとの共重合体からなる膜厚が2μm以上10μm未満の
分離膜であって、常温から200℃の温度範囲における空
気透過時の酸素透過速度が1×10-4cm3/cm2・sec・cmH
g以上2.08×10-4cm3/cm2・sec・cmHg以下で、かつ酸素
/窒素の分離係数が1.5以上2.1以下であることを特徴と
するガス分離膜にある。
That is, the gist of the present invention is a separation membrane having a film thickness of 2 μm or more and less than 10 μm, which is made of a copolymer of perfluoro- (2,2-dimethyl-1,3-dioxole) and tetrafluoroethylene and is Oxygen permeation rate during air permeation in the temperature range of 200 ℃ is 1 × 10 -4 cm 3 / cm 2 · sec · cmH
The gas separation membrane is characterized in that it is g or more and 2.08 × 10 −4 cm 3 / cm 2 · sec · cmHg or less and that the oxygen / nitrogen separation coefficient is 1.5 or more and 2.1 or less.

共重合体の構成成分の組成比は特に限定されないが、
耐熱性の点からパーフルオロ−(2,2−ジメチル−1,3−
ジオキソール)が50モル%以上であることが好ましく、
75モル%以上であることがより好ましい。
The composition ratio of the constituent components of the copolymer is not particularly limited,
Perfluoro- (2,2-dimethyl-1,3-
Dioxole) is preferably 50 mol% or more,
It is more preferably 75 mol% or more.

本発明の分離膜は基本的には前記共重合体のみからな
るが、機械的強度の向上等を目的として他の重合体、オ
リゴマーや低分子量の添加剤を数重量%含有させたもの
であってもよい。
Although the separation membrane of the present invention basically consists of the above-mentioned copolymer, it contains several% by weight of other polymers, oligomers and low molecular weight additives for the purpose of improving mechanical strength. May be.

本発明の分離膜は実質的に非多孔質な膜であり、平
膜、管状膜や中空糸膜の形態をとることができる。又、
多孔質支持体と複合化した複合膜であってもよい。
The separation membrane of the present invention is a substantially non-porous membrane, and can take the form of a flat membrane, a tubular membrane or a hollow fiber membrane. or,
It may be a composite membrane composited with a porous support.

本発明の分離膜においては、その膜厚を10μm未満、
より好ましくは1μm以下とする必要がある。
In the separation membrane of the present invention, the thickness is less than 10 μm,
More preferably, it should be 1 μm or less.

膜厚を上記の範囲とすることにより、常温から200℃
の温度範囲における空気透過時の酸素透過速度が1×10
-4cm3/cm2・sec・cmHg以上の分離膜を得ることができ
る。
By setting the film thickness within the above range, it will be from room temperature to 200 ° C.
Oxygen permeation rate during air permeation in the temperature range of 1 × 10
-4 cm 3 / cm 2 · sec · cmHg or more separation membrane can be obtained.

この場合、分離膜は強度の面から多孔質支持体上に担
持し、複合膜とすることが好ましい。
In this case, the separation membrane is preferably supported on the porous support from the viewpoint of strength to form a composite membrane.

本発明の分離膜は溶融法や溶液法等の公知の製膜法に
よって製造可能であり、溶液法としては流延法、水面展
開法、スピンコート法等を採用することができる。又、
溶液法において共重合体を溶解させる溶媒としてはパー
フルオロ(2−ブチルテトラヒドロフラン)等を挙げる
ことができる。
The separation membrane of the present invention can be manufactured by a known film forming method such as a melting method or a solution method, and as the solution method, a casting method, a water surface spreading method, a spin coating method or the like can be adopted. or,
Examples of the solvent that dissolves the copolymer in the solution method include perfluoro (2-butyltetrahydrofuran).

複合膜とする場合は多孔質支持体の表面に薄層の分離
膜を積層する方法や多孔質支持体上にポリマー溶液を塗
布する方法等が採用可能である。
When forming a composite membrane, a method of laminating a thin separation membrane on the surface of the porous support, a method of coating a polymer solution on the porous support, or the like can be adopted.

〈実施例〉 以下実施例によって本発明を更に説明する。尚、実施
例における気体の透過速度の単位は[cm3/cm2・sec・c
mHg]である。
<Example> The present invention will be further described with reference to the following examples. The unit of gas permeation rate in the examples is [cm 3 / cm 2 · sec · c
mHg].

