Nothing Special   »   [go: up one dir, main page]

JP2024125852A - Metal complex, method for producing metal complex, and water oxidation catalyst - Google Patents

Metal complex, method for producing metal complex, and water oxidation catalyst Download PDF

Info

Publication number
JP2024125852A
JP2024125852A JP2023033958A JP2023033958A JP2024125852A JP 2024125852 A JP2024125852 A JP 2024125852A JP 2023033958 A JP2023033958 A JP 2023033958A JP 2023033958 A JP2023033958 A JP 2023033958A JP 2024125852 A JP2024125852 A JP 2024125852A
Authority
JP
Japan
Prior art keywords
above formula
pyridine
metal complex
represented
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2023033958A
Other languages
Japanese (ja)
Inventor
大 大山
千紘 岩▲崎▼
憲 菱沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fukushima University NUC
Original Assignee
Fukushima University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fukushima University NUC filed Critical Fukushima University NUC
Priority to JP2023033958A priority Critical patent/JP2024125852A/en
Publication of JP2024125852A publication Critical patent/JP2024125852A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Nitrogen And Oxygen Or Sulfur-Condensed Heterocyclic Ring Systems (AREA)
  • Catalysts (AREA)

Abstract

【課題】安定で単離が可能な金属錯体、金属錯体からなる水の酸化触媒、および金属錯体の製造方法を提供する。【解決手段】 下記式(1)で表され、かつ、ピリジンのN(窒素)がM3+に配位している、金属錯体。[化1]TIFF2024125852000061.tif41170【選択図】なしThe present invention provides a metal complex that is stable and can be isolated, a water oxidation catalyst comprising the metal complex, and a method for producing the metal complex. The present invention provides a metal complex represented by the following formula (1), in which the N (nitrogen) of pyridine is coordinated to M3+. [Chemical formula 1] TIFF2024125852000061.tif41170 [Selected figure] None

Description

特許法第30条第2項適用申請有り (1)発行日(公開日) 令和4年9月5日 刊行物 錯体化学会第72回討論会講演要旨集 錯体化学会 発行 *参加者専用アドレスより公開(参加者のみ閲覧可) (公開アドレスURL:http://www.chem.okayama-u.ac.jp/▲~▼reg/jscc72/pdf/2PA-53.pdf) <資 料> 錯体化学会第72回討論会講演要旨集 掲載研究論文要旨 (2)開催日(公開日) 令和4年9月27日 (会期:令和4年9月26日~28日) 集会名、開催場所 錯体化学会第72回討論会 錯体化学会 主催 九州大学 伊那キャンパス(福岡県福岡市西区元岡744) ポスター発表 Room 2202 <資 料> 錯体化学会第72回討論会 開催概要 <資 料> 錯体化学会第72回討論会 プログラム <資 料> 錯体化学会第72回討論会 研究発表ポスターApplication for application of Article 30, Paragraph 2 of the Patent Act has been made (1) Date of issue (publication date) September 5, 2022 Publication Abstracts of the 72nd Symposium of the Society of Coordination Chemistry Published by the Society of Coordination Chemistry *Open to the public via a dedicated address for participants (only available to participants) (Publication address URL: http://www.chem.okayama-u.ac.jp/▲~▼reg/jscc72/pdf/2PA-53.pdf) <Materials> Abstracts of the 72nd Symposium of the Society of Coordination Chemistry Abstracts of published research papers (2) Date of holding (publication date) September 27, 2022 (Dates: September 26-28, 2022) Name and location of the meeting 72nd Symposium of the Society of Coordination Chemistry Coordination Chemistry Society Sponsored by Kyushu University Ina Campus (744 Motooka, Nishi-ku, Fukuoka City, Fukuoka Prefecture) Poster presentation Room 2202 <Materials> The 72nd Symposium of the Society of Coordination Chemistry Event Summary <Materials> The 72nd Symposium of the Society of Coordination Chemistry Program <Materials> The 72nd Symposium of the Society of Coordination Chemistry Research Presentation Poster

本発明は、金属錯体、金属錯体の製造方法および金属錯体からなる水の酸化触媒に関する。 The present invention relates to a metal complex, a method for producing the metal complex, and a water oxidation catalyst comprising the metal complex.

モデル化合物を用いた光合成の反応機構の解明や、モデル化合物を触媒とする有機物の酸化反応の開発には、水の酸化プロセスの解明が重要である。触媒的な水の酸化反応における中間体としては、RuIII-OH種の存在が指摘されている(例えば、非特許文献1参照)。 It is important to clarify the water oxidation process in order to elucidate the reaction mechanism of photosynthesis using model compounds and to develop oxidation reactions of organic matter using model compounds as catalysts. Two types of Ru III -OH have been identified as intermediates in catalytic water oxidation reactions (see, for example, Non-Patent Document 1).

M.D.Karkas et al., Inorg. Chem. 57, 10881-10895(2018).M. D. Karkas et al. , Inorg. Chem. 57, 10881-10895 (2018).

効率的な触媒反応系を構築するためには、前記の中間体を単離してその性質を調べることが重要である。しかしながら、一般にRuIII-OH種は不安定であるため、単離が難しかった。 In order to construct an efficient catalytic reaction system, it is important to isolate the intermediate and investigate its properties, but the Ru III -OH two species are generally unstable, making isolation difficult.

本発明は、上記事情に鑑みてなされたものであって、安定で単離が可能な金属錯体、金属錯体の製造方法、および金属錯体からなる水の酸化触媒を提供することを目的とする。 The present invention has been made in view of the above circumstances, and aims to provide a stable and isolable metal complex, a method for producing the metal complex, and a water oxidation catalyst comprising the metal complex.

本発明は以下の態様を有する。
[1]下記式(1)で表され、かつ、ピリジンのN(窒素)がM3+に配位している、金属錯体。
The present invention has the following aspects.
[1] A metal complex represented by the following formula (1), in which N (nitrogen) of pyridine is coordinated to M3 + .

