JP2024112030A - Austenitic stainless steel weld metal and stainless steel submerged arc welding method - Google Patents
Austenitic stainless steel weld metal and stainless steel submerged arc welding method Download PDFInfo
- Publication number
- JP2024112030A JP2024112030A JP2023016844A JP2023016844A JP2024112030A JP 2024112030 A JP2024112030 A JP 2024112030A JP 2023016844 A JP2023016844 A JP 2023016844A JP 2023016844 A JP2023016844 A JP 2023016844A JP 2024112030 A JP2024112030 A JP 2024112030A
- Authority
- JP
- Japan
- Prior art keywords
- stainless steel
- weld metal
- less
- content
- submerged arc
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 73
- 239000002184 metal Substances 0.000 title claims abstract description 73
- 238000003466 welding Methods 0.000 title claims abstract description 32
- 229910000963 austenitic stainless steel Inorganic materials 0.000 title claims abstract description 15
- 238000000034 method Methods 0.000 title claims abstract description 8
- 229910001220 stainless steel Inorganic materials 0.000 title claims description 13
- 239000010935 stainless steel Substances 0.000 title claims description 12
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 13
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 11
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 9
- 239000000203 mixture Substances 0.000 claims abstract description 9
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 9
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 8
- 239000012535 impurity Substances 0.000 claims abstract description 8
- 239000000126 substance Substances 0.000 claims abstract description 5
- 230000007797 corrosion Effects 0.000 abstract description 16
- 238000005260 corrosion Methods 0.000 abstract description 16
- 238000005452 bending Methods 0.000 abstract description 12
- 230000007547 defect Effects 0.000 abstract description 8
- 229910052750 molybdenum Inorganic materials 0.000 abstract description 4
- 238000012360 testing method Methods 0.000 description 11
- 230000004907 flux Effects 0.000 description 10
- 230000000694 effects Effects 0.000 description 9
- 238000009863 impact test Methods 0.000 description 8
- 239000003949 liquefied natural gas Substances 0.000 description 7
- 229910000859 α-Fe Inorganic materials 0.000 description 7
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 6
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 239000010703 silicon Substances 0.000 description 6
- 238000009864 tensile test Methods 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 4
- 238000010998 test method Methods 0.000 description 4
- 229910021529 ammonia Inorganic materials 0.000 description 3
- 229910001566 austenite Inorganic materials 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- RMLPZKRPSQVRAB-UHFFFAOYSA-N tris(3-methylphenyl) phosphate Chemical compound CC1=CC=CC(OP(=O)(OC=2C=C(C)C=CC=2)OC=2C=C(C)C=CC=2)=C1 RMLPZKRPSQVRAB-UHFFFAOYSA-N 0.000 description 3
- 229910002551 Fe-Mn Inorganic materials 0.000 description 2
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 2
- 229910006639 Si—Mn Inorganic materials 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- 238000005275 alloying Methods 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000005336 cracking Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 239000005431 greenhouse gas Substances 0.000 description 2
- 229910017604 nitric acid Inorganic materials 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 230000004580 weight loss Effects 0.000 description 2
- 229910000975 Carbon steel Inorganic materials 0.000 description 1
- 229910017060 Fe Cr Inorganic materials 0.000 description 1
- 229910002544 Fe-Cr Inorganic materials 0.000 description 1
- 229910017082 Fe-Si Inorganic materials 0.000 description 1
- 229910017133 Fe—Si Inorganic materials 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 239000010962 carbon steel Substances 0.000 description 1
- UPHIPHFJVNKLMR-UHFFFAOYSA-N chromium iron Chemical compound [Cr].[Fe] UPHIPHFJVNKLMR-UHFFFAOYSA-N 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Landscapes
- Arc Welding In General (AREA)
Abstract
【課題】SUS304のサブマージアーク溶接について、高強度で、極低温靭性に優れる溶着金属が得られ、溶接部に欠陥が無く、耐腐食性が良好で、 更に良好な曲げ性能が確保できるサブマージアーク溶接方法を提供する。【解決手段】化学組成が、質量%で、C :0.08%以下であり、Si:0.2~1.0%、Mn:1~2%、Ni:8~10%、Cr:20~23%を含有し、Mo:0.75%以下であり、残部は、Feおよび不純物であるオーステナイト系ステンレス鋼溶着金属である。【選択図】 なし[Problem] To provide a submerged arc welding method for SUS304, which can obtain a weld metal with high strength and excellent cryogenic toughness, no defects in the welded part, good corrosion resistance, and good bending performance. [Solution] The chemical composition of the austenitic stainless steel weld metal is, by mass%, C: 0.08% or less, Si: 0.2-1.0%, Mn: 1-2%, Ni: 8-10%, Cr: 20-23%, Mo: 0.75% or less, and the balance being Fe and impurities. [Selected Figure] None
Description
本発明は、主にLNG貯蔵タンクの建造に用いられるSUS304の溶接に使用されるサブマージアーク溶接材料において、高強度で、極低温靭性に優れるオーステナイト系ステンレス鋼溶着金属、及びこれを使用することで高強度SUS304を得る上で好適なステンレス鋼サブマージアーク溶接方法に関するものである。 The present invention relates to austenitic stainless steel weld metal with high strength and excellent cryogenic toughness in submerged arc welding materials used for welding SUS304, which is mainly used in the construction of LNG storage tanks, and a stainless steel submerged arc welding method suitable for obtaining high-strength SUS304 by using the same.
