Nothing Special   »   [go: up one dir, main page]

JP2024139869A - Fiber-reinforced thermoplastic resin composition, fiber-reinforced thermoplastic resin molding material, and fiber-reinforced thermoplastic resin molded product - Google Patents

Fiber-reinforced thermoplastic resin composition, fiber-reinforced thermoplastic resin molding material, and fiber-reinforced thermoplastic resin molded product Download PDF

Info

Publication number
JP2024139869A
JP2024139869A JP2023050800A JP2023050800A JP2024139869A JP 2024139869 A JP2024139869 A JP 2024139869A JP 2023050800 A JP2023050800 A JP 2023050800A JP 2023050800 A JP2023050800 A JP 2023050800A JP 2024139869 A JP2024139869 A JP 2024139869A
Authority
JP
Japan
Prior art keywords
fiber
resin
reinforced thermoplastic
thermoplastic resin
rosin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2023050800A
Other languages
Japanese (ja)
Inventor
達也 奥田
慎 平田
美都繁 濱口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2023050800A priority Critical patent/JP2024139869A/en
Publication of JP2024139869A publication Critical patent/JP2024139869A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

【課題】良好な外観品位及び耐熱性を有する繊維強化熱可塑性樹脂成形品を提供する。【解決手段】ガラス転移点が190℃を超える非晶性樹脂および融点が300℃を超える結晶性樹脂から選ばれる少なくとも1種である熱可塑性マトリクス樹脂(A)、350℃における重量減少率が5%未満であるロジン樹脂(B)、ならびに少なくとも炭素繊維を含む強化繊維(C)を含む、繊維強化熱可塑性樹脂組成物【選択図】なし[Problem] To provide a fiber-reinforced thermoplastic resin molded article having good appearance quality and heat resistance. [Solution] A fiber-reinforced thermoplastic resin composition comprising a thermoplastic matrix resin (A) which is at least one selected from an amorphous resin having a glass transition point exceeding 190°C and a crystalline resin having a melting point exceeding 300°C, a rosin resin (B) having a weight loss rate of less than 5% at 350°C, and reinforcing fibers (C) which include at least carbon fibers. [Selected Figures] None

Description

本発明は、強化繊維と熱可塑性マトリクス樹脂及びロジン樹脂を含む繊維強化熱可塑性樹脂組成物、繊維強化熱可塑性樹脂成形材料及び繊維強化熱可塑性樹脂成形品に関する。 The present invention relates to a fiber-reinforced thermoplastic resin composition containing reinforcing fibers, a thermoplastic matrix resin, and a rosin resin, a fiber-reinforced thermoplastic resin molding material, and a fiber-reinforced thermoplastic resin molded product.

強化繊維と熱可塑性マトリクス樹脂を含む組成物、成形品は、軽量で優れた力学特性を有するために、スポーツ用品用途、航空宇宙用途および一般産業用途などに広く用いられている。 Compositions and molded articles containing reinforcing fibers and thermoplastic matrix resins are lightweight and have excellent mechanical properties, and are therefore widely used in sporting goods, aerospace, and general industrial applications.

強化繊維は、熱可塑性マトリクス樹脂と組み合わせることで、優れた補強効果を有するが、良好な外観品位を得るためには、強化繊維を熱可塑性マトリクス樹脂中に均一に分散させる必要がある。繊維強化熱可塑性樹脂成形品の繊維分散性を高める手段としては、例えば、添加剤としてテルペン系樹脂を用いる方法が挙げられている(例えば、特許文献1)。 Reinforcing fibers have an excellent reinforcing effect when combined with a thermoplastic matrix resin, but in order to obtain a good appearance, it is necessary to uniformly disperse the reinforcing fibers in the thermoplastic matrix resin. One method for improving fiber dispersion in fiber-reinforced thermoplastic resin molded products is to use a terpene resin as an additive (see, for example, Patent Document 1).

一方で、近年では繊維強化樹脂の注目度が大きくなり、また用途も多岐に細分化されるようになったことで、より優れた特性が要求されるようになった。特に航空機部品、エンジン部品やモーター部品などでは高温下での使用が想定される。同部品には耐熱性の観点から金属材料が用いられていたが、熱可塑性マトリクス樹脂に耐熱性の高い樹脂を適用することで耐熱性の課題を解決し、金属に対してより比強度、比剛性に優れる複合材料への代替の需要が高まっている。このような高耐熱熱可塑性マトリクス樹脂を用いた繊維強化熱可塑性樹脂成形品においても、繊維分散性を高める手段として、例えば、ポリエーテルエーテルケトンオリゴマーを添加剤として用いる手法が挙げられている(例えば、特許文献2)。 On the other hand, in recent years, fiber-reinforced resins have been attracting more attention, and their applications have been subdivided into many different areas, which has led to a demand for better properties. In particular, aircraft parts, engine parts, motor parts, and other parts are expected to be used at high temperatures. Metal materials have been used for these parts from the perspective of heat resistance, but by using highly heat-resistant resins as thermoplastic matrix resins, the heat resistance issue has been resolved, and there is an increasing demand for alternative composite materials that have better specific strength and specific stiffness than metals. Even in fiber-reinforced thermoplastic resin molded products using such highly heat-resistant thermoplastic matrix resins, a method of using polyether ether ketone oligomers as an additive has been proposed as a means of improving fiber dispersion (for example, Patent Document 2).

特開2010―248482号公報JP 2010-248482 A 特開2013―6960号公報JP 2013-6960 A

しかしながら、特許文献1、2に記載される技術では、依然として良好な外観品位と耐熱性の両立が不十分であった。 However, the technologies described in Patent Documents 1 and 2 still do not provide a good balance between good appearance quality and heat resistance.

高耐熱熱可塑性マトリクス樹脂を用いた場合、成形プロセス温度が他の樹脂に比べ高い。特許文献1に記載の添加剤は耐熱性が不足しており、添加剤の繊維分散性向上の効果が限定的であった。強化繊維の分散性が不均一である状態、即ち繊維束の状態で残存した場合、局所的な表面粗さの増大や色むらなど成形品の外観品位に不良を起こすことがある。
また、特許文献2に記載の方法においても、添加剤であるポリエーテルエーテルケトンオリゴマーの分子量が低く、ガス焼けの抑制に対しては十分ではなかった。
When a high heat-resistant thermoplastic matrix resin is used, the molding process temperature is higher than that of other resins. The additive described in Patent Document 1 lacks heat resistance, and the effect of the additive in improving fiber dispersion is limited. If the dispersion of the reinforcing fibers is not uniform, that is, if the fibers remain in the form of fiber bundles, this can cause poor appearance quality of the molded product, such as increased local surface roughness and color unevenness.
Also in the method described in Patent Document 2, the molecular weight of the polyether ether ketone oligomer used as an additive is low, and gas burning is not sufficiently suppressed.

前記の課題を解決するため、本発明は、主として以下の構成からなる。
(1)ガラス転移点が190℃を超える非晶性樹脂および融点が300℃を超える結晶性樹脂から選ばれる少なくとも1種である熱可塑性マトリクス樹脂(A)、350℃における重量減少率が5%未満であるロジン樹脂(B)、ならびに少なくとも炭素繊維を含む強化繊維(C)を含む、繊維強化熱可塑性樹脂組成物。
(2)前記ロジン樹脂(B)がロジンポリオールである、(1)に記載の繊維強化熱可塑性樹脂組成物。
(3)前記熱可塑性マトリクス樹脂(A)がポリエーテルイミド樹脂、ポリアリールエーテルケトン樹脂、およびポリエーテルスルフォン樹脂から選ばれる少なくとも1種である、(1)または(2)に記載の繊維強化熱可塑性樹脂組成物。
(4)強化繊維(C)が炭素繊維のみである、(1)~(3)のいずれかに記載の繊維強化熱可塑性樹脂組成物。
(5)ロジン樹脂(B)の重量比率が強化繊維(C)に対し15%以上もしくは50%以下である、(1)~(4)のいずれかに記載の繊維強化熱可塑性樹脂組成物。
(6)ガラス転移点が190℃を超える非晶性樹脂および融点が300℃を超える結晶性樹脂から選ばれる少なくとも1種である熱可塑性マトリクス樹脂(A)、350℃における重量減少率が5%未満であるロジン樹脂(B)、ならびに少なくとも炭素繊維を含む強化繊維(C)を含む繊維強化熱可塑性樹脂成形材料であって、強化繊維(C)を含む強化繊維束にロジン樹脂(B)を含浸させてなる複合体(D)の外側に熱可塑性マトリクス樹脂(A)を含み、強化繊維(C)が成形材料の軸心方向にほぼ平行に配列されている繊維強化熱可塑性樹脂成形材料。
(7)強化繊維(C)の長さと成形材料の長さが実質的に同じである、(6)に記載の繊維強化熱可塑性樹脂成形材料。
(8)前記熱可塑性マトリクス樹脂(A)が前記複合体(D)の周囲を被覆した芯鞘構造である、(6)または(7)に記載の繊維強化熱可塑性樹脂成形材料。
(9)長さが1mm以上もしくは50mm以下である、(6)~(8)のいずれかに記載の繊維強化熱可塑性樹脂成形材料。
(10)(1)~(5)のいずれかに記載の繊維強化熱可塑性樹脂組成物を用いた繊維強化熱可塑性樹脂成形品。
In order to solve the above problems, the present invention mainly comprises the following components.
(1) A fiber-reinforced thermoplastic resin composition comprising: (A) a thermoplastic matrix resin which is at least one selected from an amorphous resin having a glass transition point exceeding 190°C and a crystalline resin having a melting point exceeding 300°C; (B) a rosin resin having a weight loss rate of less than 5% at 350°C; and (C) reinforcing fibers which include at least carbon fibers.
(2) The fiber-reinforced thermoplastic resin composition according to (1), wherein the rosin resin (B) is a rosin polyol.
(3) The fiber-reinforced thermoplastic resin composition according to (1) or (2), wherein the thermoplastic matrix resin (A) is at least one selected from a polyetherimide resin, a polyaryl ether ketone resin, and a polyether sulfone resin.
(4) The fiber-reinforced thermoplastic resin composition according to any one of (1) to (3), wherein the reinforcing fiber (C) is only carbon fiber.
(5) The fiber-reinforced thermoplastic resin composition according to any one of (1) to (4), wherein the weight ratio of the rosin resin (B) is 15% or more or 50% or less with respect to the reinforcing fiber (C).
(6) A fiber-reinforced thermoplastic resin molding material comprising: a thermoplastic matrix resin (A) which is at least one selected from an amorphous resin having a glass transition point exceeding 190°C and a crystalline resin having a melting point exceeding 300°C; a rosin resin (B) having a weight loss rate of less than 5% at 350°C; and reinforcing fibers (C) which contain at least carbon fibers, wherein the fiber-reinforced thermoplastic resin molding material comprises the thermoplastic matrix resin (A) on the outside of a composite (D) obtained by impregnating a reinforcing fiber bundle containing the reinforcing fiber (C) with the rosin resin (B), and the reinforcing fibers (C) are arranged approximately parallel to the axial direction of the molding material.
(7) The fiber-reinforced thermoplastic resin molding material according to (6), wherein the length of the reinforcing fiber (C) and the length of the molding material are substantially the same.
(8) The fiber-reinforced thermoplastic resin molding material according to (6) or (7), wherein the thermoplastic matrix resin (A) has a core-sheath structure in which the composite (D) is covered therearound.
(9) The fiber reinforced thermoplastic resin molding material according to any one of (6) to (8), having a length of 1 mm or more or 50 mm or less.
(10) A fiber-reinforced thermoplastic resin molded product using the fiber-reinforced thermoplastic resin composition according to any one of (1) to (5).

本発明の繊維強化熱可塑性樹脂組成物及び繊維強化熱可塑性樹脂成形材料は、優れた熱分解耐性を有するロジン樹脂及び高耐熱熱可塑性マトリクス樹脂を含むため、良好な外観品位及び耐熱性を有する繊維強化熱可塑性樹脂成形品を得ることができる。 The fiber-reinforced thermoplastic resin composition and fiber-reinforced thermoplastic resin molding material of the present invention contain a rosin resin with excellent thermal decomposition resistance and a highly heat-resistant thermoplastic matrix resin, making it possible to obtain fiber-reinforced thermoplastic resin molded products with good appearance quality and heat resistance.