Figure 2024125852000001
(上記式(1)中、Rは下記式(2)~下記式(5)で表され、Mは三価の金属であり、Lは下記式(6)~下記式(15)で表されるピリジンまたはピリジン置換体である。Rに含まれる窒素の1か所でM3+に配位する。Rが2つあるため、ピリジンの窒素と併せて計3か所の窒素でM3+に配位する。M3+に配位する3つの窒素はすべて同一面上にある。)
Figure 2024125852000001
(In the above formula (1), R 1 is represented by the following formulas (2) to (5), M is a trivalent metal, and L is a pyridine or a substituted pyridine represented by the following formulas (6) to (15). One nitrogen atom contained in R 1 coordinates to M 3+ . Since there are two R 1s , a total of three nitrogen atoms, including the pyridine nitrogen atom, coordinate to M 3+. All three nitrogen atoms coordinate to M 3+ are on the same plane.)

Figure 2024125852000002
(上記式(2)中、符号αで示す窒素が上記式(1)中のM3+に配位し、*は結合手を示す。)
Figure 2024125852000002
(In the above formula (2), nitrogen represented by the symbol α is coordinated to M in the above formula (1), and * represents a bond.)

Figure 2024125852000003
(上記式(3)中、*は結合手を示す。)
Figure 2024125852000003
(In the above formula (3), * indicates a bond.)

Figure 2024125852000004
(上記式(4)中、*は結合手を示す。)
Figure 2024125852000004
(In the above formula (4), * indicates a bond.)

Figure 2024125852000005
(上記式(5)中、符号αで示す窒素が上記式(1)中のM3+に配位し、*は結合手を示す。)
Figure 2024125852000005
(In the above formula (5), nitrogen represented by the symbol α is coordinated to M in the above formula (1), and * represents a bond.)

Figure 2024125852000006
Figure 2024125852000006

Figure 2024125852000007
Figure 2024125852000007

Figure 2024125852000008
Figure 2024125852000008

Figure 2024125852000009
Figure 2024125852000009

Figure 2024125852000010
Figure 2024125852000010

Figure 2024125852000011
Figure 2024125852000011

Figure 2024125852000012
Figure 2024125852000012

Figure 2024125852000013
Figure 2024125852000013

Figure 2024125852000014
Figure 2024125852000014

Figure 2024125852000015
Figure 2024125852000015

[2][1]に記載の金属錯体からなる、水の酸化触媒。 [2] A water oxidation catalyst consisting of the metal complex described in [1].

[3]下記式(16)で表される化合物Aを得る第1工程と、
前記化合物Aと、三価の金属塩とを、アルコールを含む溶液に溶解して溶液Bとする第2工程と、
前記溶液Bにピリジンまたはピリジン置換体を加えて溶液Cとし、前記溶液Cを加熱する第3工程と、
を有する、金属錯体の製造方法。
[3] a first step of obtaining a compound A represented by the following formula (16);
A second step of dissolving the compound A and a trivalent metal salt in a solution containing alcohol to obtain a solution B;
a third step of adding pyridine or a pyridine substitute to the solution B to obtain a solution C, and heating the solution C;
The present invention relates to a method for producing a metal complex comprising the steps of:

Figure 2024125852000016
(上記式(16)中、Rは下記式(2)~下記式(5)で表される。)
Figure 2024125852000016
(In the above formula (16), R 1 is represented by the following formulas (2) to (5).)

Figure 2024125852000017
(上記式(2)中、*は結合手を示す。)
Figure 2024125852000017
(In the above formula (2), * indicates a bond.)

Figure 2024125852000018
(上記式(3)中、*は結合手を示す。)
Figure 2024125852000018
(In the above formula (3), * indicates a bond.)

Figure 2024125852000019
(上記式(4)中、*は結合手を示す。)
Figure 2024125852000019
(In the above formula (4), * indicates a bond.)

Figure 2024125852000020
(上記式(5)中、*は結合手を示す。)
Figure 2024125852000020
(In the above formula (5), * indicates a bond.)

本発明によれば、安定で単離が可能な金属錯体、金属錯体の製造方法、および金属錯体からなる水の酸化触媒を提供することができる。 The present invention provides a stable and isolable metal complex, a method for producing the metal complex, and a water oxidation catalyst comprising the metal complex.

実施例で得られた金属錯体(L=ピリジン)の分子構造を示す図である。FIG. 2 is a diagram showing the molecular structure of a metal complex (L=pyridine) obtained in an example. [Ru(pip)(OH)L錯体(L=ピリジン)のpH変化による吸収スペクトルの測定結果を示す図である。FIG. 13 is a diagram showing the results of measuring the absorption spectrum of a [Ru(pip)(OH 2 )L 2 ] + complex (L=pyridine) depending on the pH change. 図2の波長464nmにおけるpHと吸光度の関係を示す図である。FIG. 3 is a graph showing the relationship between pH and absorbance at a wavelength of 464 nm in FIG. 2.

本発明の金属錯体、金属錯体の製造方法、および金属錯体からなる水の酸化触媒の実施の形態について説明する。
なお、本実施の形態は、発明の趣旨をより良く理解させるために具体的に説明するものであり、特に指定のない限り、本発明を限定するものではない。
An embodiment of the metal complex, the method for producing the metal complex, and the water oxidation catalyst comprising the metal complex of the present invention will be described.
It should be noted that the present embodiment is specifically described to allow a better understanding of the gist of the invention, and does not limit the present invention unless otherwise specified.

[金属錯体]
本発明の一実施形態に係る金属錯体は、下記式(1)で表される。本実施形態の金属錯体の電荷は、+1である。金属イオン(M)は+3価、配位子はR部位のN-Hが金属に配位する際に、水素イオン(H)を2つ解離して配位するため、金属に結合した配位子は形式的に-2価となる。よって、金属錯体は+1価となる。
[Metal complexes]
A metal complex according to one embodiment of the present invention is represented by the following formula (1). The charge of the metal complex according to this embodiment is +1. The metal ion (M) has a valence of +3, and the ligand R1 dissociates and coordinates with two hydrogen ions (H + ) when the N-H at the 1 site coordinates with the metal, so the ligand bound to the metal formally has a valence of -2. Therefore, the metal complex has a valence of +1.

Figure 2024125852000021
(上記式(1)中、Rは下記式(2)~下記式(5)で表され、Mは三価の金属であり、Lは下記式(6)~下記式(15)で表されるピリジンまたはピリジン置換体である。Rに含まれる窒素の1か所でM3+に配位する。Rが2つあるため、ピリジンの窒素と併せて計3か所の窒素でM3+に配位する。M3+に配位する3つの窒素はすべて同一面上にある。)
Figure 2024125852000021
(In the above formula (1), R 1 is represented by the following formulas (2) to (5), M is a trivalent metal, and L is a pyridine or a substituted pyridine represented by the following formulas (6) to (15). One nitrogen atom contained in R 1 coordinates to M 3+ . Since there are two R 1s , a total of three nitrogen atoms, including the pyridine nitrogen atom, coordinate to M 3+. All three nitrogen atoms coordinate to M 3+ are on the same plane.)