近年、環境課題から温室効果ガスの低減が求められており、液化天然ガスを燃料とした発電や船舶動力の需要が高まり、LNGの使用は今後更に拡大すると見込まれている。また、更なる温室効果ガス低減として、LNGからアンモニア燃料への変更も検討されており、エネルギー源の移行が急速に進むことが予想される。 In recent years, environmental issues have led to calls for the reduction of greenhouse gas emissions, and the demand for power generation and ship propulsion using liquefied natural gas as fuel is increasing, so the use of LNG is expected to expand further in the future. In addition, as a way to further reduce greenhouse gas emissions, a switch from LNG to ammonia fuel is also being considered, and it is expected that the transition in energy sources will progress rapidly.
舶用LNGタンクに使用される鋼材としては、地上LNGタンクと同様に9%Ni鋼が使用されることが多いものの、耐食性の観点から本鋼材はアンモニア容器に適用できない。一方、SUS304は、地上LNGガスホルダーに多く使用されており、更に耐食性も良好であることからアンモニア容器にも適用できる。SUS304の引張性能について、JIS G 4305の冷間圧延ステンレス鋼板及び鋼帯には、引張強さが520N/mm2以上と規定されているが、TMCP技術を活用して高強度化を図ったSUS304が開発され、引張強さが600N/mm2以上の性能が保証できるようになっている。 Although 9% Ni steel is often used for marine LNG tanks, as with land-based LNG tanks, this steel cannot be used for ammonia containers due to its poor corrosion resistance. On the other hand, SUS304 is often used for land-based LNG gas holders, and is also suitable for ammonia containers due to its good corrosion resistance. Regarding the tensile performance of SUS304, the tensile strength of JIS G 4305 cold-rolled stainless steel plate and strip is specified as 520 N/ mm2 or more, but SUS304 with high strength has been developed using TMCP technology, and a tensile strength of 600 N/mm2 or more can be guaranteed.
SUS304に適用する溶接材料について、サブマージアーク溶接の溶着金性能は、JIS Z 3324のサブマージアーク溶接によるステンレス鋼溶着金属の品質区分及び試験方法のS308規定である引張強さ520MPa以上が一般的で、引張強さの実勢値は580MPa程度であるため、TMCP技術を導入したSUS304母材の引張特性よりも劣り、溶接部がアンダーマッチングとなる課題があった。 Regarding welding materials applied to SUS304, the performance of the deposited metal in submerged arc welding is generally 520 MPa or more in tensile strength, which is specified in S308 of JIS Z 3324, quality classification and test method for stainless steel deposited metal by submerged arc welding. The actual tensile strength is about 580 MPa, which is inferior to the tensile properties of the SUS304 base material that incorporates TMCP technology, and there was an issue of undermatching of the welded part.
例えば、特許文献1では、溶接金属の化学成分を規定し、600MPa以上の引張強さが得られる成分系が開示されている。しかし、Moを多く含有することから、極低温の靭性が低い課題があった。 For example, Patent Document 1 specifies the chemical composition of the weld metal and discloses a composition system that provides a tensile strength of 600 MPa or more. However, because it contains a large amount of Mo, there is an issue of low toughness at cryogenic temperatures.
また、特許文献2では、溶着金属の化学成分を規定し、極低温の靭性を改善する成分系が開示されている。しかし、引張強さが低く、更にδフェライト量が低いため耐割れ性に課題があった。 Patent Document 2 specifies the chemical composition of the deposited metal and discloses a composition system that improves toughness at cryogenic temperatures. However, the tensile strength is low and the amount of δ-ferrite is also low, so there are issues with crack resistance.
本発明は、上述した問題点に鑑みて案出されたものであり、高強度SUS304の溶接材料として、高強度で、極低温靭性に優れるオーステナイト系ステンレス鋼溶着金属、並びにそのオーステナイト系ステンレス鋼溶着金属が得られ、溶接部に欠陥が無く、耐腐食性が良好で、更に良好な曲げ性能が確保できるステンレス鋼サブマージアーク溶接方法を提供することを目的とする。 The present invention was devised in consideration of the above-mentioned problems, and aims to provide an austenitic stainless steel weld metal that is high-strength and has excellent cryogenic toughness as a welding material for high-strength SUS304, as well as a stainless steel submerged arc welding method that can obtain the austenitic stainless steel weld metal, has no defects in the weld, has good corrosion resistance, and ensures good bending performance.
本発明に係るオーステナイト系ステンレス鋼溶着金属は、以上の知見よりなされたもので、その要旨とするところは次の通りである。化学組成が、質量%で、化学組成が、質量%で、C :0.08%以下であり、Si:0.2~1.0%、Mn:1~2%、Ni:8~10%、Cr:20~23%を含有し、Mo:0.75%以下であり、残部は、Feおよび不純物であることを特徴とする。 The austenitic stainless steel weld metal of the present invention was developed based on the above findings, and its gist is as follows: It has a chemical composition, by mass%, of C: 0.08% or less, Si: 0.2-1.0%, Mn: 1-2%, Ni: 8-10%, Cr: 20-23%, Mo: 0.75% or less, and the balance being Fe and impurities.
また本発明に係るオーステナイト系ステンレス鋼溶着金属は、更にCr、Si、Ni、C、Mnの含有量が下記(1)式から求められるDFで10~20であることを特徴とする。 The austenitic stainless steel weld metal according to the present invention is further characterized in that the contents of Cr, Si, Ni, C, and Mn are 10 to 20 in terms of DF calculated from the following formula (1).
DF=3×[Cr]+5×[Si]-3×[Ni]-80×[C]-[Mn]-20 ・・・(1)
(1)式中の、[ ]は各成分の質量%を示す。
DF=3×[Cr]+5×[Si]-3×[Ni]-80×[C]-[Mn]-20...(1)
In formula (1), [ ] indicates the mass percentage of each component.
更に、本発明に係るステンレス鋼サブマージアーク溶接方法は、上述したオーステナイト系ステンレス鋼溶着金属を使用し、サブマージアーク溶接の溶接入熱を35kJ/cm以下に調整することを特徴とする。 Furthermore, the stainless steel submerged arc welding method according to the present invention is characterized in that it uses the above-mentioned austenitic stainless steel weld metal and adjusts the welding heat input of the submerged arc welding to 35 kJ/cm or less.
本発明を適用したステンレス鋼サブマージアーク溶接方法によれば、高強度で、極低温における靭性が高く良好な溶着金属が得られ、溶接部の品質向上を図ることができる。 The stainless steel submerged arc welding method of the present invention produces a high-strength, high-toughness, and good weld metal at cryogenic temperatures, improving the quality of the weld.
本発明者らは、溶着金属の引張強さ・極低温靭性の向上、曲げ性能及び耐割れ性の改善のため、SUS304及びTMCP技術を導入した高強度SUS304に適したステンレス鋼サブマージアーク溶接の溶着金属の成分組成について種々検討を行った。 The inventors conducted various studies on the composition of the deposited metal in stainless steel submerged arc welding suitable for SUS304 and high-strength SUS304 incorporating TMCP technology, in order to improve the tensile strength and cryogenic toughness of the deposited metal, as well as the bending performance and crack resistance.
その結果、溶着金属の引張強さはNi量および以下の(1)式に示すDF値を適正にすることにより狙いの高強度が得られ、引張試験の伸びはSi量を適正にすることにより狙いの延性が得られ、極低温靭性を満足するためには、Mn、Ni、Cr及びMo量を適正化することで、狙いの高靭性が得られることを見出した。 As a result, it was found that the desired high tensile strength of the deposited metal can be achieved by optimizing the Ni content and the DF value shown in the following formula (1), that the desired ductility can be achieved in the tensile test by optimizing the Si content, and that in order to satisfy the cryogenic toughness, the desired high toughness can be achieved by optimizing the Mn, Ni, Cr and Mo content.
DF=3×[Cr]+5×[Si]-3×[Ni]-80×[C]-[Mn]-20 ・・・(1) DF=3×[Cr]+5×[Si]-3×[Ni]-80×[C]-[Mn]-20...(1)
(1)式中の、[ ]は各成分の質量%を示す。また、健全な溶接金属を得るために、Mn量を適正にすることにより良好な耐割れ性が確保でき、Si量を適正にすることによりブローホールなどの気孔欠陥が発生せず、C量とCr量を適正にすることで耐食性が良好であることを明らかとした。 In formula (1), [ ] indicates the mass percentage of each component. It was also clarified that in order to obtain sound weld metal, good crack resistance can be ensured by adjusting the Mn content appropriately, porosity defects such as blowholes are prevented by adjusting the Si content appropriately, and good corrosion resistance is achieved by adjusting the C and Cr content appropriately.
さらに、δフェライト量及び溶接入熱の上限を適正化することで、フェライト及びオーステナイト相結晶粒の粗大化を防止し、溶着金属の曲げ性能劣化を抑制することが効果的であることを見出した。 Furthermore, it was found that optimizing the amount of δ-ferrite and the upper limit of the welding heat input is effective in preventing the coarsening of ferrite and austenite phase crystal grains and suppressing deterioration of the bending performance of the deposited metal.
本発明は、オーステナイト系ステンレス鋼のサブマージアーク溶接の溶着金属における各成分それぞれの単独の効果及び共存による相乗効果によりなし得たものであるが、以下にそれぞれの各成分の添加理由および含有量の限定理由を述べる。なお、以下に述べる各成分の含有量の%は、オーステナイト系ステンレス鋼溶着金属全質量に対する質量%のことを示す。 The present invention was made possible by the individual effects of each component in the deposited metal of submerged arc welding of austenitic stainless steel, as well as the synergistic effects of their coexistence. The reasons for adding each component and limiting their content are described below. Note that the percentage of the content of each component described below refers to the mass % relative to the total mass of the deposited metal of austenitic stainless steel.
[溶着金属のC:0.08%以下]
Cは、Crと結合して耐食性に有効なCrの含有量を減じ、溶着金属の耐食性を劣化させるため0.08%以下とする。Cは、その含有量は低いほど、耐食性が良好となるため下限を規定しないものの、極低炭素の溶着金属を得るためには、ワイヤ及びフラックスに不純物が少なく、高純度の原材料を適用する必要が生じ、経済性を損なうため、下限を0.01%とすることが好ましく、Cの含有量は0.01~0.08%であることが好ましい。なおCは、サブマージワイヤ、フラックス脱酸剤としてFe-Mnに含まれるC等から添加できる。
[C in deposited metal: 0.08% or less]
C combines with Cr to reduce the Cr content, which is effective for corrosion resistance, and deteriorates the corrosion resistance of the deposited metal, so the content is set to 0.08% or less. The lower the C content, the better the corrosion resistance, so no lower limit is specified, but in order to obtain a very low-carbon deposited metal, it becomes necessary to use high-purity raw materials with few impurities in the wire and flux, which reduces economic efficiency, so the lower limit is preferably set to 0.01%, and the C content is preferably 0.01 to 0.08%. C can be added from C contained in Fe-Mn as a deoxidizer in the submerged wire and flux, etc.
[溶着金属のSi:0.2~1.0%]
Siは、溶着金属の耐気孔欠陥性を向上させる効果がある。Siが0.2%未満では、その効果が十分に得られず、ブローホールなどの気孔欠陥が発生しやすい。一方、Siが1.0%を超えると、溶着金属の引張試験の伸びが低くなる。従って、Siは0.2~1.0%とする。なおSiは、サブマージワイヤ、フラックス脱酸剤として金属Si、Fe-Si、Fe-Si-Mn等から添加できる。
[Si in weld metal: 0.2 to 1.0%]
Silicon has the effect of improving the resistance of the deposited metal to porosity defects. If the silicon content is less than 0.2%, this effect is not fully obtained, and porosity defects such as blowholes are likely to occur. On the other hand, if the silicon content exceeds 1.0%, the elongation of the deposited metal in the tensile test decreases. Therefore, the silicon content is set to 0.2 to 1.0%. Silicon can be added as a submerged wire or flux deoxidizer from metal silicon, Fe-Si, Fe-Si-Mn, etc.
[溶着金属のMn:1~2%]
Mnは、溶着金属の耐高温割れ性を向上する効果がある。Mnが1%未満であると、割れが発生しやすくなる。一方、Mnが2%を超えると、伸長状のMnSを析出して衝撃試験の吸収エネルギーが低くなる。従って、Mnは1~2%とする。なお、Mnは、サブマージワイヤ、フラックス脱酸剤として金属Mn、Fe-Mn、Fe-Si-Mn等から添加できる。
[Mn in weld metal: 1-2%]
Mn has the effect of improving the hot cracking resistance of the deposited metal. If the Mn content is less than 1%, cracking is more likely to occur. On the other hand, if the Mn content exceeds 2%, elongated MnS precipitates, lowering the absorbed energy in the impact test. Therefore, the Mn content is set to 1 to 2%. Mn can be added as metallic Mn, Fe-Mn, Fe-Si-Mn, etc. as a submerged wire or flux deoxidizer.
[溶着金属のNi:8~10%]
Niは、オーステナイト相を安定化させ、衝撃試験の吸収エネルギーを向上する効果がある。Niが8%未満ではその効果が十分に得られず、吸収エネルギーが低い。一方、Niが10%を超えると、δフェライトが生成しにくく、引張強さを高くすることが出来ない。従ってNiは8~10%とする。なおNiは、サブマージワイヤ、フラックス合金剤として金属Ni等から添加できる。
[Ni in deposited metal: 8-10%]
Ni has the effect of stabilizing the austenite phase and improving the absorbed energy in impact tests. If Ni is less than 8%, this effect is not fully obtained, and the absorbed energy is low. On the other hand, if Ni exceeds 10%, it is difficult to form δ ferrite, and tensile strength cannot be increased. Therefore, Ni is set to 8-10%. Ni can be added from metallic Ni, etc., as a submerged wire or flux alloying agent.
[溶着金属のCr:20~23%]
Crは、溶着金属の耐食性を向上させる効果がある。Crが20%未満では、耐食性が低下する。一方、Crが23%を超えると、Cr炭化物やCr窒化物が析出して溶着金属衝撃試験の吸収エネルギーが低下する。従って、Crは20~23%とする。なお、Crは、サブマージワイヤ、フラックス合金剤として金属Cr、Fe-Cr等から添加できる。
[Cr in deposited metal: 20-23%]
Cr has the effect of improving the corrosion resistance of the weld metal. If the Cr content is less than 20%, the corrosion resistance decreases. On the other hand, if the Cr content exceeds 23%, Cr carbides and Cr nitrides precipitate, decreasing the absorbed energy in the weld metal impact test. Therefore, the Cr content is set to 20-23%. Cr can be added from metallic Cr, Fe-Cr, etc. as a submerged wire or flux alloying agent.
[溶着金属のMo:0.75%以下]
Moは、溶着金属衝撃試験の吸収エネルギーを低下させるため、0.75%以下とする。Moは低い方が好ましいため下限は規定しない。しかし、ステンレス鋼線材の原材料は、市場スクラップを回収し、リサイクル生産することが多いため、不純物としてMoが含有される。Moを含有しない高純度の原材料を適用すると経済性を損なうため、下限を0.05%とすることが好ましく、Moの含有量は、0.05~0.75%である事が好ましい。なおMoは、サブマージワイヤの不純物として含有される。
[Mo in weld metal: 0.75% or less]
Mo is set to 0.75% or less because it reduces the absorbed energy in the weld metal impact test. A lower Mo content is preferable, so no lower limit is specified. However, the raw materials for stainless steel wire rods are often produced by collecting scrap from the market and recycling it, so Mo is contained as an impurity. Since the use of high-purity raw materials that do not contain Mo reduces the economic efficiency, the lower limit is preferably set to 0.05%, and the Mo content is preferably 0.05 to 0.75%. Mo is contained as an impurity in the submerged wire.
[Cr、Si、Ni、C、Mnの含有量が(1)式から求められるDFで10~20]
DF=3×[Cr]+5×[Si]-3×[Ni]-80×[C]-[Mn]-20 ・・・(1)
[The content of Cr, Si, Ni, C, and Mn is 10 to 20 in terms of DF calculated from formula (1)]
DF=3×[Cr]+5×[Si]-3×[Ni]-80×[C]-[Mn]-20...(1)
(1)式中の、[ ]は各成分の質量%を示す。 DFは、δフェライト量の晶出し易さを示し、高いほどフェライト量が多く、溶着金属の引張強さを高くする効果がある。DFが10未満では、溶着金属の引張強さが低い。一方、DFが20を超えると、フェライト粒が粗大化し、溶着金属の曲げ試験において、曲げ性能が劣化する。従って、Cr、Si、Ni、C、Mnの含有量が(1)式から求められるDFで10~20となるようにする。 In formula (1), [ ] indicates the mass percentage of each component. DF indicates the ease of crystallization of delta ferrite; the higher the DF, the greater the amount of ferrite, which has the effect of increasing the tensile strength of the weld metal. If DF is less than 10, the tensile strength of the weld metal is low. On the other hand, if DF exceeds 20, the ferrite grains become coarse, and bending performance deteriorates in bending tests of the weld metal. Therefore, the contents of Cr, Si, Ni, C, and Mn should be adjusted so that DF calculated from formula (1) is between 10 and 20.
[溶接入熱:35kJ/cm以下]
溶接入熱は、溶接施工効率を向上させるため高いほど好ましい。しかし35kJ/cmを超えると、オーステナイト相の結晶粒が粗大化し、溶着金属の曲げ試験において、曲げ性能が劣化する。従って、溶接入熱は、35kJ/cm以下とする。オーステナイト系ステンレス鋼は、炭素鋼のように冷却速度に関係した焼入れ性に起因する機械性能への影響を殆ど受けないため、溶接入熱の下限は規定しない。
[Welding heat input: 35 kJ/cm or less]
The higher the welding heat input, the better, since it improves the efficiency of welding work. However, if it exceeds 35 kJ/cm, the crystal grains of the austenite phase become coarse, and bending performance deteriorates in bending tests of the deposited metal. Therefore, the welding heat input should be 35 kJ/cm or less. Since austenitic stainless steel is hardly affected in mechanical performance due to hardenability related to the cooling rate, unlike carbon steel, there is no lower limit for the welding heat input.
以上、本発明の低温用オーステナイト系ステンレス鋼のサブマージアーク溶接の溶着金属及び溶接方法の構成要件の限定理由を述べたが、溶着金属の残部はFe、及び不純物である。不純物については特に規定しないが、溶着金属の引張試験の伸び、衝撃試験の吸収エネルギー、及び耐割れ性の観点から、溶着金属のP:0.05%以下、S:0.01%以下、N:0.05%以下及び、Cu:0.5%以下であることが好ましい。 The reasons for limiting the constituent elements of the deposited metal and welding method for submerged arc welding of low-temperature austenitic stainless steel of the present invention have been described above, but the remainder of the deposited metal is Fe and impurities. There are no particular restrictions on the impurities, but from the standpoint of the elongation of the deposited metal in a tensile test, the absorbed energy in an impact test, and the crack resistance, it is preferable that the deposited metal have P: 0.05% or less, S: 0.01% or less, N: 0.05% or less, and Cu: 0.5% or less.
サブマージワイヤは、ソリッドワイヤを用いることができるが、フラックスを内包したフラックス入りワイヤを用いても良い。サブマージアークフラックスは、溶融や焼成タイプの何れでも良い。焼成フラックスの場合は、ワイヤから不足する合金元素や脱酸剤を添加し、上述した各成分の含有量からなる溶着金属成分となるよう調整することができる。 The submerged wire may be a solid wire, but flux-cored wire containing flux may also be used. The submerged arc flux may be either molten or sintered. In the case of sintered flux, alloy elements and deoxidizers that are lacking in the wire can be added, and the deposited metal composition can be adjusted to have the contents of each of the components listed above.
本発明の効果を実施例により具体的に説明するが、本発明は以下の実施例に限定されるものではない。 The effects of the present invention will be specifically explained using examples, but the present invention is not limited to the following examples.
表1に示す直径4.0mmのワイヤを用い、表2に示すフラックスを用いて溶着金属試験を行った。母材には、表3に示す板厚20mmのSUS304を用いた。 A weld metal test was conducted using a wire with a diameter of 4.0 mm shown in Table 1 and the flux shown in Table 2. The base material used was SUS304 with a plate thickness of 20 mm shown in Table 3.
これらの材料を使用し、JIS Z 3324:2010のサブマージアーク溶接によるステンレス鋼溶着金属の品質区分及び試験方法に従い、溶着金属性能の評価を行った。 Using these materials, weld metal performance was evaluated in accordance with JIS Z 3324:2010, quality classification and test methods for stainless steel weld metals by submerged arc welding.
溶接部の健全性調査について、JIS Z 3106:2001のステンレス鋼溶接継手の放射線透過試験方法に従い、溶接長さ500mmの欠陥有無確認を行った。きずの像の分類において、1類を良好とした。 The integrity of the weld was examined according to the radiographic testing method for stainless steel welded joints in JIS Z 3106:2001, and a 500mm weld length was checked for defects. In classifying the images of defects, Class 1 was considered to be good.
溶着金属の機械的性質の評価は、上記溶接部から、JIS Z 3111:2005のA0号引張試験片、Vノッチ衝撃試験片を、JIS Z 3122:2013に準拠して側曲げ試験片を採取し、試験を実施した。引張試験の評価は、引張強さが600MPa以上を良好とし、伸びは35%以上を良好とした。また衝撃試験の評価は、試験温度-196℃で繰り返し3回シャルピー衝撃試験を行い、吸収エネルギーの平均値が34J以上を良好とした。曲げ試験は、半径20mm(直径40mm)の押しジグによる180°の型曲げ試験を行い、曲げ試験面に割れや開口のない無欠陥を良好とした。また、JIS Z 3841 半自動溶接技術検定における試験方法及び判定基準の合否判定規準を参考とし、小さなきずが生じたとしても、割れや開口の合計長さが3mm以下も良好とした。 The mechanical properties of the deposited metal were evaluated by taking A0 tensile test pieces and V-notch impact test pieces according to JIS Z 3111:2005, and side bending test pieces according to JIS Z 3122:2013 from the above welded parts, and tests were performed. In the tensile test, a tensile strength of 600 MPa or more was considered good, and an elongation of 35% or more was considered good. In the impact test, a Charpy impact test was performed three times at a test temperature of -196°C, and an average absorbed energy of 34 J or more was considered good. In the bending test, a 180° bending test was performed using a push jig with a radius of 20 mm (diameter 40 mm), and a defect-free bend test surface with no cracks or openings was considered good. In addition, the pass/fail criteria of the test method and judgment criteria in the JIS Z 3841 semi-automatic welding technology certification were used as a reference, and even if small scratches occurred, a total length of cracks and openings of 3 mm or less was considered good.
耐食性の評価は、JIS G 0573:1999ステンレス鋼の65%硝酸腐食試験方法に準拠し、溶着金属から試験片を採取して、65%沸騰硝酸に24時間浸漬を1回行って腐食減量の測定を行った。腐食減量は、10g/m2/h未満を良好とした。それらの結果を表4にまとめて示す。 The corrosion resistance was evaluated according to JIS G 0573:1999, 65% nitric acid corrosion test method for stainless steel, by taking a test piece from the weld metal and immersing it once in 65% boiling nitric acid for 24 hours to measure corrosion weight loss. A corrosion weight loss of less than 10 g/ m2 /h was considered good. The results are summarized in Table 4.
表4中、溶着金属No.1~No.11が本発明例、溶接棒No.12~No.17は比較例である。 In Table 4, weld metals No. 1 to No. 11 are examples of the present invention, and welding rods No. 12 to No. 17 are comparative examples.
本発明例である溶着金属No.1~11は、C、Si、Mn、Ni、Cr、Mo量が適正で、溶接欠陥の発生が無く、機械性能が良好であるなど、極めて満足な結果であった。また、No.1、2、4、5、6、7、8、11は、DF値及び溶接入熱が適正であるため、引張強さが高く、かつ曲げ性能がより良好であった。 The weld metals No. 1 to 11, which are examples of the present invention, had extremely satisfactory results, with the appropriate amounts of C, Si, Mn, Ni, Cr, and Mo, no welding defects, and good mechanical performance. In addition, Nos. 1, 2, 4, 5, 6, 7, 8, and 11 had high tensile strength and better bending performance because the DF value and welding heat input were appropriate.
比較例中の溶着金属No.12は、溶着金属のCが高いので、耐食性が不良であった。 The weld metal No. 12 in the comparative example had poor corrosion resistance because the C content of the weld metal was high.
溶着金属No.13は、溶着金属のSi量が低いので、ブローホールが発生した。また、溶着金属のCr量が低いので、耐食性が不良であった。 Weld metal No. 13 had blowholes because the Si content of the weld metal was low. Also, the Cr content of the weld metal was low, so the corrosion resistance was poor.
溶着金属No.14は、溶着金属のSiが高いので、引張試験の伸びが低かった。また、溶着金属のCrが高いので、溶着金属の吸収エネルギーが低かった。 The weld metal No. 14 had a low elongation in the tensile test because the weld metal had a high Si content. Also, the weld metal had a high Cr content, so the absorbed energy of the weld metal was low.
溶着金属No.15は、溶着金属のMnが低いので、割れが発生した。また、溶着金属の溶着金属のNiが低いので、溶着金属の吸収エネルギーが低かった。 In weld metal No. 15, the Mn content of the weld metal was low, so cracks occurred. In addition, the Ni content of the weld metal was low, so the absorbed energy of the weld metal was low.