本発明の繊維強化熱可塑性樹脂組成物及び繊維強化熱可塑性樹脂成形材料を用いた繊維強化熱可塑性樹脂成形品は、航空機用部品、自動車部品、電気・電子機器などに有用である。特に高い耐熱性を要求される航空機用部品、エンジン部品、モーター部品において極めて有用である。 Fiber-reinforced thermoplastic resin molded products using the fiber-reinforced thermoplastic resin composition and fiber-reinforced thermoplastic resin molding material of the present invention are useful for aircraft parts, automobile parts, electrical and electronic devices, etc. They are particularly useful for aircraft parts, engine parts, and motor parts that require high heat resistance.

本発明における複合体の横断面形態の一例を示す概略構成図である。FIG. 1 is a schematic diagram showing an example of a cross-sectional shape of a composite body according to the present invention. 本発明における成形材料の好ましい縦断面形態の一例を示す概略構成図である。FIG. 1 is a schematic diagram showing an example of a preferred vertical cross-sectional form of a molding material in the present invention. 本発明における成形材料の好ましい横断面形態の一例を示す概略構成図である。FIG. 1 is a schematic diagram showing an example of a preferred cross-sectional shape of a molding material in the present invention. 本発明における成形材料の好ましい横断面形態の別の一例を示す概略構成図である。FIG. 2 is a schematic diagram showing another example of a preferred cross-sectional shape of a molding material in the present invention.

以下に、本発明について、実施の形態とともに詳細に説明する。 The present invention will be described in detail below with examples of its implementation.

本発明の繊維強化熱可塑性樹脂組成物における熱可塑性マトリクス樹脂(A)は、ガラス転移点が190℃を超える非晶性樹脂および融点が300℃を超える結晶性樹脂から選ばれる少なくとも1種である熱可塑性マトリクス樹脂である。 The thermoplastic matrix resin (A) in the fiber-reinforced thermoplastic resin composition of the present invention is at least one type of thermoplastic matrix resin selected from an amorphous resin having a glass transition point of more than 190°C and a crystalline resin having a melting point of more than 300°C.

ここで言う、ガラス転移点とは、示差走査熱量(DSC)を用いて、JIS K-7122(1987)に準じて、昇温速度10℃/分で樹脂を30℃から融解ピーク終了時より約30℃高い温度(結晶性樹脂の場合)ないしはガラス転移終了時より約30℃高い温度(非晶性樹脂の場合)まで10℃/分の昇温速度で加熱(1st Run)、その状態で10分間保持後、次いで30℃以下となるよう冷却速度10℃/分で冷却し、再度30℃から20℃/分の昇温速度でガラス転移終了時より約30℃高い温度まで昇温(2nd Run)を行って得られた2nd Runの示差走査熱量測定チャートにおける、低温側、高温側の各ベースラインを延長した直線から縦軸方向に等距離にある直線とガラス転移の階段状の変化部分の曲線とが交わる点と定義する。 The glass transition point is defined as the point where a line equidistant from the line extending the low-temperature and high-temperature baselines in the vertical direction intersects with the curve of the step-like change in the glass transition in the differential scanning calorimetry chart obtained by heating the resin from 30°C to a temperature about 30°C higher than the end of the melting peak (for crystalline resins) or about 30°C higher than the end of the glass transition (for amorphous resins) at a heating rate of 10°C/min (1st Run), holding the resin in that state for 10 minutes, then cooling it at a cooling rate of 10°C/min to 30°C or lower, and then heating it again from 30°C to a temperature about 30°C higher than the end of the glass transition at a heating rate of 20°C/min (2nd Run) using differential scanning calorimetry (DSC) in accordance with JIS K-7122 (1987).

また、融点とは、示差走査熱量(DSC)を用いて、JISK-7121(1987)に準じて、ガラス転移点の測定における2nd Runの昇温速度を10℃/分に変更した上で樹脂を30℃から結晶融解ピーク終了時より約30℃高い温度まで昇温を行って得られた2nd Runの示差走査熱量測定チャートにおける、結晶融解ピークのピークトップの温度と定義する。 The melting point is defined as the temperature at the top of the crystalline melting peak in the differential scanning calorimetry chart of the second run obtained by measuring the glass transition point using differential scanning calorimetry (DSC) in accordance with JIS K-7121 (1987), changing the heating rate in the second run to 10°C/min, and then heating the resin from 30°C to a temperature approximately 30°C higher than the end of the crystalline melting peak.

同測定において、結晶融解ピークが確認できる場合は結晶性樹脂、確認できない場合、非晶性樹脂と定義する。 In this measurement, if a crystal melting peak can be confirmed, it is defined as a crystalline resin, and if not, it is defined as an amorphous resin.

なお、融解ピークやガラス転移点が複数ある場合は最も高温における融点もしくはガラス転移点をマトリクス樹脂の融点もしくはガラス転移点とする。 When there are multiple melting peaks or glass transition points, the highest melting point or glass transition point is taken as the melting point or glass transition point of the matrix resin.

これらの樹脂を用いることで、高温環境下であっても良好な力学特性を得ることができる。例として、ポリエーテルイミド樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、ポリスルフォン樹脂、ポリエーテルスルフォン樹脂、ポリフェニレンエーテル樹脂、変性ポリフェニレンエーテル樹脂、ポリケトン樹脂、ポリアリールケトン樹脂、ポリアリールエーテルケトン樹脂(特にポリエーテルエーテルケトン樹脂、ポリエーテルケトンケトン樹脂)、ポリアリレート樹脂、ポリアミド樹脂等が挙げられる。また、これらを2種以上併用することもできる。 By using these resins, it is possible to obtain good mechanical properties even in high temperature environments. Examples include polyetherimide resins, polyimide resins, polyamideimide resins, polysulfone resins, polyethersulfone resins, polyphenylene ether resins, modified polyphenylene ether resins, polyketone resins, polyaryl ketone resins, polyaryl ether ketone resins (particularly polyether ether ketone resins and polyether ketone ketone resins), polyarylate resins, polyamide resins, etc. Two or more of these can also be used in combination.

前記熱可塑性マトリクス樹脂(A)の中でも、力学特性や流動性、耐熱性のバランスに優れるポリエーテルイミド樹脂、ポリアリールエーテルケトン樹脂、およびポリエーテルスルフォン樹脂が好ましい。 Among the thermoplastic matrix resins (A), polyetherimide resins, polyaryletherketone resins, and polyethersulfone resins are preferred, as they have an excellent balance of mechanical properties, fluidity, and heat resistance.

本発明の繊維強化熱可塑性樹脂組成物は、前記熱可塑性マトリクス樹脂(A)を、熱可塑性マトリクス樹脂(A)、ロジン樹脂(B)および強化繊維(C)の合計100重量部に対して20~94.5重量部含有することが好ましい。 The fiber-reinforced thermoplastic resin composition of the present invention preferably contains 20 to 94.5 parts by weight of the thermoplastic matrix resin (A) per 100 parts by weight of the total of the thermoplastic matrix resin (A), the rosin resin (B), and the reinforcing fibers (C).

本発明の繊維強化熱可塑性樹脂組成物に含まれるロジン樹脂(B)は、350℃における重量減少率が5重量%未満であるロジン樹脂である。これらを用いることで、本発明における繊維強化熱可塑性樹脂組成物の成形温度下においても、ガス焼けを抑制することができる。 The rosin resin (B) contained in the fiber-reinforced thermoplastic resin composition of the present invention is a rosin resin whose weight loss rate at 350°C is less than 5% by weight. By using these, gas burning can be suppressed even at the molding temperature of the fiber-reinforced thermoplastic resin composition of the present invention.

ここで、ロジン樹脂(B)の350℃における重量減少率は、白金サンプルパンを用いて、窒素雰囲気下、昇温速度10℃/分の条件にて、350℃における重量を熱重量分析(TGA)により測定し、室温における重量を基準として重量減少率を求めた値である。 The weight loss rate of rosin resin (B) at 350°C is determined by measuring the weight at 350°C by thermogravimetric analysis (TGA) using a platinum sample pan in a nitrogen atmosphere at a heating rate of 10°C/min, and calculating the weight loss rate based on the weight at room temperature.

前記ロジン樹脂(B)としては、例えば、馬尾松、スラッシュ松、メルクシ松、思茅松、テーダ松及び大王松等に由来する天然ロジン(ガムロジン、トール油ロジン、ウッドロジン)を、減圧蒸留法、水蒸気蒸留法、抽出法、再結晶法等で精製して得られる精製ロジン(以下、天然ロジンと精製ロジンをまとめて未変性ロジンともいう)や前記未変性ロジンを水素化反応させて得られる水素化ロジン、前記未変性ロジンを不均化反応させて得られる不均化ロジン、前記未変性ロジンを重合させて得られる重合ロジン、アクリル化ロジン、マレイン化ロジン、フマル化ロジン等の酸変性ロジン、前記ロジンのエステル化物(以下、これらのエステル化物をロジンエステル類とする)、ロジンフェノール樹脂、ロジンポリオール等が挙げられる。前記ロジン樹脂は、1種を単独で、又は2種以上を組み合わせてもよい。 Examples of the rosin resin (B) include purified rosin obtained by purifying natural rosin (gum rosin, tall oil rosin, wood rosin) derived from Masson pine, Slash pine, Merkus pine, Siberian pine, Loblolly pine, and Daio pine by vacuum distillation, steam distillation, extraction, recrystallization, etc. (hereinafter, natural rosin and purified rosin are collectively referred to as unmodified rosin), hydrogenated rosin obtained by hydrogenating the unmodified rosin, disproportionated rosin obtained by disproportionating the unmodified rosin, polymerized rosin obtained by polymerizing the unmodified rosin, acid-modified rosin such as acrylated rosin, maleated rosin, and fumarated rosin, esterified products of the rosin (hereinafter, these esterified products are referred to as rosin esters), rosin phenolic resin, and rosin polyol. The rosin resin may be used alone or in combination of two or more types.

前記ロジン樹脂(B)は、高耐熱マトリクス樹脂の成形温度における耐熱分解性に優れる点からロジンポリオールが好ましい。 The rosin resin (B) is preferably a rosin polyol, since it has excellent resistance to thermal decomposition at the molding temperature of the high heat-resistant matrix resin.

ロジンポリオールは、分子内に少なくとも2個のロジン骨格を有し、且つ分子内に少なくとも2個の水酸基を有する化合物である。前記ロジンポリオールは、例えば、前記未変性ロジン、水素化ロジン、又は不均化ロジンと、エポキシ樹脂との反応物が挙げられる(特開平5-155972号参照)。前記エポキシ樹脂は、例えば、ビスフェノール型エポキシ樹脂、ノボラック型エポキシ樹脂、レゾルシノール型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、ナフトールアラルキル型エポキシ樹脂、脂肪族ポリエポキシ化合物、脂環式エポキシ化合物、グリシジルアミン型エポキシ化合物、グリシジルエステル型エポキシ化合物、モノエポキシ化合物、ナフタレン型エポキシ化合物、ビフェニル型エポキシ化合物、エポキシ化ポリブタジエン、エポキシ化スチレン-ブタジエン-スチレンブロック共重合体、エポキシ基含有ポリエステル樹脂、エポキシ基含有ポリウレタン樹脂、エポキシ基含有アクリル樹脂、スチルベン型エポキシ化合物、トリアジン型エポキシ化合物、フルオレン型エポキシ化合物、トリフェノールメタン型エポキシ化合物、アルキル変性トリフェノールメタン型エポキシ化合物、ジシクロペンタジエン型エポキシ化合物、アリールアルキレン型エポキシ化合物等が挙げられる。 Rosin polyol is a compound having at least two rosin skeletons and at least two hydroxyl groups in the molecule. Examples of the rosin polyol include the reaction product of the unmodified rosin, hydrogenated rosin, or disproportionated rosin with an epoxy resin (see JP-A-5-155972). Examples of the epoxy resin include bisphenol type epoxy resins, novolac type epoxy resins, resorcinol type epoxy resins, phenol aralkyl type epoxy resins, naphthol aralkyl type epoxy resins, aliphatic polyepoxy compounds, alicyclic epoxy compounds, glycidylamine type epoxy compounds, glycidyl ester type epoxy compounds, monoepoxy compounds, naphthalene type epoxy compounds, biphenyl type epoxy compounds, epoxidized polybutadiene, epoxidized styrene-butadiene-styrene block copolymers, epoxy group-containing polyester resins, epoxy group-containing polyurethane resins, epoxy group-containing acrylic resins, stilbene type epoxy compounds, triazine type epoxy compounds, fluorene type epoxy compounds, triphenolmethane type epoxy compounds, alkyl-modified triphenolmethane type epoxy compounds, dicyclopentadiene type epoxy compounds, and aryl alkylene type epoxy compounds.