実施例1 パーフルオロ−(2,2−ジメチル−1,3−ジオキソー
ル)75モル%とテトラフルオロエチレン25モル%からな
る共重合体5重量部をパーフルオロ−(2−ブチルテト
ラヒドロフラン)95重量部に溶解させ製膜用の重合体溶
液を得た。
Example 1 5 parts by weight of a copolymer consisting of 75 mol% of perfluoro- (2,2-dimethyl-1,3-dioxole) and 25 mol% of tetrafluoroethylene was added to 95 parts by weight of perfluoro- (2-butyltetrahydrofuran). To obtain a polymer solution for film formation.

この重合体溶液50μlを水面上に滴下したところ液滴
は水面支持体上に拡がり円形状の極薄膜が得られた。得
られた極薄膜の膜厚は1μmであった。
When 50 μl of this polymer solution was dropped onto the water surface, the droplet spreads on the water surface support and a circular ultrathin film was obtained. The thickness of the obtained ultra-thin film was 1 μm.

この極薄膜2枚を平均孔径0.1μm、膜厚47μmのポ
リテトラフルオロエチレン製多孔質膜上にとりだし複合
膜を作成した。この複合膜について温度25℃、120℃及
び200℃において空気の透過速度を測定したところ酸素
透過速度と分離係数は第1表の値を示した。
Two ultrathin films were taken out on a polytetrafluoroethylene porous film having an average pore diameter of 0.1 μm and a film thickness of 47 μm to prepare a composite film. When the air permeation rate of this composite membrane was measured at temperatures of 25 ° C, 120 ° C and 200 ° C, the oxygen permeation rate and the separation coefficient showed the values shown in Table 1.

実施例2 実施例1と同様にして得られた複合膜8枚を用いその
各々に対して、トルエン、塩化メチレン、ヘキサン、エ
タノール、アセトン、ジメチルホルムアミド、ジメチル
アセトアミド又はジメチルスルホキシドの各有機溶剤の
飽和空気を通した後、酸素透過速度と分離係数を測定し
たところ、いずれの場合も性能の変化は認められなかっ
た。
Example 2 Eight composite films obtained in the same manner as in Example 1 were used, and each of them was saturated with an organic solvent of toluene, methylene chloride, hexane, ethanol, acetone, dimethylformamide, dimethylacetamide or dimethylsulfoxide. After passing through air, the oxygen permeation rate and separation coefficient were measured, and no change in performance was observed in any case.

〈発明の効果〉 本発明の分離膜は耐熱性が優れており高温気体の分離
においても優れた気体透過速度と分離係数を示すもので
ある。又、耐薬品性が優れており、特定のフッ素系溶剤
には溶解するものの一般的な有機溶剤には侵されること
がなく、かつ耐アルカリ性、耐酸性、耐酸化性に優れて
いるため広範囲の環境下において使用することができ
る。
<Effects of the Invention> The separation membrane of the present invention has excellent heat resistance and exhibits an excellent gas permeation rate and separation coefficient even in the separation of high-temperature gas. Also, it has excellent chemical resistance, is soluble in a specific fluorine-based solvent but is not attacked by general organic solvents, and has excellent alkali resistance, acid resistance, and oxidation resistance. It can be used in the environment.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大西 宏明 広島県大竹市御幸町20番1号 三菱レイ ヨン株式会社中央研究所内 (72)発明者 高橋 洋 広島県大竹市御幸町20番1号 三菱レイ ヨン株式会社中央研究所内 審査官 中野 孝一 (56)参考文献 特表 平4−505881(JP,A) ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Hiroaki Onishi 20-1 Miyukicho, Otake City, Hiroshima Prefecture Mitsubishi Rayon Co., Ltd. Central Research Laboratory (72) Inventor Hiroshi Takahashi 20-1 Miyukicho, Otake City, Hiroshima Prefecture Mitsubishi Examiner, Central Research Laboratory, Rayon Co., Ltd. Koichi Nakano (56) References Tokushuhei 4-505881 (JP, A)