溶着金属No.16は、溶着金属のMnが高いので、溶着金属の吸収エネルギーが低かった。また、溶着金属のNiが高いので引張強さが低かった。 The weld metal No. 16 had a high Mn content, so the absorbed energy of the weld metal was low. Also, the weld metal had a high Ni content, so the tensile strength was low.
溶着金属No.17は、溶着金属のMoが高いので、溶着金属の吸収エネルギーが低かった。 Weld metal No. 17 had a high Mo content, so the absorbed energy of the weld metal was low.
Claims (3)
C :0.08%以下であり、
Si:0.2~1.0%、
Mn:1~2%、
Ni:8~10%、
Cr:20~23%を含有し、
Mo:0.75%以下であり、
残部は、Feおよび不純物であるオーステナイト系ステンレス鋼溶着金属。 The chemical composition, in mass%, is
C: 0.08% or less;
Si: 0.2-1.0%,
Mn: 1 to 2%,
Ni: 8 to 10%,
Cr: 20 to 23%;
Mo: 0.75% or less;
The balance is austenitic stainless steel weld metal which is Fe and impurities.
DF=3×[Cr]+5×[Si]-3×[Ni]-80×[C]-[Mn]-20 ・・・(1)
(1)式中の、[ ]は各成分の質量%を示す。 The austenitic stainless steel weld metal according to claim 1, characterized in that the contents of Cr, Si, Ni, C and Mn are each 10 to 20 in terms of DF calculated from the following formula (1):
DF=3×[Cr]+5×[Si]-3×[Ni]-80×[C]-[Mn]-20...(1)
In formula (1), [ ] indicates the mass percentage of each component.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023016844A JP2024112030A (en) | 2023-02-07 | 2023-02-07 | Austenitic stainless steel weld metal and stainless steel submerged arc welding method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023016844A JP2024112030A (en) | 2023-02-07 | 2023-02-07 | Austenitic stainless steel weld metal and stainless steel submerged arc welding method |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2024112030A true JP2024112030A (en) | 2024-08-20 |
Family
ID=92424002
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2023016844A Pending JP2024112030A (en) | 2023-02-07 | 2023-02-07 | Austenitic stainless steel weld metal and stainless steel submerged arc welding method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2024112030A (en) |
-
2023
- 2023-02-07 JP JP2023016844A patent/JP2024112030A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6693217B2 (en) | High Mn steel for cryogenic temperatures | |
JP6978613B2 (en) | Manufacturing method of high-strength welded joint for ultra-low temperature | |
JP4264754B2 (en) | Stainless steel for high-pressure hydrogen gas, containers and equipment made of that steel | |
WO2012086042A1 (en) | Welding solid wire and welding metal | |
WO2004083476A1 (en) | Stainless steel for high pressure hydrogen gas, vessel and equipment comprising the steel | |
JP6978614B2 (en) | Solid wire for gas metal arc welding and gas metal arc welding method | |
JP3375817B2 (en) | Welding wire for high chromium ferritic steel | |
JPWO2020039643A1 (en) | Solid wire for gas metal arc welding | |
JP5244059B2 (en) | Welded solid wire and weld metal | |
JPWO2020203334A1 (en) | Filler metal for TIG welding | |
CN102615406A (en) | Method of tig or gmaw welding of austenitic steel with a gas containing nitrogen | |
JP4784239B2 (en) | Ferritic stainless steel filler rod for TIG welding | |
JP7135649B2 (en) | Welding consumables for austenitic stainless steel | |
WO2022030200A1 (en) | Solid wire for gas metal arc welding use | |
KR20230133347A (en) | Submerged arc welded joints | |
JP6690786B1 (en) | Method for manufacturing solid wire and welded joint | |
WO2015159806A1 (en) | Welded metal having excellent strength, toughness and sr cracking resistance | |
JP3329261B2 (en) | Welding materials and welded joints for high temperature high strength steel | |
CN114829060A (en) | Stainless steel welding wire for manufacturing LNG tank | |
JP2024112030A (en) | Austenitic stainless steel weld metal and stainless steel submerged arc welding method | |
CN113490571B (en) | Welding material for high Cr ferrite heat-resistant steel | |
JPH08108296A (en) | Flux cored wire for welding cr-mo low-alloy heat resistant steel | |
JP2013123727A (en) | Solid wire for gas shielded arc welding of high-strength steel plate | |
JPH0796390A (en) | Wire for welding 9cr-1mo steel | |
JP7492184B1 (en) | Manufacturing method of solid wire and welded joint |