Figure 2024125852000022
(上記式(2)中、符号αで示す窒素が上記式(1)中のM3+に配位し、*は結合手を示す。)
Figure 2024125852000022
(In the above formula (2), nitrogen represented by the symbol α is coordinated to M in the above formula (1), and * represents a bond.)

Figure 2024125852000023
(上記式(3)中、*は結合手を示す。)
Figure 2024125852000023
(In the above formula (3), * indicates a bond.)

Figure 2024125852000024
(上記式(4)中、*は結合手を示す。)
Figure 2024125852000024
(In the above formula (4), * indicates a bond.)

Figure 2024125852000025
(上記式(5)中、符号αで示す窒素が上記式(1)中のM3+に配位し、*は結合手を示す。)
Figure 2024125852000025
(In the above formula (5), nitrogen represented by the symbol α is coordinated to M in the above formula (1), and * represents a bond.)

Figure 2024125852000026
Figure 2024125852000026

Figure 2024125852000027
Figure 2024125852000027

Figure 2024125852000028
Figure 2024125852000028

Figure 2024125852000029
Figure 2024125852000029

Figure 2024125852000030
Figure 2024125852000030

Figure 2024125852000031
Figure 2024125852000031

Figure 2024125852000032
Figure 2024125852000032

Figure 2024125852000033
Figure 2024125852000033

Figure 2024125852000034
Figure 2024125852000034

Figure 2024125852000035
Figure 2024125852000035

上記式(1)において、ピリジンと2つのRは同一平面上にある。また、上記式(1)において、Rが上記式(2)~上記式(5)で表される化合物の場合、ピリジンと2つのRに含まれる複素環とピリジンから構成される構造は剛直であり、複素環はR中のピリジンに対して、自由に回転できない。 In the above formula (1), pyridine and two R 1s are on the same plane. In addition, in the above formula (1), when R 1 is a compound represented by the above formula (2) to formula (5), the structure composed of pyridine, heterocycles contained in two R 1s , and pyridine is rigid, and the heterocycles cannot freely rotate with respect to the pyridine in R 1 .

上記式(1)においてMで表される三価の金属としては、例えば、ルテニウム(Ru)、鉄(Fe)、Os(オスミウム)、コバルト(Co)、ロジウム(Rh)、イリジウム(Ir)等が挙げられる。 Examples of trivalent metals represented by M in the above formula (1) include ruthenium (Ru), iron (Fe), Os (osmium), cobalt (Co), rhodium (Rh), iridium (Ir), etc.

上記式(1)においてLは、上記式(6)で表されるピリジン、上記式(7)で表される4-メチルピリジン(4-ピコリン)、上記式(8)で表される4-tert-ブチルピリジン等のピリジン置換体が好ましい。 In the above formula (1), L is preferably a pyridine substitute such as pyridine represented by the above formula (6), 4-methylpyridine (4-picoline) represented by the above formula (7), or 4-tert-butylpyridine represented by the above formula (8).

上記式(1)で表される金属錯体としては、具体的に、下記式(17)で表される[Ru(pip)(OH)L錯体が挙げられる。[Ru(pip)(OH)L錯体では、下記式(18)で表されるHpipから2つのHが脱離して、pipの3つの窒素(上記式(1)のピリジンの窒素、上記式(1)のRのピリジン側の2つの窒素)が三価の金属であるRuに結合するとともに、pipの2つの窒素(上記式(1)のピリジンから離れた位置にある2つの窒素)がRuに結合した水(HO)に水素結合する。これにより、Ru(III)-ОH結合が維持される。なお、Rが上記式(3)の場合は、酸素、Rが上記式(4)の場合は、硫黄が、Ruに結合した水(HO)に水素結合する。これにより、Ru(III)-ОH結合が維持される。 A specific example of the metal complex represented by the above formula (1) is the [Ru(pip)(OH 2 )L 2 ] + complex represented by the following formula (17). In the [Ru(pip)(OH 2 )L 2 ] + complex, two H + are eliminated from the H 2 pip represented by the following formula (18), and the three nitrogens of the pip (the nitrogen of the pyridine in the above formula (1), the two nitrogens on the pyridine side of R 1 in the above formula (1)) are bonded to the trivalent metal Ru, and the two nitrogens of the pip (the two nitrogens located away from the pyridine in the above formula (1)) are hydrogen-bonded to the water (H 2 O) bonded to Ru. This maintains the Ru(III)-OH 2 bond. Note that when R 1 is the above formula (3), oxygen is hydrogen-bonded to the water (H 2 O) bonded to Ru, and when R 1 is the above formula (4), sulfur is hydrogen-bonded to the water (H 2 O) bonded to Ru. This maintains the Ru(III)-OH 2 bond.

Figure 2024125852000036
Figure 2024125852000036

Figure 2024125852000037
Figure 2024125852000037

本実施形態の金属錯体によれば、安定で単離が可能な金属錯体を提供することができる。 The metal complex of this embodiment can provide a stable metal complex that can be isolated.

[水の酸化触媒]
本発明の一実施形態に係る水の酸化触媒は、本発明の一実施形態に係る金属錯体からなる。
[Water oxidation catalyst]
A water oxidation catalyst according to one embodiment of the present invention comprises a metal complex according to one embodiment of the present invention.

本実施形態の水の酸化触媒によれば、水の酸化を効率的に行うことができる。 The water oxidation catalyst of this embodiment allows for efficient water oxidation.

[金属錯体の製造方法]
本発明の一実施形態に係る金属錯体の製造方法は、上記式(1)で表される金属錯体の製造方法である。
本実施形態の金属錯体の製造方法は、下記式(16)で表される化合物Aを得る第1工程と、前記化合物Aと、三価の金属塩とを、アルコールを含む溶液に溶解して溶液Bとする第2工程と、前記溶液Bにピリジンまたはピリジン置換体を加えて溶液Cとし、前記溶液Cを加熱する第3工程と、を有する。
[Metal Complex Production Method]
A method for producing a metal complex according to one embodiment of the present invention is a method for producing a metal complex represented by the above formula (1).
The method for producing a metal complex of the present embodiment includes a first step of obtaining a compound A represented by the following formula (16), a second step of dissolving the compound A and a trivalent metal salt in a solution containing an alcohol to obtain a solution B, and a third step of adding pyridine or a substituted pyridine to the solution B to obtain a solution C, and heating the solution C.