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】パーフルオロ−(2,2−ジメチル−1,3−ジ
オキソール)とテトラフルオロエチレンとの共重合体か
らなる膜厚が2μm以上10μm未満の分離膜であって、
常温から200℃の温度範囲における空気透過時の酸素透
過速度が1×10-4cm3/cm2・sec・cmHg以上2.08×10-4c
m3/cm2・sec・cmHg以下で、かつ酸素/窒素の分離係数
が1.5以上2.1以下であることを特徴とする分離膜。
1. A separation membrane comprising a copolymer of perfluoro- (2,2-dimethyl-1,3-dioxole) and tetrafluoroethylene and having a thickness of 2 μm or more and less than 10 μm,
Oxygen permeation rate during air permeation in the temperature range from room temperature to 200 ℃ is 1 × 10 -4 cm 3 / cm 2 · sec · cmHg or more 2.08 × 10 -4 c
A separation membrane having a m 3 / cm 2 · sec · cmHg or less and an oxygen / nitrogen separation coefficient of 1.5 or more and 2.1 or less.
【請求項2】分離膜が多孔質支持体上に担持されている
ことを特徴とする請求項1記載の分離膜。
2. The separation membrane according to claim 1, wherein the separation membrane is supported on a porous support.
【請求項3】多孔質支持体がポリテトラフルオロエチレ
ンからなることを特徴とする請求項2記載の分離膜。
3. The separation membrane according to claim 2, wherein the porous support is made of polytetrafluoroethylene.
JP2299274A 1989-11-09 1990-11-05 Fluorine-based separation membrane Expired - Fee Related JP2542533B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP29172289 1989-11-09
JP1-291722 1989-11-09

Publications (2)

Publication Number Publication Date
JPH03221130A JPH03221130A (en) 1991-09-30
JP2542533B2 true JP2542533B2 (en) 1996-10-09

Family

ID=17772548

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2299274A Expired - Fee Related JP2542533B2 (en) 1989-11-09 1990-11-05 Fluorine-based separation membrane

Country Status (1)

Country Link
JP (1) JP2542533B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5281255A (en) * 1992-11-04 1994-01-25 Membrane Technology And Research, Inc Gas-separation process
US5288304A (en) * 1993-03-30 1994-02-22 The University Of Texas System Composite carbon fluid separation membranes
JP2002540928A (en) * 1999-04-14 2002-12-03 ポール・コーポレーション Porous membrane
US6770202B1 (en) 1999-04-14 2004-08-03 Pall Corporation Porous membrane
US6248157B1 (en) * 1999-08-20 2001-06-19 Systec Inc. Vacuum degassing
US6949132B2 (en) 2003-11-05 2005-09-27 Systel, Llc Axial degassing transfer lines
US7713331B2 (en) 2003-11-05 2010-05-11 Rheodyne, Llc Axial transfer line degassing
JP2009195833A (en) * 2008-02-21 2009-09-03 Junkosha Co Ltd Gas permeable tube and degassing module
EP2755735A4 (en) 2011-09-12 2018-01-24 Idex Health & Science LLC Supersaturated fluid degassing

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US366400A (en) * 1887-07-12 Telegraph-key

Also Published As

Publication number Publication date
JPH03221130A (en) 1991-09-30

Similar Documents

Publication Publication Date Title
CN1988949B (en) Gas transfer membrane
Sazali et al. Matrimid-based carbon tubular membrane: Effect of carbonization environment
JP2542533B2 (en) Fluorine-based separation membrane
JP2000053780A (en) Amorphous fluoropolymer product
JP6444382B2 (en) Polymer membrane materials based on 1234yf and 1234ze, membrane preparation and use thereof
CA1294093C (en) Polyphosphazene fluid separation membranes
JP4996784B2 (en) (Per) fluorinated amorphous polymer film
KR900002095B1 (en) Manufacturing method of porous membrane
KR20170112564A (en) Composition for interfacial polymerizing polyamide, method for manufacturing reverse osmosis membrane using the same
TW201710333A (en) Hydrophilic porous polytetrafluoroethylene membrane (I)
CN103781536B (en) Manufacture the method for the PBI doughnut asymmetric membrane being used for gas separaion and fluid separation applications
JP3992345B2 (en) Separation membrane and olefin separation method using the same
JP2002540928A (en) Porous membrane
JPH0621373B2 (en) Porous hollow fiber membrane and method for producing the same
JPH04110029A (en) Aromatic separating membrane
Koops Dehydration of acetic acid by pervaporation: Material science aspects
EP1839730B1 (en) Process for the preparation of microporous membranes made of polyvinylidenefluoride (PVDF)
JPS61257205A (en) Permselective membrane for alcohol and separation of alcohol using the same
JPS6219209A (en) Preparation of polysulfone base film
JP2814516B2 (en) Volatile organic liquid aqueous solution concentrated membrane and method for producing the same
Hayakawa et al. Gas and vapor permeability of perfluoroalkylated polymers
JP4883683B2 (en) Organopolysiloxane for gas separation membrane
JPS6391123A (en) Porous hollow fiber composite membrane and its manufacturing method
JPS6190709A (en) Production of polysulfone hollow membrane
Mhasavekar et al. A review on membranes used for pervaporation process.

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees