Nothing Special   »   [go: up one dir, main page]

JP2024110656A - Spot welding method and spot welding device - Google Patents

Spot welding method and spot welding device Download PDF

Info

Publication number
JP2024110656A
JP2024110656A JP2023015364A JP2023015364A JP2024110656A JP 2024110656 A JP2024110656 A JP 2024110656A JP 2023015364 A JP2023015364 A JP 2023015364A JP 2023015364 A JP2023015364 A JP 2023015364A JP 2024110656 A JP2024110656 A JP 2024110656A
Authority
JP
Japan
Prior art keywords
plate assembly
plate
current
electrode
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2023015364A
Other languages
Japanese (ja)
Inventor
智也 森田
Tomoya Morita
和伸 今本
Kazunobu Imamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihatsu Motor Co Ltd
Original Assignee
Daihatsu Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihatsu Motor Co Ltd filed Critical Daihatsu Motor Co Ltd
Priority to JP2023015364A priority Critical patent/JP2024110656A/en
Publication of JP2024110656A publication Critical patent/JP2024110656A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Resistance Welding (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable a high-precision weld part having no failure such as crack to be formed with less energy even if a superposed plate having a plurality of metal plates superposed on each other includes a high strength steel plate and a plated steel plate.
SOLUTION: A spot welding method includes: executing a first power feeding step of feeding first electric currents 4 for forming a weld part 10 to a superposed plate 20 through a first electrode 2A pressurizing, in a plate thickness direction, the superposed plate 20, in forming the point-like weld part for welding steel plates 21 and 22 to each other in the superposed plate 20 having two steel plates (high-strength steel plates) 21 and 22 superposed on each other; and then executing a second power feeding step of feeding second electric currents which are smaller in an electric current value than the first electric currents to the superposed plate 20 through a second electrode 2A pressurizing, in the plate thickness direction, a predetermined position closer to the outside in a radial direction than a pressurized position by the first electrode 2A in the superposed plate 20, while keeping the superposed plate 20 in non-contact with the first electrode 2A.
SELECTED DRAWING: Figure 2
COPYRIGHT: (C)2024,JPO&INPIT

Description

本発明は、スポット溶接方法及びスポット溶接装置に関する。 The present invention relates to a spot welding method and a spot welding device.

鋼板等の金属板を複数枚重ね合わせた板組みにおいて金属板同士を接合するための方法の一つに抵抗スポット溶接(以下、単に「スポット溶接」と言う。)がある。スポット溶接は、板組みに押し当てた(板組みを板厚方向に加圧する)電極を介して板組みに電流を供給することにより金属板同士の接触部を溶融させた後、この溶融部分を急冷・凝固させることにより金属板同士を接合した点状の溶接部を得る方法である。スポット溶接としては、先端部(先端面)が板組みを挟んで対向するように同軸配置された正負一対の電極間に溶接部を形成するダイレクトスポット溶接が広く採用されている。 One method for joining metal plates, such as steel plates, in a plate assembly in which multiple metal plates are stacked together is resistance spot welding (hereinafter simply referred to as "spot welding"). Spot welding is a method in which an electric current is supplied to the plate assembly via an electrode pressed against the plate assembly (pressing the plate assembly in the plate thickness direction) to melt the contact area between the metal plates, and then the molten part is quenched and solidified to form a spot-like weld that joins the metal plates together. A widely used spot welding method is direct spot welding, in which a weld is formed between a pair of positive and negative electrodes that are coaxially arranged so that their tips (tip surfaces) face each other across the plate assembly.

なお、本明細書で言う「溶接部」は、JIS Z3001-1:2018に記載された「溶接部」の定義に準ずる。すなわち、「溶接部」とは、「溶接金属(ナゲット)及び熱影響部を含んだ部分の総称」である。上記の「溶接金属」とは、「溶接部の一部で、溶接中に溶融凝固した金属」であり、「熱影響部」とは、「溶接・切断などの熱で組織、冶金的性質、機械的性質などが変化を生じた、溶融していない母材の部分」である。熱影響部は「HAZ」とも称される。 Note that the "weld" referred to in this specification conforms to the definition of "weld" described in JIS Z3001-1:2018. In other words, a "weld" is a general term that includes the weld metal (nugget) and the heat-affected zone. The above "weld metal" refers to "a part of the weld that melts and solidifies during welding," and a "heat-affected zone" refers to "an unmelted part of the base material where the structure, metallurgical properties, mechanical properties, etc. have changed due to heat from welding, cutting, etc." The heat-affected zone is also called the "HAZ."

近年、例えば自動車の車体を構成する板組みにおいては、低燃費/低電費化(軽量化)及び衝突安全性向上等を目的として、高張力鋼板や超高張力鋼板などの高強度鋼板を採用するケースが増加している(例えば、特許文献1)。しかしながら、高強度鋼板を含む板組みでは、高強度鋼板を含まない板組みに比べ、所望の接合強度を有する溶接部(ナゲット)を得ることが難しいという問題がある。そこで、高強度鋼板を含む板組みをスポット溶接する場合には、高強度鋼板を含まない板組みをスポット溶接する場合に比べ、板組みに付与する板厚方向の加圧力を大きくする、板組みに大エネルギーを付与する(板組みに供給する電流の電流値を大きくする、通電時間を長くする等)、などといった対策が講じられる。 In recent years, for example, in the plate assemblies that constitute the body of an automobile, there have been an increasing number of cases in which high-strength steel plates, such as high-tensile steel plates and ultra-high-tensile steel plates, are used for the purpose of reducing fuel consumption/electricity consumption (weight reduction) and improving collision safety (for example, Patent Document 1). However, there is a problem in that it is more difficult to obtain a weld (nugget) with the desired joint strength in plate assemblies that include high-strength steel plates, compared to plate assemblies that do not include high-strength steel plates. Therefore, when spot welding plate assemblies that include high-strength steel plates, measures are taken such as increasing the pressure applied to the plate assembly in the plate thickness direction and applying large energy to the plate assembly (increasing the current value of the current supplied to the plate assembly, lengthening the current flow time, etc.) compared to spot welding plate assemblies that do not include high-strength steel plates.

特開2019-116223号公報JP 2019-116223 A 特開平7-68388号公報Japanese Patent Application Publication No. 7-68388

しかしながら、高強度鋼板を含む板組みをスポット溶接するに当たり、板組みに対して高加圧力及び大エネルギーを付与すると、金属組織(機械的特性や硬度等)が互いに異なる溶接金属(ナゲット)とその周囲の熱影響部の境界部で大きな応力が発生し易くなるため、溶接部に割れ(亀裂)等の欠陥が発生し易くなる。また、亜鉛めっき鋼板のようなめっき鋼板を含む板組みをスポット溶接するに当たり、板組みに対して高加圧力及び大エネルギーを付与すると、めっきの構成元素(例えば亜鉛)が熱影響部の結晶粒界に凝集し易くなるため、上記同様、溶接部に割れ等の欠陥が発生し易くなる。 However, when spot welding a plate assembly including high-strength steel sheets, if a high pressure and large energy are applied to the plate assembly, large stresses are likely to occur at the boundary between the weld metal (nugget) and the surrounding heat-affected zone, which have different metal structures (mechanical properties, hardness, etc.), making it easier for defects such as cracks to occur in the weld. Also, when spot welding a plate assembly including plated steel sheets such as galvanized steel sheets, if a high pressure and large energy are applied to the plate assembly, the constituent elements of the plating (e.g. zinc) tend to agglomerate at the grain boundaries in the heat-affected zone, making it easier for defects such as cracks to occur in the weld, as described above.

上記のような欠陥の発生を防止するための方法として、溶接部の形成後に、溶接部の形成に使用した電極を介して板組みに再度電流を供給することにより、溶接部に軟化処理(焼鈍又は焼き戻し)を施すことが知られている(例えば、特許文献2)。しかしながら、溶接部のうち、特にナゲットの金属組織は、溶融状態からの急冷により形成された凝固組織であることから、ナゲットを軟化させるには多くのエネルギー(十分な通電時間や電流量)が必要になる。そのため、板組みをスポット溶接するために必要となる総時間・コストの増大が不可避となる。 As a method for preventing the occurrence of defects as described above, it is known to soften (anneal or temper) the weld by supplying current again to the plate assembly through the electrode used to form the weld after the weld is formed (for example, Patent Document 2). However, since the metal structure of the weld, particularly the nugget, is a solidified structure formed by rapid cooling from a molten state, a lot of energy (sufficient current flow time and current amount) is required to soften the nugget. This inevitably increases the total time and cost required to spot weld the plate assembly.

上記の実情に鑑み、本発明は、複数の金属板を重ね合わせた板組みが高強度鋼板やめっき鋼板を含む場合であっても、割れ等の欠陥がない高精度の溶接部を少エネルギーで形成することを可能にする技術手段を提供することを目的とする。 In view of the above situation, the present invention aims to provide a technical means that makes it possible to form high-precision welds without defects such as cracks using little energy, even when the assembly of multiple overlapping metal sheets includes high-strength steel sheets or plated steel sheets.

上記の目的を達成するために創案された本発明は、複数の金属板を重ね合わせた板組みに金属板同士を接合する点状の溶接部を形成するに際し、
板組みを板厚方向に加圧している第1正電極を介して溶接部形成用の第1電流を板組みに供給する第1給電工程を実施し、その後、
板組みと第1正電極とを非接触にした状態で、板組みのうち第1正電極による加圧位置よりも径方向外側の所定位置を板厚方向に加圧している第2正電極を介して第1電流よりも電流値が小さい第2電流を板組みに供給する第2給電工程を実施することを特徴とする。
In order to achieve the above object, the present invention provides a method for forming spot welds for joining metal plates in a plate assembly in which a plurality of metal plates are overlapped, comprising the steps of:
A first current supplying step is carried out in which a first current for forming a weld is supplied to the plate assembly via a first positive electrode that presses the plate assembly in a plate thickness direction, and then
The method is characterized in that, with the plate assembly and the first positive electrode in a non-contact state, a second power supply process is carried out in which a second current having a current value smaller than the first current is supplied to the plate assembly via a second positive electrode which applies pressure in the plate thickness direction to a predetermined position of the plate assembly that is radially outward of the pressure position applied by the first positive electrode.

上記のような第2給電工程を第1給電工程に続けて実施すれば、第1給電工程で金属板同士の接触部に形成される溶接部のうち、その中央部付近に形成されたナゲットが完全に冷え固まるまでの間、ナゲットの周囲の熱影響部を保温する(熱影響部の冷却速度を遅くする)ことが可能となる。これにより、板組みが高強度鋼板を含む場合には、板組みに形成される溶接部のうちナゲットと熱影響部の境界部で大きな応力が発生するのを抑制又は防止することができるので、上記応力に由来する割れ等の欠陥発生を可及的に防止することができる。また、板組みがめっき鋼板を含む場合には、めっきの構成元素が熱影響部の結晶粒界に凝集するのを防止することができるので、めっき構成元素の凝集に由来する割れ等の欠陥発生を可及的に防止することができる。 By carrying out the second power supply process as described above following the first power supply process, it is possible to keep the heat-affected zone around the nugget warm (slow the cooling rate of the heat-affected zone) until the nugget formed near the center of the weld formed at the contact part between the metal plates in the first power supply process completely cools and solidifies. As a result, when the sheet assembly includes high-strength steel sheets, it is possible to suppress or prevent the occurrence of large stress at the boundary between the nugget and the heat-affected zone in the weld formed in the sheet assembly, so that the occurrence of defects such as cracks caused by the above-mentioned stress can be prevented as much as possible. In addition, when the sheet assembly includes plated steel sheets, it is possible to prevent the constituent elements of the plating from agglomerating at the grain boundaries of the heat-affected zone, so that the occurrence of defects such as cracks caused by the agglomeration of the constituent elements of the plating can be prevented as much as possible.