Figure 2024125852000038
(上記式(16)中、Rは上記式(2)~上記式(5)で表される。)
Figure 2024125852000038
(In the above formula (16), R 1 is represented by the above formulas (2) to (5).)

(第1工程)
第1工程では、上記式(16)で表される化合物Aを得る。
が上記式(2)~上記式(5)で表される場合、化合物Aの合成経路は、例えば、8-ヒドラジノキノリン→2,6-ジアセチルピリジン-ビス(8-キノリニルヒドラゾン)→2,6-ビス(ピリド[3,2-ジ]インド-2’-イル)ピリジン(=Rが上記式(2)~上記式(5)である場合の化合物A)で合成することができる。
また、化合物Aは、例えば、R.A.Taylor et al., Polyhedron 131 34-39(2017)、V.Hegde et al., J.Am.Chem.Soc.115 872-878(1993)、S.F.Liu et al.,J.Am.Chem.soc.122 3671-3678(2000)、W.L.Jia et al., Organometallics 22 4070-4078(2003)に記載の方法で合成することができるが、これに限定されない。
(First step)
In the first step, compound A represented by the above formula (16) is obtained.
When R 1 is represented by any one of the above formulas (2) to (5), the compound A can be synthesized, for example, through a synthetic route of 8-hydrazinoquinoline → 2,6-diacetylpyridine-bis(8-quinolinylhydrazone) → 2,6-bis(pyrido[3,2-di]ind-2′-yl)pyridine (=compound A when R 1 is any one of the above formulas (2) to (5)).
Compound A can be synthesized by, for example, the method described in R. A. Taylor et al., Polyhedron 131 34-39 (2017), V. Hegde et al., J. Am. Chem. Soc. 115 872-878 (1993), S. F. Liu et al., J. Am. Chem. soc. 122 3671-3678 (2000), W. L. Jia et al., Organometallics 22 4070-4078 (2003), but is not limited thereto.

(第2工程)
第2工程では、化合物Bと三価の金属を反応させる。まず、アルコールに金属塩を溶解させ、溶液Bとする。この際、金属塩を溶解させることができれば、アルコールに金属塩を溶解させる方法は特に限定されず、例えば、加熱還流を行うこともできる。
(Second step)
In the second step, compound B is reacted with a trivalent metal. First, a metal salt is dissolved in alcohol to obtain solution B. In this case, the method for dissolving the metal salt in alcohol is not particularly limited as long as the metal salt can be dissolved, and for example, heating under reflux can be performed.

金属塩としては、例えば、ハロゲン化物、硝酸塩等が挙げられ、具体的には、RuCl、CoF、FeCl、FeBr、Fe(NO、OsCl、RhCl、Rh(NO、IrCl、IrBr等が挙げられる。 Examples of metal salts include halides and nitrates, and specific examples include RuCl3 , CoF3 , FeCl3, FeBr3 , Fe( NO3 ) 3 , OsCl3 , RhCl3 , Rh( NO3 ) 3 , IrCl3 , and IrBr3 .

アルコールとしては、例えば、メタノール、エタノール等が挙げられる。 Examples of alcohols include methanol and ethanol.

溶液Bの濃度は、0.005mol/L~0.05mol/Lが好ましい。 The concentration of solution B is preferably 0.005 mol/L to 0.05 mol/L.

次に、第1工程で合成した化合物Aを、アルコールを含む溶媒Aに溶解して、溶液Aとする。 Next, compound A synthesized in the first step is dissolved in solvent A containing alcohol to obtain solution A.

溶媒Aは、アルコールを含んでいればよいが、収率向上の観点でジメチルホルムアミドを混合することがより好ましい。ジメチルホルムアミドを混合する場合におけるジメチルホルムアミドとアルコールの混合比は、体積比で、2/10以上8/10以下が好ましい。 Solvent A may contain alcohol, but it is more preferable to mix dimethylformamide from the viewpoint of improving yield. When mixing dimethylformamide, the mixing ratio of dimethylformamide to alcohol is preferably 2/10 or more and 8/10 or less by volume.

アルコールは、溶液Bの溶媒と同じものを用いるのが好ましい。 It is preferable to use the same alcohol as the solvent for solution B.

溶液Aの濃度は、0.0015mol/L~0.02mol/Lが好ましい。 The concentration of solution A is preferably 0.0015 mol/L to 0.02 mol/L.

次に、溶液Aと溶液Bを混合し、溶液Cを得る。溶液Aと溶液Bの混合方法や混合時間は、溶液Aと溶液Bが均一になりさえずれば、特に限定されないが、加熱還流することが好ましい。加熱還流する場合も、溶液Aと溶液Bが均一に混合できさえすれば、特にその加熱還流時間は限定されないが、3時間から12時間程度、加熱還流することが好ましい。また、溶液Aと溶液Bの混合割合は、溶液Aに含まれる金属塩の量と、溶液Bに含まれる化合物Bがモル換算でおおよそ同程度になるようにすればよいが、好ましくは、金属塩の量と化合物Bの量の差が20%以内に収まるようにする。 Next, solution A and solution B are mixed to obtain solution C. The method and time for mixing solution A and solution B are not particularly limited as long as solution A and solution B become uniform, but heating to reflux is preferable. When heating to reflux, the heating to reflux time is also not particularly limited as long as solution A and solution B can be mixed uniformly, but heating to reflux for about 3 to 12 hours is preferable. The mixing ratio of solution A and solution B should be such that the amount of metal salt contained in solution A and the amount of compound B contained in solution B are approximately the same in molar terms, but preferably the difference between the amount of metal salt and the amount of compound B is within 20%.

(第3工程)
第3工程では、さらに、ピリジンまたはピリジン置換体を反応させて、上記式(1)で表される金属錯体を得る。まず、水にピリジンまたはピリジン置換体を溶解させて、溶液Dとする。ピリジンまたはピリジン置換体と水との混合比は、体積比で0.1/8以上1/8以下が好ましい。
(Third process)
In the third step, pyridine or a substituted pyridine is further reacted to obtain a metal complex represented by the above formula (1). First, pyridine or a substituted pyridine is dissolved in water to obtain a solution D. The mixing ratio of pyridine or a substituted pyridine to water is preferably 0.1/8 or more and 1/8 or less in volume ratio.

ピリジン置換体としては、上記式(7)~上記式(15)で表される化合物等が挙げられる。 Examples of pyridine substitution compounds include compounds represented by the above formulas (7) to (15).

次に、上記溶液Cに上記溶液Dを加えて溶液Eとし、前記溶液Eを加熱還流する。溶液Cと溶液Dの混合割合は、溶液Cに含まれる金属の量に対して、溶液Dに含まれるピリジンまたはピリジン置換体の量がおおよそ2倍程度になるようにすればよいが、好ましくは、金属の量に対するピリジンまたはピリジン置換体の量が、モル換算で1.5倍~3倍とするのが好ましい。 Next, solution D is added to solution C to obtain solution E, and solution E is heated to reflux. The mixing ratio of solutions C and D should be such that the amount of pyridine or pyridine substitute contained in solution D is approximately twice the amount of metal contained in solution C, but it is preferable that the amount of pyridine or pyridine substitute is 1.5 to 3 times the amount of metal in molar terms.

溶液Eを還流する時間は、特に限定されないが、例えば、12時間以上40時間以下である。 The time for refluxing solution E is not particularly limited, but is, for example, 12 hours or more and 40 hours or less.

以上の第1工程から第3工程により、上記式(1)で表される金属錯体が得られる。 The metal complex represented by the above formula (1) is obtained by the above steps 1 to 3.

以下、実施例により本発明をさらに具体的に説明するが、本発明は以下の実施例に限定されるものではない。 The present invention will be explained in more detail below with reference to examples, but the present invention is not limited to the following examples.

[実施例]
下記の合成方法により、上記式(18)で表されるHpipを合成した(第1工程)。
遮光および窒素雰囲気にした三口フラスコにヒドラジン一水和物(24mL)と8-キノリノール(3.06g、21.1mmol)を加えた。130℃で5日間、加熱還流した。放冷後、冷蔵庫に一晩放置した。析出した固体を吸引ろ過し、少量の冷水で洗浄し、一晩デジケーターで乾燥させ、黄色の針状固体として、8-ヒドラジノキノリン2.70g(16.9mmol)を得た。収率は、81%だった。
次に、窒素雰囲気にした三口フラスコに、2,6-ジアセチルピリジン(219.2mg、2.72mmol)と8-ヒドラジノキノリン(427.1mg、2.69mmol)をエタノール(25ml)で溶解させた。90℃で2時間加熱還流した。放冷後、冷蔵庫に一晩放置した。析出した固体を吸引ろ過し、エタノールで洗浄し、一晩、デジケーターで減圧乾燥し、黄色固体として、2,6-ジアセチルピリジン-ビス(8-キノリニルヒドラゾン)442.0mg(0.99mmol)を得た。収率は37%だった。
続いて、ビーカーに2,6-ジアセチルピリジン-ビス(8-キノリニルヒドラゾン)(202.7mg、0.455mmol)とポリリン酸(3.0g)を加え、ホットスターラーを用いて、160℃で12時間加熱撹拌した。放冷後、撹拌しながら水酸化ナトリウム水溶液をpHが7になるまで滴下した。ジクロロメタン(150mL)で3回抽出した後、水(75mL)で3回洗浄し、硫酸ナトリウム(無水)で脱水した。ロータリーエバポレーターで乾固させ、デジケーターで減圧乾燥し、黄色固体として、2,6-ビス(ピリド[3,2-ジ]インド-2’-イル)ピリジン154.3mg(0.376mmol)を得た。収率は83%だった。得られた黄色固体が2,6-ビス(ピリド[3,2-ジ]インド-2’-イル)ピリジン(Hpip)であることは、TOF-MS(飛行時間型質量分析装置 ESI-TOF/microOTOF(Bruker Daltonics社製)とH-NMR(NMR:核磁気共鳴法、AL300型核磁気共鳴装置(JEOL社製))で確認した。
[Example]
H 2 pip represented by the above formula (18) was synthesized by the following synthesis method (first step).
Hydrazine monohydrate (24 mL) and 8-quinolinol (3.06 g, 21.1 mmol) were added to a three-neck flask protected from light and under a nitrogen atmosphere. The mixture was heated to reflux at 130° C. for 5 days. After cooling, the mixture was left in a refrigerator overnight. The precipitated solid was filtered by suction, washed with a small amount of cold water, and dried overnight in a desiccator to obtain 2.70 g (16.9 mmol) of 8-hydrazinoquinoline as a yellow needle-like solid. The yield was 81%.
Next, in a three-neck flask under a nitrogen atmosphere, 2,6-diacetylpyridine (219.2 mg, 2.72 mmol) and 8-hydrazinoquinoline (427.1 mg, 2.69 mmol) were dissolved in ethanol (25 ml). The mixture was heated to reflux at 90°C for 2 hours. After cooling, the mixture was left in a refrigerator overnight. The precipitated solid was filtered by suction, washed with ethanol, and dried under reduced pressure in a desiccator overnight to obtain 442.0 mg (0.99 mmol) of 2,6-diacetylpyridine-bis(8-quinolinylhydrazone) as a yellow solid. The yield was 37%.
Next, 2,6-diacetylpyridine-bis(8-quinolinylhydrazone) (202.7 mg, 0.455 mmol) and polyphosphoric acid (3.0 g) were added to a beaker, and the mixture was heated and stirred at 160° C. for 12 hours using a hot stirrer. After cooling, an aqueous sodium hydroxide solution was added dropwise while stirring until the pH reached 7. The mixture was extracted three times with dichloromethane (150 mL), washed three times with water (75 mL), and dehydrated with sodium sulfate (anhydrous). The mixture was dried in a rotary evaporator and dried under reduced pressure in a desiccator to obtain 154.3 mg (0.376 mmol) of 2,6-bis(pyrido[3,2-di]indo-2'-yl)pyridine as a yellow solid. The yield was 83%. The yellow solid obtained was confirmed to be 2,6-bis(pyrido[3,2-di]indo-2'-yl)pyridine (H 2 pip) by TOF-MS (time-of-flight mass spectrometer ESI-TOF/microOTOF (manufactured by Bruker Daltonics)) and 1 H-NMR (NMR: nuclear magnetic resonance method, AL300 type nuclear magnetic resonance apparatus (manufactured by JEOL)).

