JP2024139746A - Manufacturing method for high-strength aluminum alloy extrusion material with excellent SCC resistance and aluminum alloy used therein - Google Patents
Manufacturing method for high-strength aluminum alloy extrusion material with excellent SCC resistance and aluminum alloy used therein Download PDFInfo
- Publication number
- JP2024139746A JP2024139746A JP2024047122A JP2024047122A JP2024139746A JP 2024139746 A JP2024139746 A JP 2024139746A JP 2024047122 A JP2024047122 A JP 2024047122A JP 2024047122 A JP2024047122 A JP 2024047122A JP 2024139746 A JP2024139746 A JP 2024139746A
- Authority
- JP
- Japan
- Prior art keywords
- extrusion
- aluminum alloy
- less
- temperature
- cooling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000001125 extrusion Methods 0.000 title claims abstract description 59
- 239000000463 material Substances 0.000 title claims abstract description 47
- 229910000838 Al alloy Inorganic materials 0.000 title claims abstract description 23
- 238000004519 manufacturing process Methods 0.000 title claims description 6
- 238000001816 cooling Methods 0.000 claims abstract description 49
- 239000013078 crystal Substances 0.000 claims abstract description 7
- 238000005266 casting Methods 0.000 claims abstract description 6
- 238000000034 method Methods 0.000 claims abstract description 6
- 230000032683 aging Effects 0.000 claims abstract description 5
- 239000012535 impurity Substances 0.000 claims abstract description 5
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 4
- 229910052726 zirconium Inorganic materials 0.000 claims abstract description 4
- 229910052802 copper Inorganic materials 0.000 claims abstract description 3
- 229910052725 zinc Inorganic materials 0.000 claims description 2
- 239000000203 mixture Substances 0.000 abstract description 7
- 229910018571 Al—Zn—Mg Inorganic materials 0.000 abstract description 4
- 229910045601 alloy Inorganic materials 0.000 abstract description 4
- 239000000956 alloy Substances 0.000 abstract description 4
- 230000000052 comparative effect Effects 0.000 description 6
- 230000007797 corrosion Effects 0.000 description 5
- 238000005260 corrosion Methods 0.000 description 5
- 238000011156 evaluation Methods 0.000 description 5
- 230000035882 stress Effects 0.000 description 5
- 238000005336 cracking Methods 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 238000001953 recrystallisation Methods 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 229910017708 MgZn2 Inorganic materials 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 238000000265 homogenisation Methods 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000000399 optical microscopy Methods 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/04—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
- C22F1/053—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with zinc as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/10—Alloys based on aluminium with zinc as the next major constituent
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Extrusion Of Metal (AREA)
Abstract
【課題】所定の成分組成からなるAl-Zn-Mg系合金を用いて、所定の押出条件にて押出材を得ることで耐SCC性に優れた高強度アルミニウム合金押出材を得ることを目的とする。【解決手段】以下、質量%で、Zn:6.0~10.0%,Mg:1.5~3.5%,Cu:0.20~2.50%,Zr:0.10~0.25%,Ti:0.005~0.05%,Mn:0.30以下,Cr:0.25%以下,[Mn+Cr+Zr]の合計で0.10~0.50%であって、残部がAl及び不可避的不純物であり、鋳造後の平均結晶粒径が250μm以下であるアルミニウム合金を用い、押出加工直後の押出材温度が440℃以上になるように押出加工し、押出加工直後から押出材の温度が250~400℃になるまでは、冷却速度が100℃/min未満で、1.0分~3.4分かけて大気中で放冷し、その後に押出材温度が150℃以下になるまで冷却速度100~2000℃/minで強制冷却した後に時効処理することを特徴とする。【選択図】 図1[Problem] The objective is to obtain a high-strength aluminum alloy extrusion material with excellent SCC resistance by using an Al-Zn-Mg alloy having a predetermined composition and obtaining the extrusion material under predetermined extrusion conditions. [Solution] The following, by mass%, is Zn: 6.0-10.0%, Mg: 1.5-3.5%, Cu: 0.20-2.50%, Zr: 0.10-0.25%, Ti: 0.005-0.05%, Mn: 0.30 or less, Cr: 0.25% or less, the total of [Mn+Cr+Zr] is 0.10-0.50%, and the balance is Al and unavoidable impurities, and the average crystal grain size after casting is 250 μm or less. The method is characterized in that an aluminum alloy is used, the extrusion is performed so that the temperature of the extruded material immediately after the extrusion is 440°C or higher, the extruded material is allowed to cool in the air for 1.0 to 3.4 minutes at a cooling rate of less than 100°C/min until the temperature of the extruded material reaches 250 to 400°C, and then the extruded material is forced to cool at a cooling rate of 100 to 2000°C/min until the temperature of the extruded material reaches 150°C or lower, followed by aging treatment. [Selected Figure] Figure 1
Description
本発明は、高強度でありながら耐SCC性に優れるAl-Zn-Mg系アルミニウム合金からなる押出材の製造方法及び、それに用いるアルミニウム合金に関する。 The present invention relates to a method for producing an extruded material made of an Al-Zn-Mg aluminum alloy that has high strength and excellent SCC resistance, and to an aluminum alloy used in the method.
車両等の分野等においては、軽量化の目的に高強度のアルミニウム合金押出材が要求されている。
アルミニウム合金の中でも、Al-Zn-Mg系合金は高強度であることが知られているが、さらなる高強度を得ようとすると耐応力腐食割れ性(耐SCC性)が低下する技術課題があった。
In the field of vehicles and the like, there is a demand for high-strength aluminum alloy extrusion materials for the purpose of reducing weight.
Among aluminum alloys, Al-Zn-Mg alloys are known to have high strength. However, there is a technical problem in that when attempting to obtain even higher strength, resistance to stress corrosion cracking (SCC resistance) decreases.
例えば特許文献1には、表面再結晶の厚さを肉厚の7%以下、表面再結晶の平均粒径を150μm以下とすることで、耐SCC性を改善しているが引張強さが約450MPaレベルである。
For example, in
本発明は、所定の成分組成からなるAl-Zn-Mg系合金を用いて、所定の押出条件にて押出材を得ることで耐SCC性に優れた高強度アルミニウム合金押出材を得ることを目的とする。 The present invention aims to obtain a high-strength aluminum alloy extrusion material with excellent SCC resistance by using an Al-Zn-Mg alloy with a specified composition and obtaining an extrusion material under specified extrusion conditions.
本発明に係る耐SCC性に優れた高強度アルミニウム合金押出材は、以下、質量%で、Zn:6.0~10.0%,Mg:1.5~3.5%,Cu:0.20~2.50%,Zr:0.10~0.25%,Ti:0.005~0.05%,Mn:0.30以下,Cr:0.25%以下,[Mn+Cr+Zr]の合計で0.10~0.50%であって、残部がAl及び不可避的不純物であり、鋳造後の平均結晶粒径が250μm以下のアルミニウム合金を用いる。
ここで平均結晶粒径250μm以下の鋳造組織を得るには、上記合金組成のアルミニウム合金の溶湯を用いて50mm/min以上の鋳造速度で鋳造し、480~520℃×1~12hrの均質化処理(HOMO処理)した後に冷却速度50℃以上にて冷却することで得られる。
The high-strength aluminum alloy extrusion material with excellent SCC resistance according to the present invention uses an aluminum alloy having, in mass%, the following: Zn: 6.0-10.0%, Mg: 1.5-3.5%, Cu: 0.20-2.50%, Zr: 0.10-0.25%, Ti: 0.005-0.05%, Mn: 0.30 or less, Cr: 0.25% or less, a total of [Mn+Cr+Zr] of 0.10-0.50%, with the balance being Al and unavoidable impurities, and having an average crystal grain size after casting of 250 μm or less.
Here, in order to obtain a cast structure having an average crystal grain size of 250 μm or less, a molten aluminum alloy having the above alloy composition is cast at a casting speed of 50 mm/min or more, and then homogenized at 480 to 520° C. for 1 to 12 hours (HOMO treatment), followed by cooling at a cooling speed of 50° C. or more.
本発明に係る耐SCC性に優れた高強度アルミニウム合金押出材の製造方法は、上記アルミニウム合金を用いて押出加工直後の押出材温度が440℃以上になるように押出加工し、押出加工直後から押出材の温度が250~400℃になるまでは、冷却速度が100℃/min未満で1.0分から3.4分かけて大気中で放冷し、その後に押出材温度が150℃以下になるまで冷却速度100~2000℃/minで冷却した後に時効処理することを特徴とする。
これにより、引張強さ500MPa以上で0.2%耐力470MPa以上が得られる。
ここで放冷とは、押出加工直後の押出材温度を440℃以上になるように押出し、その後に1.0分~3.4分かけて冷却速度100℃/min未満にて大気中で自然放冷することをいう。
また、強制冷却とは冷却速度100~2000℃の範囲にてファン等を用いた強制空冷あるいは水冷等にて行う。
また、押出材が150℃以下になれば、その強度や耐SCC性に影響を与えない。
The method for producing a high-strength aluminum alloy extrusion material having excellent SCC resistance according to the present invention is characterized in that the aluminum alloy is extruded so that the temperature of the extrusion material immediately after the extrusion processing is 440°C or higher, the extrusion material is allowed to cool in the atmosphere at a cooling rate of less than 100°C/min for 1.0 to 3.4 minutes until the temperature of the extrusion material reaches 250 to 400°C from immediately after the extrusion processing until the temperature of the extrusion material reaches 250 to 400°C, and then the extrusion material is cooled at a cooling rate of 100 to 2000°C/min until the temperature of the extrusion material reaches 150°C or lower, followed by aging treatment.
This provides a tensile strength of 500 MPa or more and a 0.2% yield strength of 470 MPa or more.
Here, natural cooling refers to extruding so that the temperature of the extruded material immediately after extrusion is 440° C. or higher, and then allowing it to cool naturally in the air at a cooling rate of less than 100° C./min over 1.0 to 3.4 minutes.
The forced cooling is performed by forced air cooling using a fan or water cooling at a cooling rate in the range of 100 to 2000°C.
Furthermore, if the extruded material is cooled to 150° C. or below, there is no effect on its strength and SCC resistance.
また、好ましくは、前記押出加工直後から押出材の温度が300~400℃になるまでは、1分以上かけて大気中で放冷し、その後に押出温度が150℃以下になるまでは冷却速度200~2000℃/minで強制冷却した後に、時効処理することを特徴とする。 In addition, it is preferable that the extruded material is cooled in the air for at least one minute immediately after the extrusion process until the temperature of the extruded material reaches 300 to 400°C, and then the material is forced to cool at a cooling rate of 200 to 2000°C/min until the extrusion temperature reaches 150°C or less, and then aging treatment is performed.
本発明に用いたアルミニウム合金組成を選定した理由は次のとおりである。
<Zn及びMg成分>
Znは比較的高濃度でも押出性が低下することがなく、強度の向上に寄与し、Mgの添加により、組織中にMgZn2が折出し、強度アップする。
しかし、Mgは添加量が多くなると押出性が低下するとともに、MgZn2の析出量が多くなりすぎ靭性が低下する恐れがある。
そこで、Zn:6.0~10.0%,Mg:1.5~3.5%の範囲の組み合せがよい。
<Cu成分>
Cu成分の添加は固溶効果により強度向上を図るのに有効であるが、添加量が多くなると一般的な耐食性が低下するので、Cu:0.20~2.50%の範囲がよい。
<Zr,Mn及びCr成分>
これらの成分は、いずれも遷移元素であり、押出加工時に押出材の表面に形成される再結晶深さを抑制するとともに結晶粒の微細化に効果がある。
これにより、耐応力腐食割れ性が向上する。
このうちCr成分は最も焼入れ感受性を鋭く、Mn成分はCrよりも焼入れ感受性が強くないものの、Zrよりもその影響が大きい。
そこで本発明は、Zr:0.10~0.25%とし、Mnを添加する場合には、Mn:0.30%以下に抑え、Crを添加する場合にはCr:0.25%以下に抑えるとともに[Mn+Cr+Zr]の合計で0.10~0.50%の範囲に抑えるのがよい。
<Ti成分>
Ti成分は、押出加工に用いるためのビレットを鋳造する際に結晶粒の微細化に効果があり、一般的にはBもごく微量添加される。
Ti:0.005~0.05%のわずかな添加量でよい。
<その他の成分>
7000系のアルミニウム合金の鋳造過程等にて、Fe成分及びSi成分が不純物として含まれることが多いが、その量が多くなると、押出性,耐応力腐食割れ性等に影響を与えるので、Fe:0.2%以下,Si:0.1%以下に抑えるのが好ましい。
The aluminum alloy composition used in the present invention was selected for the following reasons.
<Zn and Mg Components>
Zn does not reduce extrudability even at relatively high concentrations and contributes to improving strength, and the addition of Mg causes MgZn2 to precipitate in the structure, increasing strength.
However, if the amount of Mg added is large, the extrudability decreases, and the amount of MgZn2 precipitated becomes too large, which may decrease the toughness.
Therefore, a combination of Zn: 6.0 to 10.0% and Mg: 1.5 to 3.5% is preferable.
<Cu Component>
The addition of Cu is effective in improving strength due to the solid solution effect, but if the amount added is too large, general corrosion resistance decreases, so the Cu content is preferably in the range of 0.20 to 2.50%.
<Zr, Mn and Cr Components>
These components are all transition elements, and are effective in suppressing the depth of recrystallization formed on the surface of the extruded material during extrusion processing, and in making the crystal grains finer.
This improves the stress corrosion cracking resistance.
Of these, the Cr component is the most sensitive to hardening, and although the Mn component is not as sensitive to hardening as Cr, it has a greater effect than Zr.
Therefore, in the present invention, Zr is set to 0.10 to 0.25%, and when Mn is added, the Mn content is suppressed to 0.30% or less, and when Cr is added, the Cr content is suppressed to 0.25% or less, and the total of [Mn + Cr + Zr] is suppressed to the range of 0.10 to 0.50%.
<Ti Component>
The Ti component is effective in refining crystal grains when a billet for use in extrusion is cast, and a very small amount of B is also generally added.
Ti: A small amount of 0.005 to 0.05% is sufficient.
<Other ingredients>
In the casting process of 7000 series aluminum alloys, Fe and Si are often contained as impurities. If the amounts are large, they affect the extrudability, stress corrosion cracking resistance, etc., so it is preferable to restrict Fe to 0.2% or less and Si to 0.1% or less.
所定の組成からなるアルミニウム合金を用いて、押出加工し、押出加工直後の冷却条件(ダイス端焼き入れ)を制御することで優れた耐SCC性を確保しつつ、高強度の押出材が得られる。 By extruding an aluminum alloy of a specified composition and controlling the cooling conditions (die edge quenching) immediately after extrusion, a high-strength extruded material can be obtained while maintaining excellent SCC resistance.
図1の表に示したアルミニウム合金組成の溶湯を調整し、図2の表に示した条件にてビレットを鋳造及び均質化処理(HOMO処理)を行った。
次に図3に示したようにビレット(BLT)を440℃以上に余熱し、押出速度5m/min以上にて肉厚2~3mm,高さ50~60mm,幅110~120mmのホロー押出形材、又はソリッド押出形材を製造した。
押出直後の押出材の温度を図3の表に示す。
いずれも440℃以上であった。
Molten aluminum alloys having the compositions shown in the table of FIG. 1 were prepared, and billets were cast and homogenized (HOMO) under the conditions shown in the table of FIG.
Next, as shown in FIG. 3, the billet (BLT) was preheated to 440° C. or higher, and extruded at a speed of 5 m/min or higher to produce a hollow extrusion or solid extrusion having a wall thickness of 2 to 3 mm, a height of 50 to 60 mm, and a width of 110 to 120 mm.
The temperature of the extruded material immediately after extrusion is shown in the table of FIG.
In all cases, the temperatures were above 440°C.
図3の表には、実施例1~14と比較例1~16の条件を示すように押出直後の冷却条件を、いろいろ変えて評価した。
図3の表中に各条件の目標範囲を示し、その範囲にあるものを「○」と表示し、それから外れた条件のものを「×」と表示した。
As shown in the table of FIG. 3, the cooling conditions immediately after extrusion were varied and evaluated for Examples 1 to 14 and Comparative Examples 1 to 16.
The target range for each condition is shown in the table in FIG. 3, with conditions that fall within that range indicated with an "O" and conditions that fall outside that range indicated with an "X".
図4に評価結果を示し、評価条件は次のとおりである。
<機械的性質>
JIS-Z2241に基づいて、JIS-5号試験片を作製し、JIS規格に準拠した引張試験機を用いて、引張強さ,σ0.2耐力,伸びを計測した。
<ビレット結晶粒径及び押出材のミクロ組織>
サンプル表面を鏡面研磨仕上げし、ケラー試薬にてエッチングを行った。
これを光学顕微鏡観察により金属組織を観察し、100倍の画像を画像処理し、平均結晶粒径を求めた。
<耐応力腐食割れ性(SCC性)>
試験片に耐力の80%の応力を負荷した状態で、次の条件を1サイクルとして720サイクルにて割れが発生しなかったものを目標達成とした。
なお、途中で割れが発生したものは、そのサイクル数を表示した。
[1サイクル]
3.5%NaCl水溶液中に25℃,10min浸漬し、その後に25℃,湿度40%中に50min放置し、その後に自然乾燥する。
The evaluation results are shown in FIG. 4. The evaluation conditions are as follows:
<Mechanical properties>
Based on JIS-Z2241, JIS-5 test pieces were prepared, and the tensile strength, σ 0.2 yield strength, and elongation were measured using a tensile tester conforming to the JIS standard.
<Billet grain size and microstructure of extruded material>
The sample surface was mirror-polished and etched with Keller's reagent.
The metal structure was observed by optical microscopy, and the image at 100 times magnification was processed to determine the average crystal grain size.
<Stress corrosion cracking resistance (SCC resistance)>
The test piece was subjected to a stress of 80% of its yield strength, and the following conditions were counted as one cycle. If no cracks occurred after 720 cycles, the target was achieved.
If cracks occurred during testing, the number of cycles at which they occurred was recorded.
[1 cycle]
The sample is immersed in a 3.5% NaCl aqueous solution at 25° C. for 10 minutes, then left to stand at 25° C. and a humidity of 40% for 50 minutes, and then naturally dried.
図4の表から実施例1~14は、いずれも押出直後の冷却条件を目標範囲に制御したことにより全て耐SCC性が優れているのに対して、比較例1~14は引張強さ500MPa以上,0.2%耐力470MPa以上,伸び8%以上を有しているものの、いずれも耐SCC性が目標未達であった。 As can be seen from the table in Figure 4, Examples 1 to 14 all had excellent SCC resistance because the cooling conditions immediately after extrusion were controlled within the target range, whereas Comparative Examples 1 to 14 had a tensile strength of 500 MPa or more, a 0.2% yield strength of 470 MPa or more, and an elongation of 8% or more, but all did not achieve the target SCC resistance.
評価結果を具体的に検討すると、次のことが言える。
図3の表にて冷却開始押出材温度は、押出直後の押出材を大気中で自然放冷し、図3の表に示した冷却開始押出材温度に達した時点から押出形材冷却速度100~2000℃/minにて強制冷却をしたことを示す。
また、図3の表中、冷却開始到達時間とは、上記の大気中での自然放冷時間をいう。
When examining the evaluation results in detail, the following can be said:
In the table of FIG. 3, the cooling start extrusion temperature indicates that the extrusion material immediately after extrusion was allowed to cool naturally in the air, and from the point in time when the cooling start extrusion temperature shown in the table of FIG. 3 was reached, the extrusion material was forcedly cooled at a cooling rate of 100 to 2000° C./min.
In the table of FIG. 3, the time to reach the cooling start time refers to the above-mentioned time for natural cooling in the atmosphere.
実施例1~10は図3の表に示すように、押出材冷却速度は279~350℃/minであり、これはファンによる強制空冷であることを示す。
これに対して、実施例11~14は押出材冷却速度1500℃/minであり、これは水冷による強制冷却であることを示す。
このことは押出直後の押出材の温度が440℃以上であり、1.0~3.4分かけてゆっくり大気中での自然放冷させる行程を設けることで、その後の強制冷却が空冷であっても水冷であっても、耐SCC性に優れていることが分かる。
なお、比較例15は5.02分かけてゆっくり大気中で自然放冷し、比較例16は3.45分かけて大気中で自然放冷させたことにより、伸び及び耐SCC性は確保できたものの、引張強さ、耐力が目標未達であった。
As shown in the table of FIG. 3, in Examples 1 to 10, the cooling rate of the extrusion material was 279 to 350° C./min, which indicates forced air cooling by a fan.
In contrast, in Examples 11 to 14, the extrusion material was cooled at a cooling rate of 1500° C./min, which indicates that forced cooling was performed by water cooling.
This shows that the temperature of the extruded material immediately after extrusion is 440°C or higher, and by providing a process for slowly allowing it to cool naturally in the air over a period of 1.0 to 3.4 minutes, it is possible to achieve excellent SCC resistance, regardless of whether the subsequent forced cooling is air-cooling or water-cooling.
In addition, Comparative Example 15 was allowed to slowly cool naturally in the air over 5.02 minutes, and Comparative Example 16 was allowed to cool naturally in the air over 3.45 minutes. As a result, although elongation and SCC resistance were ensured, the tensile strength and yield strength did not reach the target.
押出直後の放冷による冷却速度は、(押出後押出材温度)-(冷却開始押出温度)/(冷却開始到達時間)の計算式で求めることができる。
例えば、実施例1の大気中の放冷による冷却速度は(470-382)/1.24=約70℃/minである。
また、実施例12の冷却速度は、(500-350)/2.40=約62.5℃/minである。
上記に説明したように比較例15,16は、耐SCC性を確保できるが強度が目標未達であったことから、押出直後の大気中の自然放冷は100℃/min未満のゆっくりであれば耐SCC性を確保できるが、強度を確保するには大気中での放冷時間を1.0~3.4分の間に抑える必要があることが分かる。
また、強度を確保する観点からは、冷却開始温度は300~400℃の範囲であるのが好ましい。
さらには、ファン又は水冷による強制冷却は200℃/min以上が好ましい。
The cooling rate by natural cooling immediately after extrusion can be calculated by the formula: (temperature of extruded material after extrusion)-(extrusion temperature at which cooling starts)/(time to reach the start of cooling).
For example, the cooling rate by natural cooling in the air in Example 1 is (470-382)/1.24=about 70° C./min.
Moreover, the cooling rate in Example 12 is (500-350)/2.40=approximately 62.5°C/min.
As explained above, in Comparative Examples 15 and 16, the SCC resistance was ensured but the strength did not reach the target. This shows that, although the SCC resistance can be ensured if the natural cooling in the air immediately after extrusion is slow at less than 100° C./min, in order to ensure the strength, it is necessary to limit the cooling time in the air to between 1.0 and 3.4 minutes.
From the viewpoint of ensuring strength, the cooling start temperature is preferably in the range of 300 to 400°C.
Furthermore, it is preferable that the forced cooling by a fan or water cooling is 200° C./min or more.
比較例1は、冷却開始到達時間が0.10分と短く、強制冷却が2300℃/minと速いため、耐SCC性が未達であった。 In Comparative Example 1, the cooling start time was short at 0.10 minutes, and the forced cooling was fast at 2,300°C/min, so SCC resistance was not achieved.
Claims (3)
押出加工直後の押出材温度が440℃以上になるように押出加工し、
押出加工直後から押出材の温度が250~400℃になるまでは、冷却速度が100℃/min未満で、1.0分~3.4分かけて大気中で放冷し、その後に押出材温度が150℃以下になるまで冷却速度100~2000℃/minで強制冷却した後に時効処理することを特徴とする耐SCC性に優れた高強度アルミニウム合金押出材の製造方法。 An aluminum alloy having, in mass %, Zn: 6.0 to 10.0%, Mg: 1.5 to 3.5%, Cu: 0.20 to 2.50%, Zr: 0.10 to 0.25%, Ti: 0.005 to 0.05%, Mn: 0.30 or less, Cr: 0.25% or less, a total of [Mn + Cr + Zr] of 0.10 to 0.50%, with the balance being Al and unavoidable impurities, and having an average crystal grain size after casting of 250 μm or less,
The extrusion is performed so that the temperature of the extruded material immediately after the extrusion is 440° C. or higher.
A method for producing a high-strength aluminum alloy extrusion material with excellent SCC resistance, comprising the steps of: cooling the extrusion material in the atmosphere at a cooling rate of less than 100°C/min for 1.0 to 3.4 minutes until the temperature of the extrusion material reaches 250 to 400°C immediately after extrusion; and then forcibly cooling the extrusion material at a cooling rate of 100 to 2000°C/min until the temperature of the extrusion material reaches 150°C or less, followed by aging treatment.
その後に押出温度が150℃以下になるまでは冷却速度200~2000℃/minで強制冷却した後に、時効処理することを特徴とする請求項1記載の耐SCC性に優れた高強度アルミニウム合金押出材の製造方法。 Immediately after the extrusion process, the extruded material is cooled in the air for at least 1 minute until the temperature of the extruded material reaches 300 to 400 ° C.
The method for producing a high-strength aluminum alloy extrusion material having excellent SCC resistance according to claim 1, characterized in that the extrusion temperature is then forcedly cooled at a cooling rate of 200 to 2000 ° C./min until the extrusion temperature becomes 150 ° C. or less, and then aging treatment is performed.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023049527 | 2023-03-27 | ||
JP2023049527 | 2023-03-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2024139746A true JP2024139746A (en) | 2024-10-09 |
Family
ID=92810398
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2024047122A Pending JP2024139746A (en) | 2023-03-27 | 2024-03-22 | Manufacturing method for high-strength aluminum alloy extrusion material with excellent SCC resistance and aluminum alloy used therein |
Country Status (3)
Country | Link |
---|---|
US (1) | US20240327955A1 (en) |
JP (1) | JP2024139746A (en) |
CN (1) | CN118703848A (en) |
-
2023
- 2023-10-26 CN CN202311401473.8A patent/CN118703848A/en active Pending
-
2024
- 2024-03-22 JP JP2024047122A patent/JP2024139746A/en active Pending
- 2024-03-26 US US18/616,441 patent/US20240327955A1/en active Pending
Also Published As
Publication number | Publication date |
---|---|
CN118703848A (en) | 2024-09-27 |
US20240327955A1 (en) | 2024-10-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11136658B2 (en) | High strength aluminum alloy extruded material with excellent corrosion resistance and favorable quenching properties and manufacturing method therefor | |
JP3194742B2 (en) | Improved lithium aluminum alloy system | |
JP2012207302A (en) | METHOD FOR MANUFACTURING EXTRUDED MATERIAL OF HEAT TREATMENT TYPE Al-Zn-Mg-BASED ALUMINUM ALLOY | |
WO2012165086A1 (en) | Aluminum alloy and method of manufacturing extrusion using same | |
JP7018274B2 (en) | Aluminum alloy for extrusion molding and method for manufacturing extruded material using it | |
US10900108B2 (en) | Method for manufacturing bent article using aluminum alloy | |
JP2021110042A (en) | Production method for high-strength aluminum alloy extrusion material excellent in toughness and corrosion resistance | |
JP2009167464A (en) | Method for producing aluminum alloy material having excellent toughness | |
WO2021157356A1 (en) | Production method of high-strength aluminum alloy extruded material | |
TWI434939B (en) | Aluminium alloy and process of preparation thereof | |
JP7479854B2 (en) | Manufacturing method of aluminum alloy extrusion material | |
JP2009203516A (en) | Aluminum alloy | |
JP4498180B2 (en) | Al-Zn-Mg-Cu-based aluminum alloy containing Zr and method for producing the same | |
JP4088546B2 (en) | Manufacturing method of aluminum alloy forging with excellent high temperature characteristics | |
WO2018088351A1 (en) | Aluminum alloy extruded material | |
US20230357889A1 (en) | Method For Manufacturing Aluminum Alloy Extruded Material | |
US20230357902A1 (en) | Method For Manufacturing Aluminum Alloy Extruded Material With High Strength And Excellent In SCC Resistance And Hardenability | |
JP2024139746A (en) | Manufacturing method for high-strength aluminum alloy extrusion material with excellent SCC resistance and aluminum alloy used therein | |
US11827967B2 (en) | Method for producing aluminum alloy extruded material | |
US20210262065A1 (en) | 2xxx aluminum alloys | |
JPH10259464A (en) | Production of aluminum alloy sheet for forming | |
WO2023233713A1 (en) | Manufacturing method for high-strength aluminum alloy extruded material having excellent scc resistance | |
JP2012201923A (en) | Aluminum extruded shape and extrusion molding method thereof | |
JP7119153B1 (en) | High-strength aluminum alloy extruded material and manufacturing method thereof | |
JP2022506542A (en) | 2XXX Aluminum Lithium Alloy |