そして、第2給電工程において、第2電流は、凝固した(冷え固まった)溶接部を軟化させるために板組みに供給されるわけではなく、溶接部の一部(ナゲットの周囲の熱影響部)の冷却速度を遅くするために板組みに供給されるものであるから、第2電流の電流値は第1電流の電流値よりも小さくて足り、また板組みに対する第2電流の供給量(第2正電極を介しての通電時間)は少なくて済む。そのため、割れ等の欠陥がない高精度の溶接部を少エネルギーで形成することができる。 In the second power supply process, the second current is not supplied to the plate assembly to soften the solidified (cooled) weld, but is supplied to the plate assembly to slow the cooling rate of part of the weld (the heat-affected zone around the nugget). Therefore, the current value of the second current can be smaller than the current value of the first current, and the amount of the second current supplied to the plate assembly (the time that the current is passed through the second positive electrode) can be small. As a result, a high-precision weld without defects such as cracks can be formed with little energy.

上記の第2給電工程においては、第2正電極により板組みを板厚方向に加圧してから板組みと第1正電極の接触状態を解消し、その後、第2正電極を介して第2電流を板組みに供給するようにすることができる。 In the second power supply process, the second positive electrode applies pressure to the plate assembly in the plate thickness direction, and then the contact state between the plate assembly and the first positive electrode is released, and then a second current can be supplied to the plate assembly via the second positive electrode.

また、上記の目的は本発明に係るスポット溶接装置によって達成することもできる。すなわち、本発明に係るスポット溶接装置は、複数の金属板を重ね合わせた板組みに金属板同士を接合する点状の溶接部を形成するものであって、
板組みに対して板厚方向の加圧力を付与しつつ溶接部形成用の第1電流を板組みに供給可能な第1正電極と、第1正電極の径方向外側に配置され、板組みに対して板厚方向の加圧力を付与しつつ第1電流よりも電流値が小さい第2電流を板組みに供給可能な第2正電極と、
第1正電極及び第2正電極の何れか一方が板組みに接触したときに他方が板組みに対して非接触となるように、第1正電極及び第2正電極を板組みの板厚方向に沿って進退移動させる直動機構と、を備えることを特徴とする。
The above object can also be achieved by a spot welding device according to the present invention. That is, the spot welding device according to the present invention forms spot-like welds for joining metal plates to each other in a plate assembly in which a plurality of metal plates are overlapped, and
a first positive electrode capable of supplying a first current for forming a welded portion to the plate assembly while applying a pressure force in a plate thickness direction to the plate assembly; and a second positive electrode disposed radially outside the first positive electrode and capable of supplying a second current having a current value smaller than the first current to the plate assembly while applying a pressure force in the plate thickness direction to the plate assembly.
The device is characterized by comprising a linear motion mechanism that moves the first positive electrode and the second positive electrode back and forth along the thickness direction of the board assembly so that when one of the first positive electrode and the second positive electrode comes into contact with the board assembly, the other comes out of contact with the board assembly.

以上より、本発明によれば、複数の金属板を重ね合わせた板組みが高強度鋼板やめっき鋼板を含む場合であっても、割れ等の欠陥がない高精度の溶接部を少エネルギーで形成することが可能になる。 As described above, according to the present invention, even when a sheet assembly in which multiple metal sheets are stacked includes high-strength steel sheets or plated steel sheets, it is possible to form high-precision welds that are free of defects such as cracks using little energy.

(a)図は、本発明の一実施形態に係るスポット溶接装置の要部を概念的に示す図、(b)図は、(a)図のA-A線矢視断面図である。FIG. 1A is a conceptual diagram showing a main part of a spot welding device according to an embodiment of the present invention, and FIG. 1B is a cross-sectional view taken along line AA in FIG. 図1のスポット溶接装置による溶接手順(本発明に係るスポット溶接方法の実施手順)を示す図であり、(a)図は第1給電工程の初期段階を示す図、(b)図は第1給電工程の途中段階を示す図、(c)図は第2給電工程の初期段階を示す図、(d)図は第2給電工程の途中段階を示す図である。2A to 2D are diagrams showing a welding procedure (procedure for implementing the spot welding method according to the present invention) using the spot welding apparatus of FIG. 1, in which FIG. 2A shows an initial stage of a first power supply process, FIG. 2B shows an intermediate stage of the first power supply process, FIG. 2C shows an initial stage of a second power supply process, and FIG. 2D shows an intermediate stage of the second power supply process. (a)図及び(b)図共に、本発明の他の実施形態に係るスポット溶接装置の部分断面図である。1A and 1B are partial cross-sectional views of a spot welding device according to another embodiment of the present invention. 本発明の他の実施形態に係るスポット溶接装置の要部を概念的に示す図である。FIG. 13 is a diagram conceptually showing a main part of a spot welding device according to another embodiment of the present invention.

以下、本発明の実施の形態を図面に基づいて説明する。 The following describes an embodiment of the present invention with reference to the drawings.

まず、図1(a)(b)に基づき、本発明の実施形態に係るスポット溶接方法を実施するために用いられるスポット溶接装置1の概要を説明する。スポット溶接装置1は、複数の金属板を重ね合わせてなる平置き(水平)姿勢の板組み20をスポット溶接する際に使用されるものであり、対をなすかたちで設けられた第1電極2A,2Bとからなる第1の電極組2と、対をなすかたちで設けられた第2電極3A,3Bとからなる第2の電極組3とを備える。 First, an overview of a spot welding device 1 used to carry out a spot welding method according to an embodiment of the present invention will be described with reference to Figures 1(a) and (b). The spot welding device 1 is used when spot welding a plate assembly 20 in a flat (horizontal) position, which is made up of multiple overlapping metal plates, and includes a first electrode set 2 consisting of a pair of first electrodes 2A, 2B, and a second electrode set 3 consisting of a pair of second electrodes 3A, 3B.

第1の電極組2を構成する第1電極2A,2Bは、一般的な丸棒電極や角棒電極からなり[ここでは丸棒電極。図1(b)を参照]、凸球面状に形成された先端部が板組み20を挟んで互いに対向するように同軸配置されている。 The first electrodes 2A and 2B constituting the first electrode set 2 are made of general round bar electrodes or square bar electrodes [round bar electrodes in this case; see Fig. 1(b)] and are arranged coaxially so that their tips, which are formed into a convex spherical shape, face each other across the plate set 20.

図示は省略しているが、第1電極2A,2Bは、両電極2A,2B間にスポット溶接用(溶接部形成用)の高電流を発生させるために、トランスを介して電源と電気的に接続されている。本実施形態では、図2(a)に示すように、板組み20の上側に配置された第1電極2Aがトランスの正極端子と電気的に接続された正電極であり、板組み20の下側に配置された第1電極2Bがトランスの負極端子と電気的に接続された負電極である。 Although not shown in the figure, the first electrodes 2A, 2B are electrically connected to a power source via a transformer to generate a high current for spot welding (for forming a welded portion) between the two electrodes 2A, 2B. In this embodiment, as shown in FIG. 2(a), the first electrode 2A arranged on the upper side of the plate assembly 20 is a positive electrode electrically connected to the positive terminal of the transformer, and the first electrode 2B arranged on the lower side of the plate assembly 20 is a negative electrode electrically connected to the negative terminal of the transformer.

第2の電極組3を構成する第2電極3A,3Bの双方は円筒状をなし[図1(b)を参照]、先端部が第1の電極組2(を構成する第1電極2A,2B)よりも所定量径方向外側で板組み20を挟んで対向するように同軸配置されている。具体的には、図2(c)(d)に示すように、板組み20に形成される溶接部10のうちナゲット11の周囲に形成される熱影響部12を、第2電極3A,3B間への通電時に発生する電流(第2電流5)が流れるように、第2電極3A,3Bのサイズや配置位置等が調整される。なお、第1電極2A,2B間への通電時間、及び第1電極2A,2B間を流れる電流(第1電流4)の電流値を制御することによってナゲット11の大きさ(ナゲット径)をコントロールすることができるので、熱影響部12の形成位置は容易に推定可能である。 Both second electrodes 3A and 3B constituting the second electrode group 3 are cylindrical [see FIG. 1(b)] and are arranged coaxially so that their tips face each other across the plate assembly 20 at a predetermined radially outer side than the first electrode group 2 (the first electrodes 2A and 2B constituting the first electrode group 2). Specifically, as shown in FIG. 2(c) and (d), the size and position of the second electrodes 3A and 3B are adjusted so that the current (second current 5) generated when the current is applied between the second electrodes 3A and 3B flows through the heat-affected zone 12 formed around the nugget 11 of the welded portion 10 formed in the plate assembly 20. Note that the size of the nugget 11 (nugget diameter) can be controlled by controlling the time of application of current between the first electrodes 2A and 2B and the current value of the current (first current 4) flowing between the first electrodes 2A and 2B, so that the position where the heat-affected zone 12 is formed can be easily estimated.

図示は省略しているが、第2電極3A,3Bも電源と電気的に接続されている。ここでは、板組み20の上側に配置した第2電極3Aが電源の正極端子と電気的に接続された正電極であり、板組み20の下側に配置した第2電極3Bが電源の負極端子と電気的に接続された負電極である。第2電極組3は、第1電極組2と同様にトランスを介して電源と電気的に接続しても良いし、トランスを介さずに電源と電気的に接続しても良い。これは、第2の電極組3への通電時に板組み20に供給する(第2電極3A,3B間に発生させる)第2電流5の電流値を、第1の電極組2への通電時に板組み20に供給する(第1電極2A,2B間に発生させる)第1電流4の電流値よりも意図的に小さくするからである。具体的には、第2電流5の電流値は、第1電流4の電流値の50%以下とする。但し、第1電流4及び第2電流5の電流値や、第1の電極組2及び第2の電極組3への通電時間は、板組み20を構成する金属板の重ね合わせ枚数、金属板の材質、金属板の板厚等に応じて設定される。 Although not shown in the figure, the second electrodes 3A and 3B are also electrically connected to the power source. Here, the second electrode 3A arranged on the upper side of the board assembly 20 is a positive electrode electrically connected to the positive terminal of the power source, and the second electrode 3B arranged on the lower side of the board assembly 20 is a negative electrode electrically connected to the negative terminal of the power source. The second electrode set 3 may be electrically connected to the power source via a transformer like the first electrode set 2, or may be electrically connected to the power source without a transformer. This is because the current value of the second current 5 supplied to the board assembly 20 (generated between the second electrodes 3A and 3B) when the second electrode set 3 is energized is intentionally made smaller than the current value of the first current 4 supplied to the board assembly 20 (generated between the first electrodes 2A and 2B) when the first electrode set 2 is energized. Specifically, the current value of the second current 5 is set to 50% or less of the current value of the first current 4. However, the current values of the first current 4 and the second current 5 and the time for which current is passed through the first electrode set 2 and the second electrode set 3 are set according to the number of overlapping metal plates that make up the plate assembly 20, the material of the metal plates, the thickness of the metal plates, etc.

板組み20の上側に同軸配置された第1電極2Aと第2電極3Aは図示しない絶縁手段によって絶縁され、また、板組み20の下側に同軸配置された第1電極2Bと第2電極3Bも図示しない絶縁手段によって絶縁されている。 The first electrode 2A and the second electrode 3A, which are arranged coaxially on the upper side of the board assembly 20, are insulated by insulating means (not shown), and the first electrode 2B and the second electrode 3B, which are arranged coaxially on the lower side of the board assembly 20, are also insulated by insulating means (not shown).

スポット溶接装置1は、板組み20の上側に同軸配置された2つの電極2A,3Aの何れか一方が板組み20に接触した(板組み20を板厚方向に加圧している)ときに他方が板組み20に対して非接触となるように、第1電極2A及び第2電極3Aを板組み20の板厚方向(鉛直方向)に進退移動させる直動機構と、板組み20の下側に同軸配置された2つの電極2B,3Bの何れか一方が板組み20に接触したときに他方が板組み20に対して非接触となるように、第1電極2B及び第2電極3Bを板組み20の板厚方向に進退移動させる直動機構と、を備える。上記の直動機構としては、板組み20に対する各電極2A,2B,3A,3Bの相対位置、さらに言えば板組み20に付与すべき板厚方向の加圧力を精密に調整できるようなもの、例えば、サーボモータを駆動源とした直動アクチュエータが用いられる。 The spot welding device 1 includes a linear motion mechanism that moves the first electrode 2A and the second electrode 3A forward and backward in the thickness direction (vertical direction) of the plate assembly 20 so that when one of the two electrodes 2A, 3A arranged coaxially on the upper side of the plate assembly 20 contacts the plate assembly 20 (pressing the plate assembly 20 in the plate thickness direction), the other electrode does not contact the plate assembly 20, and a linear motion mechanism that moves the first electrode 2B and the second electrode 3B forward and backward in the plate thickness direction of the plate assembly 20 so that when one of the two electrodes 2B, 3B arranged coaxially on the lower side of the plate assembly 20 contacts the plate assembly 20, the other electrode does not contact the plate assembly 20. The linear motion mechanism can precisely adjust the relative positions of the electrodes 2A, 2B, 3A, 3B with respect to the plate assembly 20, and more specifically, the pressure force in the plate thickness direction to be applied to the plate assembly 20, for example, a linear motion actuator driven by a servo motor.

以上で説明した第1の電極組2及び第2の電極組3や、これらを板組み20の板厚方向に進退移動させる直動機構は、例えば、溶接ロボットに設けられた3次元移動可能なロボットアームの先端に装着した溶接ガンに保持される。すなわち、本発明に係るスポット溶接方法は、溶接ロボットを用いて自動で実施することができる。 The first electrode set 2 and the second electrode set 3 described above, and the linear motion mechanism that moves them forward and backward in the plate thickness direction of the plate assembly 20, are held, for example, by a welding gun attached to the tip of a three-dimensionally movable robot arm provided on a welding robot. In other words, the spot welding method according to the present invention can be performed automatically using a welding robot.

次に、溶接対象物である、複数の金属板を重ね合わせた板組み20について説明する。板組み20は、引張強度490MPa以上の高張力鋼板や引張強度980MPa以上の超高張力鋼板からなるいわゆる高強度鋼板、あるいは、表面に亜鉛めっきやアルミニウムめっき等のめっき層を有するめっき鋼板を少なくとも1枚含むものとされる。図1等に示す板組み20は、2枚の高強度鋼板21,22を重ね合わせたものであるが、3枚以上の金属板を重ね合わせたものとされる場合もある。各鋼板21,22の板厚は特に限定されないが、板組みが例えば自動車の車体を構成するものである場合、板厚0.5mm以上2.5mm以下の鋼板21,22が使用される。鋼板21,22は、材料組成を同じくした同種の鋼板であっても良いし、材料組成が互いに異なる異種鋼板であっても良い。 Next, the plate assembly 20, which is the object to be welded and is made by stacking multiple metal plates, will be described. The plate assembly 20 includes at least one so-called high-strength steel plate made of a high-tensile steel plate with a tensile strength of 490 MPa or more or an ultra-high-tensile steel plate with a tensile strength of 980 MPa or more, or a plated steel plate having a plating layer such as zinc plating or aluminum plating on the surface. The plate assembly 20 shown in FIG. 1 and the like is made by stacking two high-strength steel plates 21 and 22, but it may also be made by stacking three or more metal plates. The thickness of each steel plate 21 and 22 is not particularly limited, but when the plate assembly is to form, for example, the body of an automobile, steel plates 21 and 22 with a thickness of 0.5 mm to 2.5 mm are used. The steel plates 21 and 22 may be the same type of steel plate with the same material composition, or may be different types of steel plates with different material compositions.

スポット溶接装置1は概ね以上の構成を有し、第1給電工程と第2給電工程とを順に実施することで、2枚の鋼板21,22を重ね合わせた板組み20の溶接予定箇所に点状の溶接部10を(自動で)形成する。以下、図2(a)~(d)に基づいて第1及び第2給電工程を説明する。 The spot welding device 1 has the above-mentioned general configuration, and by sequentially carrying out the first power supply process and the second power supply process, a spot-shaped weld 10 is (automatically) formed at a planned welding location of the plate assembly 20 in which two overlapping steel plates 21, 22 are assembled. The first and second power supply processes are described below with reference to Figures 2(a) to (d).

[第1給電工程]
第1給電工程では、まず、図2(a)に示すように、溶接対象である板組み20を平置き姿勢で配置した後、直動機構を駆動することにより、板組み20の溶接予定箇所を挟んで対向配置した第1正電極2A及び第1負電極2Bの先端部を板組み20の上面及び下面にそれぞれ押し当てる。これにより、板組み20が対をなす第1電極2A,2Bによって板厚方向に挟持され、2枚の鋼板21,22が第1電極2A,2B間で接触する。第1給電工程の実施中、第2の電極組3を構成する第2電極3A,3Bは板組み20に対して非接触である。
[First power supply step]
In the first power supply step, first, as shown in Fig. 2(a), the plate assembly 20 to be welded is placed in a flat position, and then the linear motion mechanism is driven to press the tips of the first positive electrode 2A and the first negative electrode 2B, which are arranged opposite each other across the planned welding point of the plate assembly 20, against the upper and lower surfaces of the plate assembly 20. As a result, the plate assembly 20 is sandwiched in the plate thickness direction by the pair of first electrodes 2A and 2B, and the two steel plates 21 and 22 come into contact between the first electrodes 2A and 2B. During the first power supply step, the second electrodes 3A and 3B constituting the second electrode set 3 are not in contact with the plate assembly 20.

次いで、第1電極2A,2Bによって板組み20に対して板厚方向の加圧力を付与しつつ、第1電極2A,2B間に通電すると、図2(b)に示すように、正電極である第1電極2Aを介して板組み20に溶接部10を形成するための第1電流4が供給される。これに伴い、第1電極2A,2B間(に介在する板組み20内)を電子が流れると、まず、板組み20のうち電気抵抗が大きい箇所、ここでは対向配置された第1電極2A,2B間にできる鋼板21,22同士の接触部で発熱が生じるため、当該接触部に鋼板21,22の構成金属が溶融して混ざり合った金属溶融物13が生成される。以降、板組み20を加圧している第1電極2A,2B間への通電が継続されるのに伴い、金属溶融物13が成長する。そして、金属溶融物13が所定の大きさまで成長すると、第1電極2A,2B間への通電を停止する。第1電極2A,2Bは、少なくとも板組み20を加圧している間、その内部を冷却液が流通するようになっている。そのため、第1電極2A,2B間への通電が停止されると、金属溶融物13が急冷されて凝固し、鋼板21,22同士を接合した溶接金属(ナゲット)11が形成される。 Next, when the first electrodes 2A and 2B apply pressure to the plate assembly 20 in the plate thickness direction by the first electrodes 2A and 2B, a first current 4 is supplied to the plate assembly 20 through the first electrode 2A, which is the positive electrode, as shown in FIG. 2(b). As a result, when electrons flow between the first electrodes 2A and 2B (in the plate assembly 20 interposed therebetween), heat is generated at a location of high electrical resistance in the plate assembly 20, in this case the contact portion between the steel plates 21 and 22 formed between the first electrodes 2A and 2B arranged opposite each other, and a molten metal 13 is generated in which the constituent metals of the steel plates 21 and 22 melt and mix at the contact portion. Thereafter, as the current continues to flow between the first electrodes 2A and 2B that are applying pressure to the plate assembly 20, the molten metal 13 grows. Then, when the molten metal 13 grows to a predetermined size, the current to the first electrodes 2A and 2B is stopped. The first electrodes 2A and 2B are designed to allow a coolant to flow through them at least while they are applying pressure to the plate assembly 20. Therefore, when the current between the first electrodes 2A and 2B is stopped, the molten metal 13 is rapidly cooled and solidified, forming a weld metal (nugget) 11 that joins the steel plates 21 and 22 together.

第1電極2A,2B間に通電するのに伴い、金属溶融物13の周囲にはHAZとも称される熱影響部12が形成される。熱影響部12は、JIS Z 3001-1:2018に規定された「熱影響部」の定義に準じ、溶接時(第1電極2A,2B間への通電時)の熱で組織や機械的性質などが変化した、溶融していない母材(鋼板21,22)の部分、である。 As electricity flows between the first electrodes 2A, 2B, a heat-affected zone 12, also known as a HAZ, is formed around the molten metal 13. The heat-affected zone 12 conforms to the definition of "heat-affected zone" specified in JIS Z 3001-1:2018 and is the part of the unmelted base material (steel plates 21, 22) whose structure and mechanical properties have changed due to the heat generated during welding (when electricity flows between the first electrodes 2A, 2B).

[第2給電工程]
第1電極2A,2B間への通電が停止されると、直動機構を駆動することにより、第1電極2Aを上昇させて板組み20と第1電極2Aの接触状態を解消(第1正電極2Aによる加圧力を解放)する一方、第2電極3Aを下降させて板組み20の上面に押し当てると共に、第1電極2Bを下降させて板組み20と第1電極2Bの接触状態を解消(第1電極2Bによる加圧力を解放)する一方、第2電極3Bを上昇させて板組み20の下面に押し当てる[図2(c)参照]。このとき、駆動機構は、第2電極3A,3Bが板組み20に押し当てられてから(第2電極3A,3Bにより板組み20を板厚方向に加圧してから)、第1電極2A,2Bと板組み20の接触状態が解消されるように、各電極2A,2B,3A,3Bを昇降移動させる。
[Second power supply step]
When the current between the first electrodes 2A and 2B is stopped, the linear motion mechanism is driven to raise the first electrode 2A to eliminate the contact state between the board assembly 20 and the first electrode 2A (releasing the pressure force by the first positive electrode 2A), while the second electrode 3A is lowered to press against the upper surface of the board assembly 20, and the first electrode 2B is lowered to eliminate the contact state between the board assembly 20 and the first electrode 2B (releasing the pressure force by the first electrode 2B), while the second electrode 3B is raised to press against the lower surface of the board assembly 20 [see FIG. 2(c)]. At this time, the drive mechanism moves each of the electrodes 2A, 2B, 3A, and 3B up and down so that the contact state between the first electrodes 2A and 2B and the board assembly 20 is eliminated after the second electrodes 3A and 3B are pressed against the board assembly 20 (after the second electrodes 3A and 3B press the board assembly 20 in the plate thickness direction).

次いで、第2電極3A,3Bを板組み20に押し当てつつ(第2電極3A,3Bにより板組み20を板厚方向に加圧しつつ)、第2電極3A,3B間に通電することにより、図2(d)に示すように、正電極である第2電極3Aを介して板組み20に電流(第2電流5)を供給する。第2電極3A,3Bによる板組み20の加圧位置、及び第2電流5の電流値は上段で説明したように調整されることから、電極3Aを介して板組み20に供給された第2電流5は、板組み20のうちナゲット11の周囲に形成された熱影響部12を保温する(熱影響部12が急冷されるのを阻止する)ように板組み20内を板厚方向に流れる。これにより、2枚の鋼板21,22に跨って形成されたナゲット11が完全に冷え固まる過程でナゲット11と熱影響部12の境界部で大きな応力が発生するのを抑制又は防止することができるので、上記応力に由来する割れや亀裂等の欠陥が溶接部10に発生するのを防止できる。 Next, while pressing the second electrodes 3A and 3B against the plate assembly 20 (while applying pressure to the plate assembly 20 in the plate thickness direction by the second electrodes 3A and 3B), a current (second current 5) is supplied to the plate assembly 20 via the positive second electrode 3A, as shown in FIG. 2(d). Since the pressure position of the plate assembly 20 by the second electrodes 3A and 3B and the current value of the second current 5 are adjusted as described above, the second current 5 supplied to the plate assembly 20 via the electrode 3A flows in the plate thickness direction within the plate assembly 20 to keep the heat-affected zone 12 formed around the nugget 11 of the plate assembly 20 warm (to prevent the heat-affected zone 12 from being rapidly cooled). This makes it possible to suppress or prevent large stresses from occurring at the boundary between the nugget 11 and the heat-affected zone 12 during the process in which the nugget 11, which is formed across the two steel plates 21 and 22, completely cools and solidifies, thereby preventing defects such as cracks and fissures caused by the above stress from occurring in the welded zone 10.