第2工程として、以下のようにHpipとRu3+を反応させた。
フラスコに塩化ルテニウム三水和物(31.4mg、0.109mmol)とエタノール(6mL)を加え、100℃で加熱還流し、溶液Bとした。
pip(42.6mg,0.104mmol)を、エタノール(10mL)とジメチルホルムアミド(5mL)に溶解させ溶液Aとした。
In the second step, H 2 pip was reacted with Ru 3+ as follows.
Ruthenium chloride trihydrate (31.4 mg, 0.109 mmol) and ethanol (6 mL) were added to a flask, and the mixture was heated to reflux at 100° C. to obtain solution B.
Solution A was prepared by dissolving H 2 pip (42.6 mg, 0.104 mmol) in ethanol (10 mL) and dimethylformamide (5 mL).

溶液Bに溶液Aを滴下して加え、6時間、加熱還流し、溶液Cを得た。 Solution A was added dropwise to solution B, and the mixture was heated under reflux for 6 hours to obtain solution C.

第3工程として、さらに、以下のようにピリジンと反応させた。
水(4mL)にピリジン(0.2mL)を溶解させ、溶液Dを得た。
溶液Cに溶液Dを加え、溶液Eを得て、溶液Eを24時間、加熱還流した。
In the third step, the product was further reacted with pyridine as follows.
Pyridine (0.2 mL) was dissolved in water (4 mL) to obtain solution D.
Solution D was added to solution C to obtain solution E, which was then heated to reflux for 24 hours.

得られた生成物を放冷後、吸引ろ過により不純物を取り除き、その後、ヘキサフルオロリン酸カリウム(55.2mg、3当量)を加え、冷却後に水を加えて析出した緑色固体を吸引ろ過した後、水およびジエチルエーテルで洗浄し、一晩、デジケーターで減圧乾燥した。得られた粗結晶をアセトン溶解した後、シリカゲルカラムクロマトグラフィーを用いて精製し、[Ru(pip)(py)(OH)(PF)(L=ピリジン)を緑色固体として回収した。
回収した生成物から蒸気拡散法でその単結晶を得て、X線回折(XRD、Saturn -CCD回折計、Rigaku社製))を行った。
その結果、得られた生成物は図1に示す分子構造を有するものであり、上記式(17)で表される[Ru(pip)(OH)L錯体(L=ピリジン)であることが確認された。
The resulting product was allowed to cool, and impurities were removed by suction filtration. Potassium hexafluorophosphate (55.2 mg, 3 equivalents) was then added. After cooling, water was added to precipitate a green solid, which was then suction filtered, washed with water and diethyl ether, and dried overnight under reduced pressure in a desiccator. The resulting crude crystals were dissolved in acetone, and purified using silica gel column chromatography to recover [Ru(pip)(py) 2 ( OH2 )( PF6 )(L=pyridine) as a green solid.
A single crystal was obtained from the recovered product by a vapor diffusion method, and X-ray diffraction (XRD, Saturn-CCD diffractometer, manufactured by Rigaku Corporation) was performed.
As a result, the obtained product had the molecular structure shown in FIG. 1, and was confirmed to be a [Ru(pip)(OH 2 )L 2 ] + complex (L=pyridine) represented by the above formula (17).

得られた生成物の収率は42%であった。
また、ピリジンを上記式(7)で表される4-ピコリンに替えて、同様の方法で、[Ru(pip)(OH)L錯体(L=4-ピコリン)が得られ、その収率は50%であった。
さらに、ピリジンを上記式(8)で表される4-tert-ブチルピリジンに替えて、同様の方法で、[Ru(pip)(OH)L錯体(L=4-tert-ブチルピリジン)が得られ、その収率は49%であった。
また、得られた生成物が、それぞれ目的の錯体であることを、TOF-MSとFT-IR(赤外線吸収分析法、フーリエ変換赤外分光光度計 FT/IR-4100(JASCO社製)で確認した。
The yield of the product obtained was 42%.
Moreover, by using the same method but replacing pyridine with 4-picoline represented by the above formula (7), a [Ru(pip)(OH 2 )L 2 ] + complex (L=4-picoline) was obtained in a yield of 50%.
Furthermore, by using the same method but replacing pyridine with 4-tert-butylpyridine represented by the above formula (8), a [Ru(pip)(OH 2 )L 2 ] + complex (L=4-tert-butylpyridine) was obtained in a yield of 49%.
Furthermore, it was confirmed that the obtained products were the desired complexes by TOF-MS and FT-IR (infrared absorption analysis, Fourier transform infrared spectrophotometer FT/IR-4100 (manufactured by JASCO Corporation)).

(評価)
実施例1で得られた[Ru(pip)(OH)L錯体の酸解離定数(pK)を測定した。
酸解離定数の測定方法は、溶液のpHを変化させて分光光度計で吸光度を測定することにより行った。用いた分光光度計は、紫外-可視分光光度計 V-560DS(JASCO社製)で、サンプル濃度は0.05mmol、溶媒はアセトンを用いて、石英セルで行った。
[Ru(pip)(OH)L錯体に対して、塩基(例えば、飽和水酸化ナトリウム水溶液を添加した際の脱プロトン化反応を下記式(19)に示す。下記式(19)において、RuIII-OHは、[Ru(pip)(OH)L錯体である。
(evaluation)
The acid dissociation constant (pK a ) of the [Ru(pip)(OH 2 )L 2 ] + complex obtained in Example 1 was measured.
The acid dissociation constant was measured by changing the pH of the solution and measuring the absorbance with a spectrophotometer. The spectrophotometer used was a UV-Visible Spectrophotometer V-560DS (manufactured by JASCO Corporation), with a sample concentration of 0.05 mmol, acetone as the solvent, and a quartz cell.
The deprotonation reaction that occurs when a base (for example, a saturated aqueous sodium hydroxide solution) is added to a [Ru(pip)(OH 2 )L 2 ] + complex is shown in the following formula (19). In the following formula (19), Ru III -OH 2 is a [Ru(pip)(OH 2 )L 2 ] + complex.