前記ビスフェノール型エポキシ樹脂は、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビスフェノールAD型エポキシ樹脂、水添ビスフェノールA型エポキシ樹脂、水添ビスフェノールF型エポキシ樹脂、水添ビスフェノールAD型エポキシ樹脂、テトラブロモビスフェノールA型エポキシ樹脂等が挙げられる。 Examples of the bisphenol type epoxy resin include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, bisphenol AD type epoxy resin, hydrogenated bisphenol A type epoxy resin, hydrogenated bisphenol F type epoxy resin, hydrogenated bisphenol AD type epoxy resin, and tetrabromobisphenol A type epoxy resin.

前記ノボラック型エポキシ樹脂は、例えば、クレゾールノボラック型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、α-ナフトールノボラック型エポキシ樹脂、ビスフェノールA型ノボラック型エポキシ樹脂、臭素化フェノールノボラック型エポキシ樹脂等が挙げられる。 Examples of the novolac type epoxy resin include cresol novolac type epoxy resin, phenol novolac type epoxy resin, α-naphthol novolac type epoxy resin, bisphenol A type novolac type epoxy resin, and brominated phenol novolac type epoxy resin.

前記脂肪族ポリエポキシ化合物は、例えば、1,4-ブタンジオールジクリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、エチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、ネオペンチルグルコールジグリシジルエーテル、グリセロールジグリシジルエーテル、グリセロールトリグリシジルエーテル、トリメチロールプロパンジグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、ジグリセロールトリグリシジルエーテル、ソルビトールテトラグリシジルエーテル、ジグリシジルエーテル等が挙げられる。 Examples of the aliphatic polyepoxy compound include 1,4-butanediol diglycidyl ether, 1,6-hexanediol diglycidyl ether, ethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, neopentyl glycol diglycidyl ether, glycerol diglycidyl ether, glycerol triglycidyl ether, trimethylolpropane diglycidyl ether, trimethylolpropane triglycidyl ether, diglycerol triglycidyl ether, sorbitol tetraglycidyl ether, and diglycidyl ether.

前記脂環式エポキシ化合物は、例えば、3,4-エポキシシクロヘキシルメチル-3’,4’-エポキシシクロヘキサンカルボキシレート、2-(3,4-エポキシシクロヘキシル-5,5-スピロ-3,4-エポキシ)シクロヘキサン-メタ-ジオキサン、ビス(3,4-エポキシシクロヘキシルメチル)アジペート、ビス(3,4-エポキシ-6-メチルシクロヘキシルメチル)アジペート、3,4-エポキシ-6-メチルシクロヘキシル-3,4-エポキシ-6’-メチルシクロヘキサンカルボキシレート、メチレンビス(3,4-エポキシシクロヘキサン)、ジシクロペンタジエンジエポキサイド、エチレングリコールジ(3,4-エポキシシクロヘキシルメチル)エーテル、エチレンビス(3,4-エポキシシクロヘキサンカルボキシレート)、ラクトン変性3,4-エポキシシクロヘキシルメチル-3’,4’-エポキシシクロヘキサンカルボキシレート等が挙げられる。 Examples of the alicyclic epoxy compounds include 3,4-epoxycyclohexylmethyl-3',4'-epoxycyclohexanecarboxylate, 2-(3,4-epoxycyclohexyl-5,5-spiro-3,4-epoxy)cyclohexane-meta-dioxane, bis(3,4-epoxycyclohexylmethyl)adipate, bis(3,4-epoxy-6-methylcyclohexylmethyl)adipate, 3,4-epoxy-6-methylcyclohexyl-3,4-epoxy-6'-methylcyclohexanecarboxylate, methylene bis(3,4-epoxycyclohexane), dicyclopentadiene diepoxide, ethylene glycol di(3,4-epoxycyclohexylmethyl)ether, ethylene bis(3,4-epoxycyclohexanecarboxylate), lactone-modified 3,4-epoxycyclohexylmethyl-3',4'-epoxycyclohexanecarboxylate, and the like.

前記グリシジルアミン型エポキシ化合物は、例えば、テトラグリシジルジアミノジフェニルメタン、トリグリシジルパラアミノフェノール、トリグリシジルメタアミノフェノール、テトラグリシジルメタキシリレンジアミン等が挙げられる。 Examples of the glycidylamine type epoxy compound include tetraglycidyldiaminodiphenylmethane, triglycidyl paraaminophenol, triglycidyl meta-aminophenol, and tetraglycidyl meta-xylylenediamine.

前記グリシジルエステル型エポキシ化合物は、例えば、ジグリシジルフタレート、ジグリシジルヘキサヒドロフタレート、ジグリシジルテトラヒドロフタレート等が挙げられる。 Examples of the glycidyl ester type epoxy compounds include diglycidyl phthalate, diglycidyl hexahydrophthalate, and diglycidyl tetrahydrophthalate.

前記ロジンポリオールの製造方法は、特に限定されないが、例えば、触媒存在下、前記未変性ロジン、水素化ロジン又は不均化ロジンとエポキシ樹脂とを120℃~200℃で開環付加反応させる方法が挙げられる。該触媒としては、例えばトリメチルアミン、トリエチルアミン、トリブチルアミン、ベンジルジメチルアミン、ピリジン、2-メチルイミダゾール等のアミン系触媒、ベンジルトリメチルアンモニウムクロライド等の第4アンモニウム塩、ルイス酸、ホウ酸エステル、有機金属化合物、有機金属塩等を使用できる。 The method for producing the rosin polyol is not particularly limited, but an example thereof is a method in which the unmodified rosin, hydrogenated rosin or disproportionated rosin is subjected to a ring-opening addition reaction with an epoxy resin at 120°C to 200°C in the presence of a catalyst. Examples of the catalyst that can be used include amine catalysts such as trimethylamine, triethylamine, tributylamine, benzyldimethylamine, pyridine, and 2-methylimidazole, quaternary ammonium salts such as benzyltrimethylammonium chloride, Lewis acids, borate esters, organometallic compounds, and organometallic salts.

前記ロジン樹脂(B)の軟化点は、80℃~200℃であり、繊維強化樹脂における機械的強度に優れ、ハンドリング及び加工性に優れる点から、80℃~180℃程度が好ましく、90℃~160℃程度がより好ましい。 The softening point of the rosin resin (B) is 80°C to 200°C, and is preferably about 80°C to 180°C, more preferably about 90°C to 160°C, in order to provide excellent mechanical strength in fiber-reinforced resins and excellent handling and processability.

前記ロジン樹脂(B)の数平均分子量は、1000~50,000が好ましい。数平均分子量が1000以上であれば、組成物を成形した時の成形品の曲げ強度および引張強度の向上及びさせることができ、成形時における気化によるガス焼けを抑制することができる。数平均分子量は2000以上がより好ましく、4000以上がさらに好ましい。また、数平均分子量が50,000以下であれば、前記ロジン樹脂(B)の粘度が適度に低いことから、成形品中に含まれる強化繊維(C)への含浸性に優れ、組成物を成形した時の成形品中における強化繊維(C)の分散性をより向上させることができる。数平均分子量は25,000以下がより好ましく、15,000以下がさらに好ましく、10,000以下がさらに好ましい。なお、かかる化合物の数平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)を用いて測定することができる。 The number average molecular weight of the rosin resin (B) is preferably 1000 to 50,000. If the number average molecular weight is 1000 or more, the bending strength and tensile strength of the molded product when the composition is molded can be improved, and gas burning due to vaporization during molding can be suppressed. The number average molecular weight is more preferably 2000 or more, and even more preferably 4000 or more. Furthermore, if the number average molecular weight is 50,000 or less, the viscosity of the rosin resin (B) is appropriately low, so that the impregnation of the reinforcing fiber (C) contained in the molded product is excellent, and the dispersibility of the reinforcing fiber (C) in the molded product when the composition is molded can be further improved. The number average molecular weight is more preferably 25,000 or less, more preferably 15,000 or less, and even more preferably 10,000 or less. The number average molecular weight of such a compound can be measured using gel permeation chromatography (GPC).

本発明の繊維強化熱可塑性樹脂組成物におけるロジン樹脂(B)の含有量は、強化繊維(C)、熱可塑性マトリクス樹脂(A)およびロジン樹脂(B)の合計100重量部に対して、0.5~30重量部であると好ましい。ロジン樹脂(B)の含有量が0.5重量部以上であれば、成形品内での強化繊維(C)の流動性がより向上し、分散性がより向上する。1重量部以上が好ましく、2重量部以上が好ましい。一方、ロジン樹脂(B)の含有量が30重量部以下であれば、成形時のガス焼けを抑制させることができる。20重量部以下が好ましく、15重量部以下がより好ましく、10重量部以下がさらに好ましい。また、流動性、分散性ならびにガス焼け抑制の観点からロジン樹脂(B)の重量比率が強化繊維(C)に対し15%以上もしくは50%以下であることが好ましい。 The content of rosin resin (B) in the fiber-reinforced thermoplastic resin composition of the present invention is preferably 0.5 to 30 parts by weight per 100 parts by weight of the total of reinforcing fiber (C), thermoplastic matrix resin (A) and rosin resin (B). If the content of rosin resin (B) is 0.5 parts by weight or more, the fluidity and dispersibility of reinforcing fiber (C) in the molded product are further improved. 1 part by weight or more is preferable, and 2 parts by weight or more is preferable. On the other hand, if the content of rosin resin (B) is 30 parts by weight or less, gas burning during molding can be suppressed. 20 parts by weight or less is preferable, 15 parts by weight or less is more preferable, and 10 parts by weight or less is even more preferable. In addition, from the viewpoint of fluidity, dispersibility and suppression of gas burning, it is preferable that the weight ratio of rosin resin (B) to reinforcing fiber (C) is 15% or more or 50% or less.

本発明の繊維強化熱可塑性樹脂組成物に含まれる強化繊維(C)は、少なくとも炭素繊維を含む。強化繊維(C)には炭素繊維以外の繊維を含んでもよいが、比強度、比剛性の観点から炭素繊維のみを含むことが好ましい。 The reinforcing fiber (C) contained in the fiber-reinforced thermoplastic resin composition of the present invention contains at least carbon fiber. The reinforcing fiber (C) may contain fibers other than carbon fiber, but from the viewpoint of specific strength and specific rigidity, it is preferable that the reinforcing fiber (C) contains only carbon fiber.

炭素繊維の種類としては、PAN系炭素繊維、ピッチ系炭素繊維、セルロース系炭素繊維、気相成長系炭素繊維、これらの黒鉛化繊維などが例示される。PAN系炭素繊維はポリアクリロニトリル繊維を原料とする炭素繊維である。ピッチ系炭素繊維は石油タールや石油ピッチを原料とする炭素繊維である。セルロース系炭素繊維はビスコースレーヨンや酢酸セルロースなどを原料とする炭素繊維である。気相成長系炭素繊維は炭化水素などを原料とする炭素繊維である。これらのうち、強度と弾性率のバランスに優れる点で、PAN系炭素繊維が好ましい。また、導電性をより向上させるために、ニッケル、銅またはイッテルビウムなどの金属を被覆した炭素繊維を用いることもできる。 Examples of types of carbon fiber include PAN-based carbon fiber, pitch-based carbon fiber, cellulose-based carbon fiber, vapor-grown carbon fiber, and graphitized fibers of these. PAN-based carbon fiber is carbon fiber made from polyacrylonitrile fiber. Pitch-based carbon fiber is carbon fiber made from petroleum tar or petroleum pitch. Cellulose-based carbon fiber is carbon fiber made from viscose rayon or cellulose acetate. Vapor-grown carbon fiber is carbon fiber made from hydrocarbons. Of these, PAN-based carbon fiber is preferred because of its excellent balance between strength and elastic modulus. In order to further improve conductivity, carbon fiber coated with a metal such as nickel, copper, or ytterbium can also be used.

炭素繊維の平均繊維径は特に限定されないが、成形品の力学特性と表面外観の観点から、1~20μmが好ましく、3~15μmがより好ましい。強化繊維束とした場合の単糸数には、特に制限はないが、100~350,000本が好ましく、生産性の観点から、20,000~100,000本がより好ましい。 The average fiber diameter of the carbon fibers is not particularly limited, but from the viewpoint of the mechanical properties and surface appearance of the molded product, it is preferably 1 to 20 μm, and more preferably 3 to 15 μm. There is no particular limit to the number of single fibers in the reinforcing fiber bundle, but it is preferably 100 to 350,000, and from the viewpoint of productivity, it is more preferably 20,000 to 100,000.

炭素繊維と熱可塑性マトリクス樹脂(A)の接着性を向上する等の目的で、炭素繊維は表面処理されたものであってもかまわない。表面処理の方法としては、例えば、電解処理、オゾン処理、紫外線処理等を挙げることができる。 The carbon fibers may be surface-treated for the purpose of improving the adhesion between the carbon fibers and the thermoplastic matrix resin (A). Examples of surface treatment methods include electrolytic treatment, ozone treatment, and ultraviolet treatment.

炭素繊維の毛羽立ちを防止したり、炭素繊維と熱可塑性マトリクス樹脂(A)との接着性を向上する等の目的で、炭素繊維はサイジング剤で被覆されたものであってもかまわない。サイジング剤としては、具体的には、エポキシ樹脂、フェノール樹脂、ポリエチレングリコール、ポリウレタン、ポリエステル、乳化剤あるいは界面活性剤などが挙げられる。これらを2種以上用いてもよい。これらのサイジング剤は、成形材料において、炭素繊維の表面に含有される。サイジング剤は、水溶性もしくは水分散性であることが好ましく、炭素繊維との濡れ性に優れるエポキシ樹脂が好ましい。中でも多官能エポキシ樹脂がより好ましい。 The carbon fibers may be coated with a sizing agent for the purpose of preventing fuzzing of the carbon fibers and improving adhesion between the carbon fibers and the thermoplastic matrix resin (A). Specific examples of sizing agents include epoxy resins, phenolic resins, polyethylene glycol, polyurethane, polyester, emulsifiers, and surfactants. Two or more of these may be used. These sizing agents are contained on the surface of the carbon fibers in the molding material. The sizing agent is preferably water-soluble or water-dispersible, and is preferably an epoxy resin that has excellent wettability with the carbon fibers. Among these, a multifunctional epoxy resin is more preferable.

本発明の繊維強化熱可塑性樹脂組成物は熱可塑性マトリクス樹脂(A)、ロジン樹脂(B)および強化繊維(C)の合計100重量部に対して、強化繊維(C)を5~50重量部含有することが好ましい。強化繊維(C)の含有量が5重量部未満であると、組成物を成形した時の成形品の引張強度および衝撃強度が低下する。強化繊維(C)の含有量は10重量部以上が好ましい。また、強化繊維(C)の含有量が50重量部を超えると、成形品中の強化繊維(C)の分散性が低下し、成形品の衝撃強度、外観品位の低下を引き起こすことが多い。強化繊維(C)の含有量は30重量部以下が好ましい。 The fiber-reinforced thermoplastic resin composition of the present invention preferably contains 5 to 50 parts by weight of reinforcing fiber (C) per 100 parts by weight of the total of the thermoplastic matrix resin (A), the rosin resin (B), and the reinforcing fiber (C). If the content of reinforcing fiber (C) is less than 5 parts by weight, the tensile strength and impact strength of the molded article when the composition is molded will decrease. The content of reinforcing fiber (C) is preferably 10 parts by weight or more. Furthermore, if the content of reinforcing fiber (C) exceeds 50 parts by weight, the dispersibility of the reinforcing fiber (C) in the molded article will decrease, often causing a decrease in the impact strength and appearance quality of the molded article. The content of reinforcing fiber (C) is preferably 30 parts by weight or less.

本発明の繊維強化熱可塑性樹脂組成物において、強化繊維(C)の重量平均繊維長(Lw)が、0.1~7.0mmであることが好ましい。重量平均繊維長(Lw)が0.1mm以上であれば、成形品の力学特性がより向上する。Lwは0.3mm以上が好ましい。一方で、重量平均繊維長(Lw)が7.0mm以下であれば、強化繊維(C)同士の単糸間での絡み合いを抑制して分散性がより向上するため、成形品の力学特性、外観品位がより向上する。Lwは5.0mm以下がより好ましく、4.0mm以下がさらに好ましい。ここで、本発明における「重量平均繊維長」とは、重量平均分子量の算出方法を繊維長の算出に適用し、単純に数平均を取るのではなく、繊維長の寄与を考慮した下記の式から算出される重量平均繊維長を指す。ただし、下記の式は、強化繊維(C)の繊維径および密度が一定の場合に適用される。
重量平均繊維長=Σ(Mi×Ni)/Σ(Mi×Ni)
Mi:繊維長(mm)
Ni:繊維長Miの強化繊維の個数
In the fiber-reinforced thermoplastic resin composition of the present invention, the weight average fiber length (Lw) of the reinforcing fiber (C) is preferably 0.1 to 7.0 mm. If the weight average fiber length (Lw) is 0.1 mm or more, the mechanical properties of the molded product are further improved. Lw is preferably 0.3 mm or more. On the other hand, if the weight average fiber length (Lw) is 7.0 mm or less, the entanglement between the single yarns of the reinforcing fiber (C) is suppressed and the dispersibility is further improved, so that the mechanical properties and the appearance quality of the molded product are further improved. Lw is more preferably 5.0 mm or less, and even more preferably 4.0 mm or less. Here, the "weight average fiber length" in the present invention refers to the weight average fiber length calculated from the following formula that takes into account the contribution of the fiber length, rather than simply taking the number average by applying the calculation method of the weight average molecular weight to the calculation of the fiber length. However, the following formula is applied when the fiber diameter and density of the reinforcing fiber (C) are constant.
Weight average fiber length = Σ (Mi 2 × Ni) / Σ (Mi × Ni)
Mi: fiber length (mm)
Ni: Number of reinforcing fibers of fiber length Mi

前記重量平均繊維長の測定は、次の方法により行うことができる。ホットステージ付き光学顕微鏡を用い、成形品から適宜試験片を切り出し、用いた熱可塑性マトリクス樹脂(A)の溶融温度に合わせ、適宜設定したホットステージの上にガラス板間に挟んだ状態で加熱し、フィルム状にして均一分散させ、熱可塑性マトリクス樹脂(A)が溶融した状態で、光学顕微鏡(50~200倍)にて観察する。無作為に選んだ1000本の強化繊維(C)の繊維長を計測して、前記式から重量平均繊維長(Lw)を算出する。または、成形品から切り出した試験片を熱可塑性マトリクス樹脂(A)が溶解する溶剤中へ投入し、適宜加熱処理を加え、強化繊維(C)が均一に分散した溶液を作製する。その後、その溶液を濾過して濾紙上に分散した強化繊維(C)を光学顕微鏡(50~200倍)にて観察する。無作為に選んだ1000本の強化繊維(C)の繊維長を計測して、前記式から重量平均繊維長(Lw)を算出する。また、このとき用いる濾紙としては、アドバンテック社製の定量濾紙(型番:No.5C)などが挙げられる。 The weight average fiber length can be measured by the following method. Using an optical microscope with a hot stage, cut out an appropriate test piece from the molded product, heat it between glass plates on a hot stage set appropriately according to the melting temperature of the thermoplastic matrix resin (A) used, form it into a film, and uniformly disperse it. In the state where the thermoplastic matrix resin (A) is molten, observe it with an optical microscope (50 to 200 times). Measure the fiber length of 1,000 randomly selected reinforcing fibers (C) and calculate the weight average fiber length (Lw) from the above formula. Alternatively, put the test piece cut out from the molded product into a solvent in which the thermoplastic matrix resin (A) dissolves, and apply an appropriate heat treatment to prepare a solution in which the reinforcing fibers (C) are uniformly dispersed. Then, filter the solution and observe the reinforcing fibers (C) dispersed on the filter paper with an optical microscope (50 to 200 times). Measure the fiber length of 1,000 randomly selected reinforcing fibers (C) and calculate the weight average fiber length (Lw) from the above formula. The filter paper used here may be Advantec's quantitative filter paper (model number: No. 5C).

本発明の繊維強化熱可塑性樹脂組成物は、本発明の目的を損なわない範囲で、前記成分(A)~(C)に加えて他の成分を含有してもよい。他の成分の例としては、ポリマーブレンドやポリマーアロイとして用いる熱可塑性樹脂や熱硬化性樹脂、炭素繊維以外の無機充填材(ガラス繊維、有機繊維等)、難燃剤、結晶核剤、紫外線吸収剤、酸化防止剤、衝撃吸収剤、制振剤、抗菌剤、防虫剤、防臭剤、着色防止剤、熱安定剤、離型剤、帯電防止剤、可塑剤、滑剤、着色剤、顔料、染料、発泡剤、制泡剤、あるいは、カップリング剤などが挙げられる。 The fiber-reinforced thermoplastic resin composition of the present invention may contain other components in addition to the components (A) to (C) described above, provided that the object of the present invention is not impaired. Examples of other components include thermoplastic resins and thermosetting resins used as polymer blends or polymer alloys, inorganic fillers other than carbon fiber (glass fiber, organic fiber, etc.), flame retardants, crystal nucleating agents, UV absorbers, antioxidants, impact absorbers, vibration dampers, antibacterial agents, insect repellents, deodorants, color inhibitors, heat stabilizers, release agents, antistatic agents, plasticizers, lubricants, colorants, pigments, dyes, foaming agents, foam control agents, and coupling agents.

次に、本発明の繊維強化熱可塑性樹脂成形材料について説明する。 Next, we will explain the fiber-reinforced thermoplastic resin molding material of the present invention.

本発明における繊維強化熱可塑性樹脂成形材料の組成は本発明の繊維強化熱可塑性樹脂組成物と同様に、ガラス転移点が190℃を超える非晶性樹脂および融点が300℃を超える結晶性樹脂から選ばれる少なくとも1種である熱可塑性マトリクス樹脂(A)、350℃における重量減少率が5%未満であるロジン樹脂(B)、ならびに少なくとも炭素繊維を含む強化繊維(C)を含む。 The composition of the fiber-reinforced thermoplastic resin molding material of the present invention is the same as that of the fiber-reinforced thermoplastic resin composition of the present invention, and includes a thermoplastic matrix resin (A) that is at least one selected from an amorphous resin having a glass transition point exceeding 190°C and a crystalline resin having a melting point exceeding 300°C, a rosin resin (B) whose weight loss rate at 350°C is less than 5%, and reinforcing fibers (C) that include at least carbon fibers.

また、好ましい材料構成においても本発明の繊維強化熱可塑性樹脂組成物と同様であり、前記熱可塑性マトリクス樹脂(A)はポリエーテルイミド樹脂、ポリアリールエーテルケトン樹脂、およびポリエーテルスルフォン樹脂、前記ロジン樹脂(B)はロジンポリオール、強化繊維(C)は炭素繊維のみであることが好ましい。 The preferred material composition is also the same as that of the fiber-reinforced thermoplastic resin composition of the present invention, and it is preferred that the thermoplastic matrix resin (A) is a polyetherimide resin, a polyaryletherketone resin, and a polyethersulfone resin, the rosin resin (B) is a rosin polyol, and the reinforcing fiber (C) is only carbon fiber.

各成分の重量比率においても本発明の繊維強化熱可塑性樹脂組成物と同様に特定の範囲であることが好ましい。具体的には、前記熱可塑性マトリクス樹脂(A)を、熱可塑性マトリクス樹脂(A)、ロジン樹脂(B)および強化繊維(C)の合計100重量部に対して、熱可塑性マトリクス樹脂(A)が20~94.5重量部、ロジン樹脂(B)が0.5~30重量部および強化繊維(C)が5~50重量部であると好ましい。加えて、ロジン樹脂(B)の重量比率が強化繊維(C)に対し15%以上もしくは50%以下であることがより好ましい。 The weight ratio of each component is preferably within a specific range, as in the fiber-reinforced thermoplastic resin composition of the present invention. Specifically, the thermoplastic matrix resin (A) is preferably 20 to 94.5 parts by weight, 0.5 to 30 parts by weight of rosin resin (B), and 5 to 50 parts by weight of reinforcing fiber (C) per 100 parts by weight of the total of thermoplastic matrix resin (A), rosin resin (B), and reinforcing fiber (C). In addition, it is more preferable that the weight ratio of rosin resin (B) is 15% or more or 50% or less relative to the reinforcing fiber (C).

次に、本発明における繊維強化熱可塑性樹脂成形材料の形態について説明する。本発明の繊維強化熱可塑性樹脂成形材料は、強化繊維(C)を含む強化繊維束にロジン樹脂(B)を含浸させてなる複合体(D)の外側に熱可塑性マトリクス樹脂(A)を含み、強化繊維(C)が成形材料の軸心方向にほぼ平行に配列されている。 Next, the form of the fiber-reinforced thermoplastic resin molding material of the present invention will be described. The fiber-reinforced thermoplastic resin molding material of the present invention contains a thermoplastic matrix resin (A) on the outside of a composite (D) formed by impregnating a reinforcing fiber bundle containing reinforcing fibers (C) with a rosin resin (B), and the reinforcing fibers (C) are arranged approximately parallel to the axial direction of the molding material.

図1は、本発明における複合体(D)の横断面形態の一例を示す概略図である。図1に示すように、本発明における複合体(D)は、強化繊維(C)の各単繊維間に、ロジン樹脂(B)が満たされている。すなわち、ロジン樹脂(B)の海に、強化繊維(C)の各単繊維が島のように分散している状態である。なお、本発明において、縦断面とは、軸心方向を含む面での断面を意味し、横断面とは、軸心方向に直交する面での断面を意味する。また、成形材料が例えばペレットのような円柱状の場合、軸心方向とは、円柱の軸心を指す。 Figure 1 is a schematic diagram showing an example of the cross-sectional shape of the composite (D) of the present invention. As shown in Figure 1, in the composite (D) of the present invention, rosin resin (B) is filled between each single fiber of the reinforcing fiber (C). In other words, each single fiber of the reinforcing fiber (C) is dispersed like an island in a sea of rosin resin (B). In the present invention, the longitudinal section means a section in a plane including the axial direction, and the transverse section means a section in a plane perpendicular to the axial direction. In addition, when the molding material is cylindrical, such as a pellet, the axial direction refers to the axis of the cylinder.

ここで言う、「ほぼ並列して配列されている」とは、強化繊維(C)の長軸の軸線と、成形材料の長軸の軸線とが、同方向を指向している状態を示す。軸線同士のなす角度は好ましくは20°以下であり、より好ましくは10°以下であり、さらに好ましくは5°以下である。強化繊維(C)がほぼ並列して配列されていることで、成形材料中の繊維長を均一に保つことができ、極端に繊維長の長い繊維を排除できる点において、繊維分散性を高めることができる。 The phrase "arranged substantially parallel" refers to a state in which the long axis of the reinforcing fiber (C) and the long axis of the molding material are oriented in the same direction. The angle between the axes is preferably 20° or less, more preferably 10° or less, and even more preferably 5° or less. By arranging the reinforcing fibers (C) substantially parallel, the fiber length in the molding material can be kept uniform, and fiber dispersion can be improved in that fibers with extremely long fiber lengths can be eliminated.

加えて、強化繊維(C)の長さと成形材料の長さは実質的に同じであることが好ましい。「実質的に同じ長さ」とは、成形材料内部で強化繊維(C)が意図的に切断されていたり、成形材料全長に対して有意に繊維長が異なる強化繊維(C)を実質的に含まないことを示す。強化繊維(C)が成形材料と実質的に同じ長さを有する形態は、成形材料全長に対して有意に繊維長の長い繊維を排除できる点において繊維分散性を高めることができる。また、成形材料全長に対して有意に繊維長の短い繊維を排除することで力学特性も向上する。 In addition, it is preferable that the length of the reinforcing fiber (C) and the length of the molding material are substantially the same. "Substantially the same length" means that the reinforcing fiber (C) is not intentionally cut inside the molding material, and the molding material does not substantially contain reinforcing fiber (C) whose fiber length differs significantly from the overall length of the molding material. A form in which the reinforcing fiber (C) has substantially the same length as the molding material can improve fiber dispersion in that it is possible to eliminate fibers whose fiber length is significantly longer than the overall length of the molding material. Furthermore, the mechanical properties are improved by eliminating fibers whose fiber length is significantly shorter than the overall length of the molding material.

本発明の繊維強化熱可塑性樹脂成形材料において、複合体(D)の外側に、熱可塑性マトリクス樹脂(A)を含む構成とすることにより、熱可塑性マトリクス樹脂(A)が複合体(D)を保護することができる。これにより、成形材料の運搬や取り扱い時の衝撃、擦過などによる複合体(D)の破砕、飛散などを抑制し、成形材料の形状を保持することができ、取り扱い性が向上する。 In the fiber-reinforced thermoplastic resin molding material of the present invention, by configuring the composite (D) to include a thermoplastic matrix resin (A) on the outside, the thermoplastic matrix resin (A) can protect the composite (D). This prevents the composite (D) from being crushed or scattered due to impacts or abrasions during transportation or handling of the molding material, and the shape of the molding material can be maintained, improving handleability.

図2や図3は、本発明の繊維強化熱可塑性樹脂成形材料における断面形態の一例を示す概略図である。成形材料の断面形態は、複合体(D)の外側に、熱可塑性マトリクス樹脂(A)が含まれるように配置されていれば図に示されたものに限定されない。しかしながら、前記取り扱い性の観点から、成形材料の断面は、図2の縦断面形態に示されるように、複合体(D)が熱可塑性マトリクス樹脂(A)で層状に挟まれて配置されている形態が好ましい。より好ましい形態として、図3、4の横断面形態に示されるような、複合体(D)の周囲を熱可塑性マトリクス樹脂(A)が被覆するような芯鞘構造に配置されている形態が挙げられる。また、図4に示されるような複数の複合体(D)を熱可塑性マトリクス樹脂(A)が被覆するように配置されている形態であってもよい。その場合、複合体(D)の数は2~6程度が望ましい。 2 and 3 are schematic diagrams showing an example of the cross-sectional form of the fiber-reinforced thermoplastic resin molding material of the present invention. The cross-sectional form of the molding material is not limited to that shown in the figure, as long as the thermoplastic matrix resin (A) is included on the outside of the composite (D). However, from the viewpoint of the handling property, the cross section of the molding material is preferably a form in which the composite (D) is sandwiched between layers of thermoplastic matrix resin (A) as shown in the longitudinal cross-sectional form of FIG. 2. More preferred forms include a form in which the composite (D) is arranged in a core-sheath structure in which the thermoplastic matrix resin (A) covers the periphery of the composite (D), as shown in the transverse cross-sectional forms of FIGS. 3 and 4. Alternatively, the composite (D) may be arranged so that the thermoplastic matrix resin (A) covers a plurality of composites (D) as shown in FIG. 4. In that case, the number of composites (D) is preferably about 2 to 6.

強化繊維(C)および成形材料の長さは、1mm以上、50mm以下、が好ましく、5mm以上、15mm以下がより好ましい。前記の長さに調製することにより、成形時の流動性、取扱性を十分に高めることができる。このように適切な長さに切断された成形材料としてとりわけ好ましい態様は、射出成形用の長繊維ペレットが例示できる。また、成形材料は、長手方向にほぼ同一の断面形状を保ち連続であることが好ましい。 The length of the reinforcing fiber (C) and the molding material is preferably 1 mm or more and 50 mm or less, and more preferably 5 mm or more and 15 mm or less. By adjusting the length to the above range, the fluidity and ease of handling during molding can be sufficiently improved. An example of a particularly preferred embodiment of the molding material cut to an appropriate length in this way is long fiber pellets for injection molding. In addition, it is preferable that the molding material maintains approximately the same cross-sectional shape in the longitudinal direction and is continuous.

複合体(D)と熱可塑性マトリクス樹脂(A)およびロジン樹脂(B)は、境界付近で部分的に熱可塑性マトリクス樹脂(A)およびロジン樹脂(B)が複合体(D)の一部に入り込み、相溶しているような状態であってもよいし、強化繊維(C)の繊維束に熱可塑性マトリクス樹脂(A)およびロジン樹脂(B)が含浸しているような状態になっていてもよい。 The composite (D) may be in a state where the thermoplastic matrix resin (A) and the rosin resin (B) partially penetrate into a part of the composite (D) near the boundary and are compatible with each other, or the fiber bundles of the reinforcing fibers (C) may be impregnated with the thermoplastic matrix resin (A) and the rosin resin (B).

本発明の繊維強化熱可塑性樹脂成形材料は、次の方法に限らず、公知の製造方法により得ることができる。例えば、次の方法により得ることができる。 The fiber-reinforced thermoplastic resin molding material of the present invention can be obtained by any known manufacturing method, including but not limited to the following method. For example, it can be obtained by the following method.

まず、強化繊維(C)のロービングを繊維長手方向に対して並列に合糸し、強化繊維(C)を有する繊維束を作製する。次いで、溶融させたロジン樹脂(B)を繊維束に含浸させて複合体(D)を作製する。さらに、溶融した熱可塑性マトリクス樹脂(A)で満たした含浸ダイに繊維束または複合体(D)を導き、熱可塑性マトリクス樹脂(A)を含む樹脂組成物を複合体の外側に被覆させ、ノズルを通して引き抜く。冷却固化後に所定の長さにペレタイズして、成形材料を得る。 First, rovings of reinforcing fibers (C) are combined in parallel to the longitudinal direction of the fibers to produce a fiber bundle containing reinforcing fibers (C). Next, the fiber bundle is impregnated with molten rosin resin (B) to produce a composite (D). Furthermore, the fiber bundle or composite (D) is guided to an impregnation die filled with molten thermoplastic matrix resin (A), and the resin composition containing the thermoplastic matrix resin (A) is coated on the outside of the composite, which is then pulled out through a nozzle. After cooling and solidifying, the composite is pelletized to a specified length to obtain a molding material.

また、前記方法により製造した成形材料と熱可塑性マトリクス樹脂(A)を溶融混練したペレットとをドライブレンドして、成形材料の混合物を得てもよい。この場合、成形品中における強化繊維(C)の含有量を容易に調整することができる。 The molding material produced by the above method may also be dry-blended with pellets of melt-kneaded thermoplastic matrix resin (A) to obtain a mixture of molding materials. In this case, the content of reinforcing fiber (C) in the molded product can be easily adjusted.

ここで、ドライブレンドとは、溶融混練とは異なり、複数の材料を樹脂成分が溶融しない温度で撹拌・混合し、実質的に均一な状態とすることを指し、主に射出成形や押出成形など、ペレット形状の成形材料を用いる場合に好ましく用いられる。 Here, dry blending differs from melt kneading in that multiple materials are stirred and mixed at a temperature at which the resin components do not melt, resulting in a substantially homogeneous state. It is preferably used when using pellet-shaped molding materials, such as in injection molding or extrusion molding.

次に、本発明の繊維強化熱可塑性樹脂成形品について説明する。 Next, we will explain the fiber-reinforced thermoplastic resin molded product of the present invention.

本発明における繊維強化熱可塑性樹脂成形品の組成は本発明の繊維強化熱可塑性樹脂組成物と同様に、ガラス転移点が190℃を超える非晶性樹脂および融点が300℃を超える結晶性樹脂から選ばれる少なくとも1種である熱可塑性マトリクス樹脂(A)、350℃における重量減少率が5%未満であるロジン樹脂(B)、ならびに少なくとも炭素繊維を含む強化繊維(C)を含む。 The composition of the fiber-reinforced thermoplastic resin molded product of the present invention is the same as that of the fiber-reinforced thermoplastic resin composition of the present invention, and includes a thermoplastic matrix resin (A) that is at least one selected from an amorphous resin having a glass transition point exceeding 190°C and a crystalline resin having a melting point exceeding 300°C, a rosin resin (B) that has a weight loss rate of less than 5% at 350°C, and reinforcing fibers (C) that include at least carbon fibers.

また、好ましい材料構成においても本発明の繊維強化熱可塑性樹脂組成物と同様であり、前記熱可塑性マトリクス樹脂(A)はポリエーテルイミド樹脂、ポリアリールエーテルケトン樹脂、およびポリエーテルスルフォン樹脂、前記ロジン樹脂(B)はロジンポリオール、強化繊維(C)は炭素繊維のみであることが好ましい。 The preferred material composition is also the same as that of the fiber-reinforced thermoplastic resin composition of the present invention, and it is preferred that the thermoplastic matrix resin (A) is a polyetherimide resin, a polyaryletherketone resin, and a polyethersulfone resin, the rosin resin (B) is a rosin polyol, and the reinforcing fiber (C) is only carbon fiber.

各成分の重量比率においても本発明の繊維強化熱可塑性樹脂組成物と同様に特定の範囲であることが好ましい。具体的には、熱可塑性マトリクス樹脂(A)、ロジン樹脂(B)および強化繊維(C)の合計100重量部に対して、熱可塑性マトリクス樹脂(A)が20~94.5重量部、ロジン樹脂(B)が0.5~30重量部および強化繊維(C)が5~50重量部であると好ましい。加えて、ロジン樹脂(B)の重量比率が強化繊維(C)に対し15%以上もしくは50%以下であることがより好ましい。 The weight ratio of each component is preferably within a specific range, as in the fiber-reinforced thermoplastic resin composition of the present invention. Specifically, it is preferable that the thermoplastic matrix resin (A) is 20 to 94.5 parts by weight, the rosin resin (B) is 0.5 to 30 parts by weight, and the reinforcing fiber (C) is 5 to 50 parts by weight, relative to a total of 100 parts by weight of the thermoplastic matrix resin (A), the rosin resin (B), and the reinforcing fiber (C). In addition, it is more preferable that the weight ratio of the rosin resin (B) is 15% or more or 50% or less relative to the reinforcing fiber (C).

本発明の繊維強化熱可塑性樹脂成形品においても、本発明の繊維強化熱可塑性樹脂組成物と同様に強化繊維(C)の重量平均繊維長(Lw)が、0.1~7.0mmであることが好ましい。 In the fiber-reinforced thermoplastic resin molded product of the present invention, the weight average fiber length (Lw) of the reinforcing fibers (C) is preferably 0.1 to 7.0 mm, similar to the fiber-reinforced thermoplastic resin composition of the present invention.

次に本発明における繊維強化熱可塑性樹脂成形品を得るための成形方法としては、金型を用いた成形方法が好ましく、射出成形、押出成形、プレス成形など、種々の成形方法を用いることができる。特に射出成形機を用いた成形方法により、連続的に安定した成形品を得ることができる。射出成形の条件としては、特に規定はないが、例えば、射出時間:0.1秒~20秒、より好ましくは1秒~10秒、背圧力:0.1MPa~20MPa、より好ましくは3MPa~15MPa、保圧力:1MPa~150MPa、より好ましくは5MPa~100MPa、保圧時間:1秒~30秒、より好ましくは5秒~20秒、シリンダー温度:350℃~400℃、金型温度:80℃~190℃の条件が好ましい。ここで、シリンダー温度とは、射出成形機の成形材料を加熱溶融する部分の温度を示し、金型温度とは、所定の形状にするための樹脂を注入する金型の温度を示す。これらの条件、特に射出時間、背圧力および金型温度を適宜選択することにより、成形品中の強化繊維の繊維長を容易に調整することができる。 Next, as a molding method for obtaining a fiber-reinforced thermoplastic resin molded product in the present invention, a molding method using a mold is preferable, and various molding methods such as injection molding, extrusion molding, and press molding can be used. In particular, a molding method using an injection molding machine can continuously obtain a stable molded product. There are no particular regulations for the conditions of injection molding, but for example, the following conditions are preferable: injection time: 0.1 seconds to 20 seconds, more preferably 1 second to 10 seconds, back pressure: 0.1 MPa to 20 MPa, more preferably 3 MPa to 15 MPa, holding pressure: 1 MPa to 150 MPa, more preferably 5 MPa to 100 MPa, holding pressure time: 1 second to 30 seconds, more preferably 5 seconds to 20 seconds, cylinder temperature: 350 ° C to 400 ° C, mold temperature: 80 ° C to 190 ° C. Here, the cylinder temperature refers to the temperature of the part of the injection molding machine where the molding material is heated and melted, and the mold temperature refers to the temperature of the mold into which the resin is injected to form a predetermined shape. By appropriately selecting these conditions, particularly the injection time, back pressure and mold temperature, the fiber length of the reinforcing fibers in the molded product can be easily adjusted.

本発明の繊維強化熱可塑性樹脂組成物及び繊維強化熱可塑性樹脂成形材料を用いた繊維強化熱可塑性樹脂成形品は耐熱性、外観品位に優れる。本発明の繊維強化熱可塑性樹脂組成物及び繊維強化熱可塑性樹脂成形材料を用いた繊維強化熱可塑性樹脂成形品は、航空機用部品、自動車部品、電気・電子機器などに有用である。特に高い耐熱性を要求される航空機用部品、エンジン部品、モーター部品において極めて有用である。 Fiber-reinforced thermoplastic resin molded products using the fiber-reinforced thermoplastic resin composition and fiber-reinforced thermoplastic resin molding material of the present invention have excellent heat resistance and appearance quality. Fiber-reinforced thermoplastic resin molded products using the fiber-reinforced thermoplastic resin composition and fiber-reinforced thermoplastic resin molding material of the present invention are useful for aircraft parts, automobile parts, electrical and electronic devices, etc. They are particularly useful for aircraft parts, engine parts, and motor parts that require high heat resistance.

航空機用部品としては、ドローン用構造部品(フレーム構造継ぎ手、プロペラ、モノコック胴体)、ドローン用外装品、UAM用二次構造材、UAM用外装品、エンジン部品、内装材等が挙げられる。自動車用部品としては、吸気・排気系部品、エンジンカバー、シリンダーヘッドカバー、油圧制御バルブ、エンジンホース、ラジエーターホース、ギヤボックス、ベアリングリテーナー等が挙げられる。また、本発明の繊維強化熱可塑性樹脂組成物及び繊維強化熱可塑性樹脂成形品は、電気・電子部品としても好適であり、モーター用絶縁コア、モーター用ベアリング、コイルボビン等に使用される。 Aircraft parts include drone structural parts (frame structural joints, propellers, monocoque fuselages), drone exterior parts, secondary structural materials for UAMs, exterior parts for UAMs, engine parts, interior materials, etc. Automobile parts include intake and exhaust system parts, engine covers, cylinder head covers, hydraulic control valves, engine hoses, radiator hoses, gear boxes, bearing retainers, etc. The fiber-reinforced thermoplastic resin composition and fiber-reinforced thermoplastic resin molded products of the present invention are also suitable as electrical and electronic parts, and are used for motor insulating cores, motor bearings, coil bobbins, etc.

以下に実施例を示し、本発明をさらに具体的に説明するが、本発明はこれら実施例の記載に限定されるものではない。まず、本実施例で用いる各種特性の評価方法について説明する。 The present invention will be explained in more detail with reference to the following examples, but the present invention is not limited to the description of these examples. First, the methods for evaluating the various characteristics used in the examples will be explained.

(1)成形品の外観品位評価(繊維分散性評価)
各実施例および比較例により得られた分散性評価用角板状試験片の表裏それぞれの面に存在する未分散CF束の個数を目視でカウントした。評価は50枚の成形品について行い、その合計個数について繊維分散性の判定を以下の基準で行い、A、Bを合格とした。
A:未分散CF束なし
B:未分散CF束が1~2個
C:未分散CF束が3個以上。
(1) Appearance quality evaluation of molded products (fiber dispersion evaluation)
The number of undispersed CF bundles present on the front and back surfaces of the square plate-shaped test pieces for dispersibility evaluation obtained in each Example and Comparative Example was visually counted. The evaluation was performed on 50 molded products, and the fiber dispersion of the total number was judged according to the following criteria, with A and B being passed.
A: No undispersed CF bundles. B: 1 to 2 undispersed CF bundles. C: 3 or more undispersed CF bundles.

(2)成形品の外観品位評価(ガス焼け評価)
各実施例および比較例により得られたISO型ダンベル型試験片の端部に2mm以上の変色箇所が見られたの割合を目視でカウントした。評価は50枚の成形品について行い、その判定を以下の基準で行い、A、Bを合格とした。
A:ガス焼けが見られるサンプルなし
B:ガス焼けが見られるサンプルが1~2個
C:ガス焼けが見られるサンプルが3個以上。
(2) Appearance quality evaluation of molded products (gas burn evaluation)
The percentage of discolored areas of 2 mm or more at the edge of the ISO dumbbell-shaped test pieces obtained in each Example and Comparative Example was visually counted. Evaluation was performed on 50 molded products, and the results were judged according to the following criteria, with A and B being considered as pass.
A: No samples showed gas burns. B: 1 to 2 samples showed gas burns. C: 3 or more samples showed gas burns.

(3)耐熱性(高温時の引張強度保持率)
各実施例および比較例により得られたISO型ダンベル試験片について、ISO527(2012)に準拠し、引張試験機オートグラフAG-50kNX(島津製作所製)を用いて、室温(25℃)、及び125℃において、引張速度5mm/分で引張試験を行い、最大点応力を求めた。なお、125℃試験時では装置付属の恒温槽を用いて恒温槽内が同温度となるよる条件で試験を行った。
(3) Heat resistance (tensile strength retention at high temperatures)
For the ISO dumbbell test pieces obtained in each Example and Comparative Example, tensile tests were performed at room temperature (25°C) and 125°C at a tensile speed of 5 mm/min using a tensile tester Autograph AG-50kNX (manufactured by Shimadzu Corporation) in accordance with ISO527 (2012), to determine the maximum point stress. Note that, in the 125°C test, the test was performed under conditions in which the temperature inside the thermostatic chamber was kept the same using a thermostatic chamber attached to the device.

(4)耐熱性(荷重たわみ温度)
各実施例および比較例により得られた短冊状試験片について、ISO75(2013)に準じて、東洋精機社製HDT試験装置6M-2を使用して、荷重たわみ温度(1.80MPa)測定を行った。
(4) Heat resistance (deflection temperature under load)
For the strip-shaped test pieces obtained in each Example and Comparative Example, the load deflection temperature (1.80 MPa) was measured using a HDT tester 6M-2 manufactured by Toyo Seiki Co., Ltd. in accordance with ISO 75 (2013).

(5)熱可塑性マトリクス樹脂(A)の融点測定
被測定試料をパーキンエルマー社示差走査型熱量計(DSC-7型)によって、JIS K-7121(1987)に準じて測定した。
(5) Measurement of Melting Point of Thermoplastic Matrix Resin (A) The melting point of the sample was measured using a PerkinElmer differential scanning calorimeter (DSC-7 type) in accordance with JIS K-7121 (1987).

(A)1st Run測定
試料5mg、窒素雰囲気下、(i)昇温速度10℃/分にて30℃から380℃まで昇温、(ii)380℃で10分間保持、(iii)冷却速度10℃/分にて380℃から30℃まで冷却した。
(A) 1st Run Measurement: 5 mg of sample was used in a nitrogen atmosphere. (i) the temperature was increased from 30° C. to 380° C. at a rate of 10° C./min, (ii) the temperature was maintained at 380° C. for 10 minutes, and (iii) the temperature was cooled from 380° C. to 30° C. at a rate of 10° C./min.

(B)2nd Run測定
(iv)1st Run終了後、昇温速度10℃/分にて30℃から380℃まで昇温した。
(i)において結晶融解ピークが確認できた場合、結晶性樹脂とし、結晶融解ピークにおけるピークトップの温度を融点とした。
(B) 2nd Run Measurement (iv) After the 1st Run was completed, the temperature was increased from 30° C. to 380° C. at a rate of 10° C./min.
When a crystalline melting peak was confirmed in (i), the resin was regarded as a crystalline resin, and the temperature at the top of the crystalline melting peak was regarded as the melting point.

(6)熱可塑性マトリクス樹脂(A)のガラス転移点測定
(5)による測定において、結晶融解ピークが確認できなかった場合、非晶性樹脂とし、(iv)における昇温速度を20℃/分、昇温する温度域を30℃から250℃変更した以外は、(5)と同様の条件で測定を行い、(iv)におけるガラス転移点を導出した。(低温側、高温側の各ベースラインを延長した直線から縦軸方向に等距離にある直線とガラス転移の階段状の変化部分の曲線とが交わる点から求めた)。
(6) Glass transition temperature measurement of thermoplastic matrix resin (A) When no crystalline melting peak was observed in the measurement by (5), the resin was treated as amorphous, and the measurement was carried out under the same conditions as in (5) except that the heating rate in (iv) was changed to 20° C./min and the temperature range was changed from 30° C. to 250° C., to derive the glass transition temperature in (iv) (obtained from the point where a straight line equidistant in the vertical direction from the straight line extending the baselines on the low and high sides intersects with the curve of the stepwise change in the glass transition).

(A)1st Run測定
試料5mg、窒素雰囲気下、(i)昇温速度10℃/分にて30℃から250℃まで昇温、(ii)250℃で10分間保持、(iii)冷却速度10℃/分にて250℃から30℃まで冷却した。
(A) 1st Run Measurement: 5 mg of sample was used in a nitrogen atmosphere. (i) the temperature was increased from 30° C. to 250° C. at a rate of 10° C./min, (ii) the temperature was maintained at 250° C. for 10 minutes, and (iii) the temperature was cooled from 250° C. to 30° C. at a rate of 10° C./min.

(B)2nd Run測定
(iv)1st Run終了後、昇温速度20℃/分にて30℃から250℃まで昇温した。
(B) 2nd Run Measurement (iv) After the 1st Run was completed, the temperature was increased from 30° C. to 250° C. at a rate of 20° C./min.

(i)において結晶融解ピークが確認できた場合、結晶性樹脂と判断し、結晶融解ピークにおけるピークトップの温度を融点とした。また、結晶融解ピークが確認できなかった場合、非晶性樹脂と判断し、(iv)におけるガラス転移点を導出した。(低温側、高温側の各ベースラインを延長した直線から縦軸方向に等距離にある直線とガラス転移の階段状の変化部分の曲線とが交わる点から求めた)。 If a crystalline melting peak was confirmed in (i), the resin was judged to be crystalline, and the temperature at the peak top of the crystalline melting peak was taken as the melting point. If a crystalline melting peak was not confirmed, the resin was judged to be amorphous, and the glass transition point in (iv) was derived. (This was determined from the point where a line equidistant in the vertical direction from the line extending the baselines on the low and high temperatures intersects with the curve of the step-like change in the glass transition.)

(6)ロジン樹脂(B)の加熱時測定
被測定試料を熱重量分析(TGA)にて測定した。白金サンプルパンを用いて、窒素雰囲気下、10℃/分昇温にて測定し、350℃における重量減少率を測定した。
(6) Measurement of Rosin Resin (B) during Heating The sample was measured by thermogravimetric analysis (TGA). Using a platinum sample pan, the sample was measured in a nitrogen atmosphere at a temperature increase rate of 10° C./min, and the weight loss rate at 350° C. was measured.

熱可塑性マトリクス樹脂(A)
(A-1)
ポリエーテルイミド樹脂(サビック製、「“ULTEM”(登録商標)1040」)を用いた。
Thermoplastic matrix resin (A)
(A-1)
A polyetherimide resin (manufactured by Sabic, "ULTEM" (registered trademark) 1040) was used.

(A-2)
ポリエーテルエーテルケトン樹脂(ビクトレックス製、「PEEK 151G」)を用いた。
(A-2)
A polyether ether ketone resin ("PEEK 151G" manufactured by Victrex) was used.

(A-3)
ポリエーテルケトンケトン樹脂(アルケマ製、「“KEPSTAN”(登録商標)7003」を用いた。
(A-3)
A polyether ketone ketone resin (manufactured by Arkema, "KEPSTAN" (registered trademark) 7003) was used.

(A-4)
ポリエーテルスルフォン樹脂(住友化学製「“スミカエクセル”(登録商標)3600G」を用いた。
(A-4)
A polyethersulfone resin ("Sumikaexcel" (registered trademark) 3600G, manufactured by Sumitomo Chemical Co., Ltd.) was used.

(A-5)
ポリカーボネート樹脂(帝人化成(株)製、「“パンライト”(登録商標)L-1225L」)を用いた。
(A-5)
A polycarbonate resin (manufactured by Teijin Chemical Co., Ltd., "Panlite" (registered trademark) L-1225L) was used.

ロジン樹脂(B)
(B-1)
製造例1で得られたロジン樹脂(B-1)(350℃における重量減少率:2.5%)を用いた。
Rosin resin (B)
(B-1)
The rosin resin (B-1) obtained in Production Example 1 (weight loss rate at 350° C.: 2.5%) was used.

(B-2)
重合ロジン:(荒川化学工業(株)製パインクリスタルKR140、350℃における重量減少率:61.5%)を用いた。
(B-2)
Polymerized rosin: (Pine Crystal KR140 manufactured by Arakawa Chemical Industries, Ltd., weight loss rate at 350° C.: 61.5%) was used.

参考例1.炭素繊維(C)の作製
ポリアクリロニトリルを主成分とする共重合体から紡糸、焼成処理、表面酸化処理を行い、総単糸数24,000本、単繊維径7μm、単位長さ当たりの質量1.6g/m、比重1.8g/cm、表面酸素濃度比[O/C]0.2の連続炭素繊維を得た。この連続炭素繊維のストランド引張強度は4,880MPa、ストランド引張弾性率は225GPaであった。続いて、多官能性化合物としてグリセロールポリグリシジルエーテルを2重量%になるように水に溶解させたサイジング剤母液を調製し、浸漬法により炭素繊維にサイジング剤を付与し、230℃で乾燥を行った。こうして得られた炭素繊維のサイジング剤付着量は1.0重量%であった。
Reference Example 1. Preparation of Carbon Fiber (C) A copolymer mainly composed of polyacrylonitrile was spun, baked, and surface oxidized to obtain a continuous carbon fiber having a total number of single filaments of 24,000, a single fiber diameter of 7 μm, a mass per unit length of 1.6 g/m, a specific gravity of 1.8 g/cm 3 , and a surface oxygen concentration ratio [O/C] of 0.2. The strand tensile strength of this continuous carbon fiber was 4,880 MPa, and the strand tensile modulus was 225 GPa. Subsequently, a sizing agent mother liquid was prepared by dissolving glycerol polyglycidyl ether as a polyfunctional compound in water to a concentration of 2% by weight, and the sizing agent was applied to the carbon fiber by the immersion method, and the carbon fiber was dried at 230° C. The amount of sizing agent attached to the carbon fiber thus obtained was 1.0% by weight.

製造例1
ロジン樹脂(B-1)の作製
撹拌装置、冷却管および窒素導入菅を備えた反応装置に、水素化ロジン100部を仕込み、窒素気流下で加熱し完全に溶融させた後、ビスフェノールA型高分子エポキシ樹脂(エポキシ等量 500)190部を撹拌しながら投入し、140℃にて2-メチルイミダゾール0.1部を添加し、180℃にて3時間反応させることにより、ロジン樹脂(B-1)を得た。
Production Example 1
Preparation of Rosin Resin (B-1) 100 parts of hydrogenated rosin were charged into a reaction apparatus equipped with a stirrer, a cooling tube, and a nitrogen inlet tube, and heated under a nitrogen stream until completely melted. Then, 190 parts of bisphenol A type polymeric epoxy resin (epoxy equivalent: 500) was added with stirring, and 0.1 part of 2-methylimidazole was added at 140°C. The mixture was allowed to react at 180°C for 3 hours to obtain rosin resin (B-1).

(実施例1)
(株)日本製鋼所製TEX-30α型2軸押出機(スクリュー直径30mm、L/D=32)の先端に設置された電線被覆法用のコーティングダイを設置した長繊維強化樹脂ペレット製造装置を使用し、押出機シリンダー温度を350℃に設定し、前記に示した熱可塑性マトリクス樹脂(A-1)をメインホッパーから供給し、スクリュー回転数200rpmで溶融混練した。200℃にて加熱溶融させたロジン樹脂(B-1)を、(A)~(C)の合計100重量部に対し、6重量部となるように吐出量を調整し、炭素繊維(C)からなる繊維束に付与した後、溶融した熱可塑性マトリクス樹脂(A-1)を吐出するダイス口(直径3mm)へ供給して、炭素繊維(C)の周囲を被覆するように連続的に配置した。この時の繊維束内部断面は、炭素繊維(C)の少なくとも一部が、熱可塑性マトリクス樹脂(A-1)に接していた。得られたストランドを冷却後、カッターでペレット長7mmに切断し、長繊維ペレットとした。この時、(A)~(C)の合計100重量部に対し、炭素繊維(C)が20重量部となるように、引取速度を調整した。得られた長繊維ペレットの炭素繊維(C)の長さと、ペレット長さは実質的に同じであった。
Example 1
A long fiber reinforced resin pellet manufacturing apparatus equipped with a coating die for the electric wire coating method installed at the tip of a TEX-30α type twin screw extruder (screw diameter 30 mm, L/D = 32) manufactured by Japan Steel Works, Ltd. was used, the extruder cylinder temperature was set to 350 ° C., the thermoplastic matrix resin (A-1) shown above was fed from the main hopper, and melt-kneaded at a screw rotation speed of 200 rpm. The rosin resin (B-1) heated and melted at 200 ° C. was adjusted to be discharged in an amount of 6 parts by weight per 100 parts by weight of (A) to (C) in total, and applied to a fiber bundle made of carbon fiber (C), and then supplied to a die opening (diameter 3 mm) from which the molten thermoplastic matrix resin (A-1) was discharged, and the carbon fiber (C) was continuously arranged so as to cover the periphery of the carbon fiber (C). At this time, the internal cross section of the fiber bundle was such that at least a part of the carbon fiber (C) was in contact with the thermoplastic matrix resin (A-1). The strand thus obtained was cooled and then cut with a cutter to a pellet length of 7 mm to obtain long fiber pellets. At this time, the take-up speed was adjusted so that the amount of carbon fiber (C) was 20 parts by weight per 100 parts by weight of the total of (A) to (C). The length of the carbon fiber (C) in the obtained long fiber pellets was substantially the same as the pellet length.

こうして得られた長繊維ペレットを、射出成形機((株)日本製鋼所製J110AD)を用いて、射出時間:2秒、背圧力5MPa、保圧力:40MPa、保圧時間:10秒、シリンダー温度:350℃、金型温度:150℃の条件で射出成形することにより、成形品としてのISO型ダンベル試験片、80mm×80mm×3mm厚の分散性評価用角板状試験片、80mm×10mm×4mm厚の短冊状試験片を作製した。ここで、シリンダー温度とは、射出成形機の成形材料を加熱溶融する部分の温度を示し、金型温度とは、所定の形状にするための樹脂を注入する金型の温度を示す。得られた試験片(成形品)を、温度23℃、50%RHに調整された恒温恒湿室に24時間静置後に特性評価に供した。前述の方法により評価した評価結果をまとめて表1に示した。 The long fiber pellets thus obtained were injection molded using an injection molding machine (J110AD manufactured by Japan Steel Works, Ltd.) under the following conditions: injection time: 2 seconds, back pressure: 5 MPa, holding pressure: 40 MPa, holding time: 10 seconds, cylinder temperature: 350°C, mold temperature: 150°C. ISO dumbbell test pieces, square plate test pieces for dispersibility evaluation measuring 80 mm x 80 mm x 3 mm thick, and rectangular test pieces measuring 80 mm x 10 mm x 4 mm thick were produced as molded products. Here, the cylinder temperature refers to the temperature of the part of the injection molding machine where the molding material is heated and melted, and the mold temperature refers to the temperature of the mold into which the resin is injected to form a predetermined shape. The obtained test pieces (molded products) were left to stand for 24 hours in a constant temperature and humidity chamber adjusted to a temperature of 23°C and 50% RH, and then subjected to characteristic evaluation. The evaluation results obtained by the above-mentioned methods are summarized in Table 1.

(実施例2、3)
用いる熱可塑性マトリクス樹脂種を表1に記載のように変更し、シリンダー温度を370℃、金型温度を170℃に設定した以外は、実施例1と同様にして成形品を作製し、評価を行った。評価結果はまとめて表1に記した。
(Examples 2 and 3)
Molded articles were produced and evaluated in the same manner as in Example 1, except that the type of thermoplastic matrix resin used was changed as shown in Table 1, and the cylinder temperature was set to 370° C. and the mold temperature was set to 170° C. The evaluation results are summarized in Table 1.

(実施例4)
用いる熱可塑性マトリクス樹脂種を表1に記載のように変更した以外は、実施例1と同様にして成形品を作製し、評価を行った。評価結果はまとめて表1に記した。
(実施例5~9)
組成比を表1に記載のように変更した以外は、実施例1と同様にして成形品を作製し、評価を行った。評価結果はまとめて表1に記した。
Example 4
Molded articles were produced and evaluated in the same manner as in Example 1, except that the type of thermoplastic matrix resin used was changed as shown in Table 1. The evaluation results are shown in Table 1.
(Examples 5 to 9)
Molded articles were produced and evaluated in the same manner as in Example 1, except that the composition ratio was changed as shown in Table 1. The evaluation results are shown in Table 1.

(比較例1)
用いる熱可塑性マトリクス樹脂種を表1に記載のように変更し、シリンダー温度を280℃、金型温度を90℃に設定した以外は、実施例1と同様にして成形品を作製し、評価を行った。評価結果はまとめて表1に記した。
(Comparative Example 1)
Molded articles were produced and evaluated in the same manner as in Example 1, except that the type of thermoplastic matrix resin used was changed as shown in Table 1, and the cylinder temperature was set to 280° C. and the mold temperature was set to 90° C. The evaluation results are summarized in Table 1.

(比較例2、3)
組成比または用いるロジン樹脂種を表1に記載のように変更した以外は、実施例1と同様にして成形品を作製し、評価を行った。評価結果はまとめて表4に記した。
実施例1では、優れた繊維分散性及び耐ガス焼け性により、優れた外観品位、高い耐熱性を示した。樹脂種を変更した実施例2~4及び組成比を変更した実施例5~9の材料でも同様に優れた外観品位、耐熱性を示した。
(Comparative Examples 2 and 3)
Molded articles were produced and evaluated in the same manner as in Example 1, except that the composition ratio or the type of rosin resin used was changed as shown in Table 1. The evaluation results are shown in Table 4.
In Example 1, excellent fiber dispersion and gas scorch resistance resulted in excellent appearance quality and high heat resistance. Materials in Examples 2 to 4, which used different resin types, and Examples 5 to 9, which used different composition ratios, also showed excellent appearance quality and heat resistance.

一方、比較例1では、ガラス転移点の低い非晶性樹脂を用いたため、成形品の耐熱性が劣る結果であった。 In contrast, in Comparative Example 1, an amorphous resin with a low glass transition point was used, resulting in a molded product with poor heat resistance.

比較例2では、ロジン樹脂を含まなかったため、繊維の絡み合いが発生し、分散性が不足し、分散不良部に起因して外観品位が劣る結果であった。 In Comparative Example 2, since no rosin resin was included, entanglement of fibers occurred, dispersibility was insufficient, and the appearance quality was inferior due to poorly dispersed areas.

比較例3では、ロジン樹脂の耐熱分解性が低かったため、成形品において、分散性が不足した上にガス焼けが顕著であり、外観品位が劣る結果であった。 In Comparative Example 3, the rosin resin had low thermal decomposition resistance, so the molded product had insufficient dispersibility and significant gas burns, resulting in poor appearance quality.

Figure 2024139869000001
Figure 2024139869000001

本発明の繊維強化熱可塑性樹脂組成物及び繊維強化熱可塑性樹脂成形材料を用いた繊維強化熱可塑性樹脂成形品は、優れた耐熱性および外観品位を有するため、航空機部品、自動車部品、電気・電子部品などに好適に用いられる。 Fiber-reinforced thermoplastic resin molded products made using the fiber-reinforced thermoplastic resin composition and fiber-reinforced thermoplastic resin molding material of the present invention have excellent heat resistance and appearance quality, and are therefore suitable for use in aircraft parts, automobile parts, electrical and electronic parts, etc.

1 熱可塑性マトリクス樹脂[A]
2 ロジン樹脂[B]
3 強化繊維[C]
4 複合体[D]
1. Thermoplastic matrix resin [A]
2 Rosin resin [B]
3 Reinforcing fiber [C]
4. Complex [D]

Claims (10)

ガラス転移点が190℃を超える非晶性樹脂および融点が300℃を超える結晶性樹脂から選ばれる少なくとも1種である熱可塑性マトリクス樹脂(A)、350℃における重量減少率が5%未満であるロジン樹脂(B)、ならびに少なくとも炭素繊維を含む強化繊維(C)を含む、繊維強化熱可塑性樹脂組成物。 A fiber-reinforced thermoplastic resin composition comprising (A) a thermoplastic matrix resin which is at least one selected from an amorphous resin having a glass transition point exceeding 190°C and a crystalline resin having a melting point exceeding 300°C, (B) a rosin resin having a weight loss rate of less than 5% at 350°C, and (C) reinforcing fibers which include at least carbon fibers. 前記ロジン樹脂(B)がロジンポリオールである、請求項1に記載の繊維強化熱可塑性樹脂組成物。 The fiber-reinforced thermoplastic resin composition according to claim 1, wherein the rosin resin (B) is a rosin polyol. 前記熱可塑性マトリクス樹脂(A)がポリエーテルイミド樹脂、ポリアリールエーテルケトン樹脂、およびポリエーテルスルフォン樹脂から選ばれる少なくとも1種である、請求項1に記載の繊維強化熱可塑性樹脂組成物。 The fiber-reinforced thermoplastic resin composition according to claim 1, wherein the thermoplastic matrix resin (A) is at least one selected from polyetherimide resin, polyaryletherketone resin, and polyethersulfone resin. 強化繊維(C)が炭素繊維のみである、請求項1に記載の繊維強化熱可塑性樹脂組成物。 The fiber-reinforced thermoplastic resin composition according to claim 1, wherein the reinforcing fibers (C) are carbon fibers only. ロジン樹脂(B)の重量比率が強化繊維(C)に対し15%以上もしくは50%以下である、請求項1に記載の繊維強化熱可塑性樹脂組成物。 The fiber-reinforced thermoplastic resin composition according to claim 1, wherein the weight ratio of the rosin resin (B) to the reinforcing fiber (C) is 15% or more or 50% or less. ガラス転移点が190℃を超える非晶性樹脂および融点が300℃を超える結晶性樹脂から選ばれる少なくとも1種である熱可塑性マトリクス樹脂(A)、350℃における重量減少率が5%未満であるロジン樹脂(B)、ならびに少なくとも炭素繊維を含む強化繊維(C)を含む繊維強化熱可塑性樹脂成形材料であって、強化繊維(C)を含む強化繊維束にロジン樹脂(B)を含浸させてなる複合体(D)の外側に熱可塑性マトリクス樹脂(A)を含み、強化繊維(C)が成形材料の軸心方向にほぼ平行に配列されている繊維強化熱可塑性樹脂成形材料。 A fiber-reinforced thermoplastic resin molding material comprising a thermoplastic matrix resin (A) which is at least one selected from an amorphous resin having a glass transition point exceeding 190°C and a crystalline resin having a melting point exceeding 300°C, a rosin resin (B) having a weight loss rate of less than 5% at 350°C, and reinforcing fibers (C) which include at least carbon fibers, the fiber-reinforced thermoplastic resin molding material comprising the thermoplastic matrix resin (A) on the outside of a composite (D) formed by impregnating a reinforcing fiber bundle containing the reinforcing fiber (C) with the rosin resin (B), and the reinforcing fibers (C) arranged approximately parallel to the axial direction of the molding material. 強化繊維(C)の長さと成形材料の長さが実質的に同じである、請求項6に記載の繊維強化熱可塑性樹脂成形材料。 The fiber-reinforced thermoplastic resin molding material according to claim 6, wherein the length of the reinforcing fiber (C) and the length of the molding material are substantially the same. 前記熱可塑性マトリクス樹脂(A)が前記複合体(D)の周囲を被覆した芯鞘構造である、請求項6に記載の繊維強化熱可塑性樹脂成形材料。 The fiber-reinforced thermoplastic resin molding material according to claim 6, wherein the thermoplastic matrix resin (A) has a core-sheath structure that covers the periphery of the composite (D). 長さが1mm以上もしくは50mm以下である、請求項6に記載の繊維強化熱可塑性樹脂成形材料。 The fiber-reinforced thermoplastic resin molding material according to claim 6, having a length of 1 mm or more or 50 mm or less. 請求項1~5に記載の繊維強化熱可塑性樹脂組成物を用いた繊維強化熱可塑性樹脂成形品。 A fiber-reinforced thermoplastic resin molded product using the fiber-reinforced thermoplastic resin composition according to claims 1 to 5.
JP2023050800A 2023-03-28 2023-03-28 Fiber-reinforced thermoplastic resin composition, fiber-reinforced thermoplastic resin molding material, and fiber-reinforced thermoplastic resin molded product Pending JP2024139869A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023050800A JP2024139869A (en) 2023-03-28 2023-03-28 Fiber-reinforced thermoplastic resin composition, fiber-reinforced thermoplastic resin molding material, and fiber-reinforced thermoplastic resin molded product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2023050800A JP2024139869A (en) 2023-03-28 2023-03-28 Fiber-reinforced thermoplastic resin composition, fiber-reinforced thermoplastic resin molding material, and fiber-reinforced thermoplastic resin molded product

Publications (1)

Publication Number Publication Date
JP2024139869A true JP2024139869A (en) 2024-10-10

Family

ID=92975788

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2023050800A Pending JP2024139869A (en) 2023-03-28 2023-03-28 Fiber-reinforced thermoplastic resin composition, fiber-reinforced thermoplastic resin molding material, and fiber-reinforced thermoplastic resin molded product

Country Status (1)

Country Link
JP (1) JP2024139869A (en)

Similar Documents

Publication Publication Date Title
JP6500783B2 (en) Fiber-reinforced thermoplastic resin molded article and fiber-reinforced thermoplastic resin molding material
JP7205464B2 (en) Fiber-reinforced molded product and manufacturing method thereof
RU2605424C2 (en) Composition based on epoxy resins and film, prepreg and fibre-reinforced plastic obtained using said composition
US20090162653A1 (en) Carbon fiber bundle, prepreg, and carbon fiber reinforced composite
JP5614187B2 (en) Manufacturing method of composite reinforcing fiber bundle and molding material using the same
JP5743035B1 (en) Molding
JPWO2019146633A1 (en) Fiber-reinforced thermoplastic resin molded products and fiber-reinforced thermoplastic resin molded materials
CN110785454B (en) Fiber-reinforced thermoplastic resin molded article and fiber-reinforced thermoplastic resin molding material
JP7273795B2 (en) Thermoplastic resin composition, fiber-reinforced plastic molding material and molding
KR20180079344A (en) Fiber-reinforced thermoplastic resin molded article and fiber-reinforced thermoplastic resin molding material
KR20180079345A (en) Fiber-reinforced thermoplastic resin molded article and fiber-reinforced thermoplastic resin molding material
JP2013173811A (en) Resin composition, molding material and method for producing the same
JP6854591B2 (en) Manufacturing method of prepreg, reinforcing fiber, fiber reinforced composite material, and prepreg
TWI634157B (en) Forming material, method for producing the same, masterbatch used therefor, and molded article
WO2022118827A1 (en) Fiber-reinforced pultrusion-molded article
JP2016190922A (en) Carbon fiber-reinforced thermoplastic resin molding and carbon fiber-reinforced thermoplastic resin molding material
JP2024139869A (en) Fiber-reinforced thermoplastic resin composition, fiber-reinforced thermoplastic resin molding material, and fiber-reinforced thermoplastic resin molded product
JP6775875B2 (en) Fiber reinforced plastics and fiber reinforced molded products
TW202328340A (en) Fiber-reinforced thermoplastic resin molded article
JP7556291B2 (en) Fiber-reinforced resin molding material, fiber-reinforced resin molded product, and method for manufacturing fiber-reinforced resin molded product
JP7543670B2 (en) Fiber-reinforced thermoplastic resin moldings
JP7373504B2 (en) High heat-resistant thermoplastic resin composition and molded product thereof
JP2023127055A (en) laminate
JP2020158594A (en) Towpreg and production method thereof and production method of pressure vessel
JP2012046684A (en) Polybutylene terephthalate resin composition and molded product obtained by molding the same