この第2給電工程において、第2電流5は、完全に凝固した溶接部10(ナゲット11)を軟化させるために板組み20に供給されるわけではなく、ナゲット11の周囲の熱影響部12の冷却速度を遅くするために板組み20に供給される。そのため、第2電流5の電流値は第1電流4の電流値よりも小さくて足り、また板組み20に対する第2電流5の供給量(第2電極3A,3B間の通電時間)は少なくて済む。以上のことから、本発明に係るスポット溶接方法によれば、割れ等の欠陥がない高精度の溶接部10を少エネルギーで板組み20に形成することができる。 In this second power supply process, the second current 5 is not supplied to the plate assembly 20 to soften the completely solidified welded portion 10 (nugget 11), but is supplied to the plate assembly 20 to slow down the cooling rate of the heat-affected zone 12 around the nugget 11. Therefore, the current value of the second current 5 can be smaller than the current value of the first current 4, and the amount of the second current 5 supplied to the plate assembly 20 (the time during which current is passed between the second electrodes 3A and 3B) can be small. From the above, according to the spot welding method of the present invention, a high-precision welded portion 10 without defects such as cracks can be formed in the plate assembly 20 with little energy.

以上、本発明の一実施形態について説明を行ったが、本発明の実施の形態は上記のものに限定されない。 Although one embodiment of the present invention has been described above, the embodiment of the present invention is not limited to the above.

例えば、第2の電極組3を構成する第2電極3A,3Bは、上述した円筒状のものに替えて、図3(a)(b)に示すように、円弧状をなしたものを第1電極2A,2Bの周方向に間隔を空けて複数配置するようにしても良い。図3(a)は、それぞれが円弧状をなした4つの第2電極3Aを周方向に間隔を空けて配置した場合を示し、図3(b)は、それぞれが円弧状をなした2つの第2電極3Aを周方向に間隔を空けて配置した場合を示している。 For example, the second electrodes 3A, 3B constituting the second electrode set 3 may be, instead of the cylindrical ones described above, arc-shaped ones arranged at intervals in the circumferential direction of the first electrodes 2A, 2B as shown in Figures 3(a) and (b). Figure 3(a) shows a case where four second electrodes 3A each having an arc shape are arranged at intervals in the circumferential direction, and Figure 3(b) shows a case where two second electrodes 3A each having an arc shape are arranged at intervals in the circumferential direction.

また、以上では、板組み20の上側に配置した第1電極2A及び第2電極3Aを何れも正電極とし、板組み20の下側に配置した第1電極2B及び第2電極3Bを何れも負電極としたが、電極の極性はこれと逆にしても構わない。また、板組み20の上側に配置した第1電極2Aと第2電極3Aの極性を互いに異ならせると共に、板組み20の下側に配置した第1電極2Bと第2電極3Bの極性を互いに異ならせても構わない。具体例を挙げると、板組み20の上側に配置した第1電極2A,3Aのそれぞれを正電極及び負電極にすると共に、板組み20の下側に配置した第2電極2B,3Bのそれぞれを負電極及び正電極とする。各電極の極性をどのようにするかは、板組み20の構成に応じて選択することができる。 In the above, the first electrode 2A and the second electrode 3A arranged on the upper side of the board assembly 20 are both positive electrodes, and the first electrode 2B and the second electrode 3B arranged on the lower side of the board assembly 20 are both negative electrodes, but the polarity of the electrodes may be reversed. The polarities of the first electrode 2A and the second electrode 3A arranged on the upper side of the board assembly 20 may be different from each other, and the polarities of the first electrode 2B and the second electrode 3B arranged on the lower side of the board assembly 20 may be different from each other. As a specific example, the first electrodes 2A and 3A arranged on the upper side of the board assembly 20 are respectively positive and negative electrodes, and the second electrodes 2B and 3B arranged on the lower side of the board assembly 20 are respectively negative and positive electrodes. The polarity of each electrode can be selected according to the configuration of the board assembly 20.

また、第2給電工程で熱影響部12に第2電流5を精度良く流すことができるのであれば、第2の電極組3のうち、負電極となる側の電極(例えば、板組み20の下側に配置される電極)は、図4に示すように、第1の電極組2を構成する第1電極2A,2Bのうち負電極となる側の電極(2B)を兼用しても構わない。 Furthermore, if the second current 5 can be accurately passed through the heat-affected zone 12 in the second power supply process, the negative electrode of the second electrode set 3 (e.g., the electrode arranged on the lower side of the plate assembly 20) may also be the negative electrode (2B) of the first electrodes 2A, 2B constituting the first electrode set 2, as shown in FIG. 4.

また、以上で説明した実施形態では、板組み20を構成する2枚の金属板21,22の双方を高強度鋼板としたが、本発明に係るスポット溶接方法及び装置は、亜鉛めっき鋼板等のめっき鋼板を含む板組み20に、金属板同士を接合する溶接部10を形成する際にも好ましく適用することができる。その場合には、めっきの構成元素が熱影響部12の結晶粒界に凝集するのを防止することができるので、めっき構成元素の凝集に由来する割れ等の欠陥が溶接部10に発生するのを可及的に防止することができる。 In the embodiment described above, both of the two metal plates 21, 22 that make up the plate assembly 20 are high-strength steel plates, but the spot welding method and device according to the present invention can also be preferably applied to the plate assembly 20 that includes plated steel plates such as zinc-plated steel plates when forming a welded portion 10 that joins the metal plates together. In that case, the constituent elements of the plating can be prevented from agglomerating at the grain boundaries of the heat-affected zone 12, so that defects such as cracks caused by the agglomeration of the plating constituent elements can be prevented as much as possible from occurring in the welded portion 10.