Figure 2024125852000039
Figure 2024125852000039

[Ru(pip)(OH)L錯体(L=ピリジン)の吸光度等の測定結果を図2と図3に示す。
上記式(19)において、Kが小さい、すなわち、反応が左側から右側に進行しにくいほど、[Ru(pip)(OH)L錯体は安定であると言える。
図2と図3に示す結果から、[Ru(pip)(OH)L錯体(L=ピリジン)は、pHが大きくなるに従って波長464nmの吸光度が増大することが分かった。また、[Ru(pip)(OH)L錯体(L=ピリジン)の酸解離定数(pK)は少なくとも13以上であること分かった。さらに、Lが、ピリジン置換体である場合の酸解離定数(pK)も、Lが、ピリジンであるときと同程度であることがわかった。酸解離定数(pK)が大きい程、[Ru(pip)(OH)L錯体は安定であると言える。例えば、RuIII(iba)(4-pic)(OH)、すなわち、下記式(20)で表される錯体の酸解離定数(pK)は5.6であることから、[Ru(pip)(OH)L錯体は、従来の錯体よりもかなり安定であることが分かった。このように、本発明の金属錯体は、安定であり、水の酸化プロセスの検討および水の酸化触媒としても有用である。
The results of measurement of the absorbance etc. of the [Ru(pip)(OH 2 )L 2 ] + complex (L=pyridine) are shown in FIG. 2 and FIG.
In the above formula (19), it can be said that the smaller the K a is, that is, the more difficult it is for the reaction to proceed from the left side to the right side, the more stable the [Ru(pip)(OH 2 )L 2 ] + complex is.
From the results shown in Figures 2 and 3, it was found that the absorbance at a wavelength of 464 nm of the [Ru(pip)(OH 2 )L 2 ] + complex (L = pyridine) increases as the pH increases. It was also found that the acid dissociation constant (pK a ) of the [Ru(pip)(OH 2 )L 2 ] + complex (L = pyridine) is at least 13 or more. It was also found that the acid dissociation constant (pK a ) when L is a pyridine substitute is approximately the same as when L is pyridine. It can be said that the larger the acid dissociation constant (pK a ), the more stable the [Ru(pip)(OH 2 )L 2 ] + complex is. For example, the acid dissociation constant (pK a ) of Ru III (iba)(4-pic) 2 (OH 2 ), i.e., the complex represented by the following formula (20), is 5.6, and therefore it has been found that the [Ru(pip)(OH 2 )L 2 ] + complex is considerably more stable than conventional complexes. Thus, the metal complex of the present invention is stable and is useful in the investigation of water oxidation processes and as a water oxidation catalyst.

Figure 2024125852000040
Figure 2024125852000040

Claims (3)

下記式(1)で表され、かつ、ピリジンのN(窒素)がM3+に配位している、金属錯体。
Figure 2024125852000041
(上記式(1)中、Rは下記式(2)~下記式(5)で表され、Mは三価の金属であり、Lは下記式(6)~下記式(15)で表されるピリジンまたはピリジン置換体である。Rに含まれる窒素の1か所でM3+に配位する。Rが2つあるため、ピリジンの窒素と併せて計3か所の窒素でM3+に配位する。M3+に配位する3つの窒素はすべて同一面上にある。)
Figure 2024125852000042
(上記式(2)中、符号αで示す窒素が上記式(1)中のM3+に配位し、*は結合手を示す。)
Figure 2024125852000043
(上記式(3)中、*は結合手を示す。)
Figure 2024125852000044
(上記式(4)中、*は結合手を示す。)
Figure 2024125852000045
(上記式(5)中、符号αで示す窒素が上記式(1)中のM3+に配位し、*は結合手を示す。)
Figure 2024125852000046
Figure 2024125852000047
Figure 2024125852000048
Figure 2024125852000049
Figure 2024125852000050
Figure 2024125852000051
Figure 2024125852000052
Figure 2024125852000053
Figure 2024125852000054
Figure 2024125852000055
A metal complex represented by the following formula (1), in which N (nitrogen) of pyridine is coordinated to M3 + .
Figure 2024125852000041
(In the above formula (1), R 1 is represented by the following formulas (2) to (5), M is a trivalent metal, and L is a pyridine or a substituted pyridine represented by the following formulas (6) to (15). One nitrogen atom contained in R 1 coordinates to M 3+ . Since there are two R 1s , a total of three nitrogen atoms, including the pyridine nitrogen atom, coordinate to M 3+. All three nitrogen atoms coordinate to M 3+ are on the same plane.)
Figure 2024125852000042
(In the above formula (2), nitrogen represented by the symbol α is coordinated to M in the above formula (1), and * represents a bond.)
Figure 2024125852000043
(In the above formula (3), * indicates a bond.)
Figure 2024125852000044
(In the above formula (4), * indicates a bond.)
Figure 2024125852000045
(In the above formula (5), nitrogen represented by the symbol α is coordinated to M in the above formula (1), and * represents a bond.)
Figure 2024125852000046
Figure 2024125852000047
Figure 2024125852000048
Figure 2024125852000049
Figure 2024125852000050
Figure 2024125852000051
Figure 2024125852000052
Figure 2024125852000053
Figure 2024125852000054
Figure 2024125852000055
請求項1に記載の金属錯体からなる、水の酸化触媒。 A water oxidation catalyst comprising the metal complex according to claim 1. 下記式(16)で表される化合物Aを得る第1工程と、
前記化合物Aと、三価の金属塩とを、アルコールを含む溶液に溶解して溶液Bとする第2工程と、
前記溶液Bにピリジンまたはピリジン置換体を加えて溶液Cとし、前記溶液Cを加熱する第3工程と、
を有する、金属錯体の製造方法。
Figure 2024125852000056
(上記式(16)中、Rは下記式(2)~下記式(5)で表される。)
Figure 2024125852000057
(上記式(2)中、*は結合手を示す。)
Figure 2024125852000058
(上記式(3)中、*は結合手を示す。)
Figure 2024125852000059
(上記式(4)中、*は結合手を示す。)
Figure 2024125852000060
(上記式(5)中、*は結合手を示す。)
A first step of obtaining a compound A represented by the following formula (16);
A second step of dissolving the compound A and a trivalent metal salt in a solution containing alcohol to obtain a solution B;
a third step of adding pyridine or a pyridine substitute to the solution B to obtain a solution C, and heating the solution C;
The present invention relates to a method for producing a metal complex comprising the steps of:
Figure 2024125852000056
(In the above formula (16), R 1 is represented by the following formulas (2) to (5).)
Figure 2024125852000057
(In the above formula (2), * indicates a bond.)
Figure 2024125852000058
(In the above formula (3), * indicates a bond.)
Figure 2024125852000059
(In the above formula (4), * indicates a bond.)
Figure 2024125852000060
(In the above formula (5), * indicates a bond.)
JP2023033958A 2023-03-06 2023-03-06 Metal complex, method for producing metal complex, and water oxidation catalyst Pending JP2024125852A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023033958A JP2024125852A (en) 2023-03-06 2023-03-06 Metal complex, method for producing metal complex, and water oxidation catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2023033958A JP2024125852A (en) 2023-03-06 2023-03-06 Metal complex, method for producing metal complex, and water oxidation catalyst

Publications (1)

Publication Number Publication Date
JP2024125852A true JP2024125852A (en) 2024-09-19

Family

ID=92758505

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2023033958A Pending JP2024125852A (en) 2023-03-06 2023-03-06 Metal complex, method for producing metal complex, and water oxidation catalyst

Country Status (1)

Country Link
JP (1) JP2024125852A (en)

Similar Documents

Publication Publication Date Title
Comba et al. Template syntheses involving carbon acids. Synthesis and characterization of (3, 10-dimethyl-3, 10-dinitro-1, 4, 8, 11-tetraazacyclotetradecane) copper (II) and (1, 9-diamino-5-methyl-5-nitro-3, 7-diazanonane) copper (II) cations and nitro group reduction products
JP4875576B2 (en) Catalyst for formic acid decomposition, formic acid decomposition method, hydrogen production method, formic acid production and decomposition apparatus, hydrogen storage and generation method
Moore et al. Synthesis, characterization, and solid-state structure of a new hexachelating ligand and its complex with gallium (III)
Hartwig et al. Insertion reactions of carbon monoxide and carbon dioxide with ruthenium benzyl, arylamido, and aryloxide complexes: A comparison of the reactivity of ruthenium-carbon, ruthenium-nitrogen, and ruthenium-oxygen bonds
Kimura et al. A new cyclam with an NH2-pendant donor, 6-amino-1, 4, 8, 11-tetraazacyclotetradecane, and its nickel (II) complexes
Crawford et al. Reaction of 2, 2'-bipyridine (bpy) with dirhodium carboxylates: mono-bpy products with variable chelate binding modes and insights into the reaction mechanism
Llobet et al. Oxydiacetic acid and copper (II) complexes of a new hexaaza macrocyclic dinucleating ligand
CN103467528B (en) A kind of preparation method of lobaplatin
Brown et al. Copper (II)-directed synthesis of neutral heteroditopic [2] rotaxane ion-pair host systems incorporating hydrogen and halogen bonding anion binding cavities
Koike et al. A new macrocyclic tetraamine, 2, 4-dinitrophenylcyclen (= 1-(2, 4-dinitrophenyl)-1, 4, 7, 10-tetraazacyclododecane): synthesis, cation reporter properties, and recognition of 1-methylthymine by its zinc (II) complex
Kitos et al. Interesting copper (II)-assisted transformations of 2-acetylpyridine and 2-benzoylpyridine
Parker Jr et al. Comparative structural and ligand-exchange properties of organocobalt B12 models. Improved synthetic procedures for Costa models and the structures of two pyridine complexes with methyl and neopentyl ligands
Štěpnička et al. Preparation of phosphinoferrocene carboxamides from isocyanates. Synthesis and structural characterisation of palladium (II) and platinum (II) complexes with 1′-(diphenylphosphino)-1-(N-phenylcarbamoyl) ferrocene
Alves et al. Coordination capabilities of pyrazolyl containing ligands towards the fac-[Re (CO) 3]+ moiety
Chin et al. Small molecule activation of nitriles coordinated to the [Re 6 Se 8] 2+ core: formation of oxazine, oxazoline and carboxamide complexes
JP2010083730A (en) Method for producing at least either deuterium (d2) or hydrogen deuteride (hd) and catalyst for formic acid decomposition used therefor
Fortier et al. Template synthesis of the macrobicyclic ligand 1, 5, 8, 12, 15-pentaazabicyclo [10.5. 2] nonadecane: evidence for imidate and enamine intermediates stabilized by copper (II)
Cooper et al. Heteroditopic rhenium (I) and ruthenium (II) bipyridyl calix [4] arene receptors for binding cation–anion ion pairs
JP2024125852A (en) Metal complex, method for producing metal complex, and water oxidation catalyst
Huang et al. Synthesis, structures, and reactivity of cationic carbonyl. alpha.-ketoacyl complexes of platinum (II). Crystal structures of trans-[Pt (COCO2Me)(CO)(PPh3) 2][BF4], trans-Pt (COCO2Me)(CO2Me)(PPh3) 2, trans-Pt (COCO2Me)(CONEt2)(PPh3) 2, and trans-Pt (COCOPh)(CONEt2)(PPh3) 2
Zhao et al. Silver (I) complexes with oxazoline-containing bidentate ligands: Syntheses, structures and properties
Lundin et al. Synthesis and hypodentate Cu (II) complexes of new tripodal tetraamine ligands incorporating a long pendant arm
Liao et al. Synthesis and crystal structure of a new heterotrinuclear Schiff-Base Zn–Gd Complex
Tsang et al. Rhenium (V)-oxo complexes of neutral and monoanionic tetraazamacrocycles. X-ray structures of trans-oxohydroxo (1, 4, 8, 11-tetraazacyclotetradecan-2-one) rhenium (V) perrhenate and trans-oxohydroxo (1, 4, 8, 11-tetraazacyclotetradecane) rhenium (V) bis (perchlorate)
Boudalis et al. Reaction between Yttrium Nitrate and 2, 2': 6', 2"-Terpyridine (terpy) in MeCN: Preparation, Crystal Structures and Spectroscopic Characterization of [Y (NO3) 3 (terpy)(H2O)] and [Y (NO3) 3 (terpy)(H2O)]· terpy· 3 MeCN

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20230405