また、本発明に係るスポット溶接方法は、溶接ロボットによって自動で実施する場合のみならず、作業者による人手作業で板組み20に点状の溶接部10を形成する場合にも適用することができる。 The spot welding method according to the present invention can be applied not only to cases where it is performed automatically by a welding robot, but also to cases where a worker manually forms spot welds 10 in a plate assembly 20.

1 スポット溶接装置
2 第1の電極組
2A 第1電極(正電極)
2B 第1電極
3 第2の電極組
3A 第2電極(正電極)
3B 第2電極
4 第1電流
5 第2電流
10 溶接部
11 ナゲット(溶接金属)
12 熱影響部
13 金属溶融物
20 板組み
21,22 鋼板(金属板)
1 Spot welding device 2 First electrode set 2A First electrode (positive electrode)
2B First electrode 3 Second electrode set 3A Second electrode (positive electrode)
3B: second electrode 4: first current 5: second current 10: welded portion 11: nugget (weld metal)
12 Heat-affected zone 13 Molten metal 20 Plate assembly 21, 22 Steel plate (metal plate)

Claims (2)

複数の金属板を重ね合わせた板組みに金属板同士を接合する点状の溶接部を形成するに際し、
前記板組みを板厚方向に加圧している第1正電極を介して溶接部形成用の第1電流を前記板組みに供給する第1給電工程を実施し、その後、
前記板組みと前記第1正電極とを非接触にした状態で、前記板組みのうち前記第1正電極による加圧位置よりも径方向外側の所定位置を板厚方向に加圧している第2正電極を介して前記第1電流よりも電流値が小さい第2電流を前記板組みに供給する第2給電工程を実施することを特徴とするスポット溶接方法。
When forming spot welds that join metal plates together in a plate assembly in which multiple metal plates are overlapped,
A first current supplying step is carried out in which a first current for forming a weld is supplied to the plate assembly via a first positive electrode that presses the plate assembly in a plate thickness direction, and then
a second current supply step of supplying a second current having a smaller current value than the first current to the plate assembly via a second positive electrode that applies pressure in the plate thickness direction to a predetermined position of the plate assembly that is radially outward from the pressure position applied by the first positive electrode while the plate assembly is not in contact with the first positive electrode.
複数の金属板を重ね合わせた板組みに前記金属板同士を接合する点状の溶接部を形成するスポット溶接装置であって、
前記板組みに対して板厚方向の加圧力を付与しつつ溶接部形成用の第1電流を前記板組みに供給可能な第1正電極と、該第1正電極の径方向外側に配置され、前記板組みに対して板厚方向の加圧力を付与しつつ前記第1電流よりも電流値が小さい第2電流を前記板組みに供給可能な第2正電極と、
前記第1正電極及び前記第2正電極の何れか一方が前記板組みに接触したときに他方が前記板組みに対して非接触となるように、前記第1正電極及び前記第2正電極を前記板組みの板厚方向に沿って進退移動させる直動機構と、を備えることを特徴とするスポット溶接装置。
A spot welding device that forms spot welds that join a plurality of overlapping metal plates to each other in a plate assembly, comprising:
a first positive electrode capable of supplying a first current for forming a welded portion to the plate assembly while applying a pressure force in a plate thickness direction to the plate assembly; and a second positive electrode disposed radially outside the first positive electrode and capable of supplying a second current having a current value smaller than the first current to the plate assembly while applying a pressure force in the plate thickness direction to the plate assembly;
a linear motion mechanism that moves the first positive electrode and the second positive electrode back and forth along a thickness direction of the plate assembly so that when one of the first positive electrode and the second positive electrode comes into contact with the plate assembly, the other electrode is not in contact with the plate assembly.
JP2023015364A 2023-02-03 2023-02-03 Spot welding method and spot welding device Pending JP2024110656A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023015364A JP2024110656A (en) 2023-02-03 2023-02-03 Spot welding method and spot welding device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2023015364A JP2024110656A (en) 2023-02-03 2023-02-03 Spot welding method and spot welding device

Publications (1)

Publication Number Publication Date
JP2024110656A true JP2024110656A (en) 2024-08-16

Family

ID=92418986

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2023015364A Pending JP2024110656A (en) 2023-02-03 2023-02-03 Spot welding method and spot welding device

Country Status (1)

Country Link
JP (1) JP2024110656A (en)

Similar Documents

Publication Publication Date Title
CN107520550B (en) Multi-step electrode weld face geometry for welding aluminum to steel
US10682723B2 (en) Resistance spot welding steel and aluminum workpieces with electrode having insert
CN106334866B (en) Control is for the thermal stress of dissimilar material welding and the cooling of solidification
KR101744427B1 (en) Spot welding method for high-strength steel sheet excellent in joint strength
TWI601588B (en) Resistance point welding method
CN106001886B (en) Cone current beneficial to spot welding of different metals
US8253056B2 (en) Resistance welding method and resistance welding apparatus
KR102010195B1 (en) Resistance spot welding method
WO2017104647A1 (en) Resistance spot welding method and method for manufacturing welded member
CN110461528B (en) Method for manufacturing resistance spot-welded joint
JP2007268604A (en) Resistance spot welding method
CN110325313B (en) Resistance spot welding method
JP6168246B1 (en) Resistance spot welding method and manufacturing method of welded member
JP6572986B2 (en) Resistance spot welding method and resistance spot welding determination method
JP5315207B2 (en) Dissimilar material joined body and dissimilar material resistance spot welding method
CN107614147B (en) Mechanical joining device and mechanical joining method
JP6160581B2 (en) Resistance spot welding method
JP2020011253A (en) Resistance spot welding method
JP2024110656A (en) Spot welding method and spot welding device
KR20190126099A (en) Method of manufacturing resistance spot welded joints
JP7242112B2 (en) Solid point welding method and solid point welding apparatus
JP7508031B1 (en) Resistance Spot Welding Method
JP6225717B2 (en) Formation method of welded joint
JP2022029726A (en) Spot welding method
JP7360610B2 (en) Spot welding method