JP2024150170A - Paper base material for humid forming, paper processed products and paper containers - Google Patents
Paper base material for humid forming, paper processed products and paper containers Download PDFInfo
- Publication number
- JP2024150170A JP2024150170A JP2023063446A JP2023063446A JP2024150170A JP 2024150170 A JP2024150170 A JP 2024150170A JP 2023063446 A JP2023063446 A JP 2023063446A JP 2023063446 A JP2023063446 A JP 2023063446A JP 2024150170 A JP2024150170 A JP 2024150170A
- Authority
- JP
- Japan
- Prior art keywords
- paper
- base material
- paper base
- pulp
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000463 material Substances 0.000 title claims abstract description 182
- 239000000835 fiber Substances 0.000 claims abstract description 69
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 65
- 239000011436 cob Substances 0.000 claims abstract description 52
- 239000000123 paper Substances 0.000 claims description 513
- 239000000758 substrate Substances 0.000 claims description 35
- 238000000465 moulding Methods 0.000 claims description 31
- 239000002655 kraft paper Substances 0.000 claims description 29
- 229920001131 Pulp (paper) Polymers 0.000 claims description 14
- 239000011121 hardwood Substances 0.000 claims description 13
- 230000003020 moisturizing effect Effects 0.000 claims 1
- 230000003796 beauty Effects 0.000 abstract description 13
- 239000010410 layer Substances 0.000 description 152
- 239000007787 solid Substances 0.000 description 101
- 239000003795 chemical substances by application Substances 0.000 description 53
- 239000013055 pulp slurry Substances 0.000 description 42
- 238000004513 sizing Methods 0.000 description 41
- DIZPMCHEQGEION-UHFFFAOYSA-H aluminium sulfate (anhydrous) Chemical compound [Al+3].[Al+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O DIZPMCHEQGEION-UHFFFAOYSA-H 0.000 description 28
- RSWGJHLUYNHPMX-UHFFFAOYSA-N Abietic-Saeure Natural products C12CCC(C(C)C)=CC2=CCC2C1(C)CCCC2(C)C(O)=O RSWGJHLUYNHPMX-UHFFFAOYSA-N 0.000 description 27
- KHPCPRHQVVSZAH-HUOMCSJISA-N Rosin Natural products O(C/C=C/c1ccccc1)[C@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 KHPCPRHQVVSZAH-HUOMCSJISA-N 0.000 description 27
- KHPCPRHQVVSZAH-UHFFFAOYSA-N trans-cinnamyl beta-D-glucopyranoside Natural products OC1C(O)C(O)C(CO)OC1OCC=CC1=CC=CC=C1 KHPCPRHQVVSZAH-UHFFFAOYSA-N 0.000 description 27
- 230000001070 adhesive effect Effects 0.000 description 24
- 239000000853 adhesive Substances 0.000 description 23
- YLZOPXRUQYQQID-UHFFFAOYSA-N 3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)-1-[4-[2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidin-5-yl]piperazin-1-yl]propan-1-one Chemical compound N1N=NC=2CN(CCC=21)CCC(=O)N1CCN(CC1)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F YLZOPXRUQYQQID-UHFFFAOYSA-N 0.000 description 20
- AFCARXCZXQIEQB-UHFFFAOYSA-N N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CCNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 AFCARXCZXQIEQB-UHFFFAOYSA-N 0.000 description 20
- 238000000034 method Methods 0.000 description 20
- 239000002994 raw material Substances 0.000 description 19
- 239000012790 adhesive layer Substances 0.000 description 17
- 230000000052 comparative effect Effects 0.000 description 15
- 229920002401 polyacrylamide Polymers 0.000 description 15
- 239000003623 enhancer Substances 0.000 description 14
- 239000000126 substance Substances 0.000 description 13
- 239000011122 softwood Substances 0.000 description 12
- 238000009736 wetting Methods 0.000 description 11
- 238000010009 beating Methods 0.000 description 8
- 238000012545 processing Methods 0.000 description 8
- 238000004080 punching Methods 0.000 description 8
- 239000002699 waste material Substances 0.000 description 8
- 239000007788 liquid Substances 0.000 description 7
- VZSRBBMJRBPUNF-UHFFFAOYSA-N 2-(2,3-dihydro-1H-inden-2-ylamino)-N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]pyrimidine-5-carboxamide Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C(=O)NCCC(N1CC2=C(CC1)NN=N2)=O VZSRBBMJRBPUNF-UHFFFAOYSA-N 0.000 description 6
- 229920002472 Starch Polymers 0.000 description 6
- 239000011248 coating agent Substances 0.000 description 6
- 238000000576 coating method Methods 0.000 description 6
- 239000002356 single layer Substances 0.000 description 6
- 239000008107 starch Substances 0.000 description 6
- 235000019698 starch Nutrition 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 230000037303 wrinkles Effects 0.000 description 6
- 241000220479 Acacia Species 0.000 description 5
- 244000166124 Eucalyptus globulus Species 0.000 description 5
- 235000010643 Leucaena leucocephala Nutrition 0.000 description 5
- 239000013054 paper strength agent Substances 0.000 description 5
- 239000010893 paper waste Substances 0.000 description 5
- 239000002002 slurry Substances 0.000 description 5
- 229920005992 thermoplastic resin Polymers 0.000 description 5
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 241000218645 Cedrus Species 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 238000010030 laminating Methods 0.000 description 3
- 229920003023 plastic Polymers 0.000 description 3
- 239000004033 plastic Substances 0.000 description 3
- 238000002791 soaking Methods 0.000 description 3
- DEXFNLNNUZKHNO-UHFFFAOYSA-N 6-[3-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperidin-1-yl]-3-oxopropyl]-3H-1,3-benzoxazol-2-one Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C1CCN(CC1)C(CCC1=CC2=C(NC(O2)=O)C=C1)=O DEXFNLNNUZKHNO-UHFFFAOYSA-N 0.000 description 2
- 235000014466 Douglas bleu Nutrition 0.000 description 2
- 235000008577 Pinus radiata Nutrition 0.000 description 2
- 241000218621 Pinus radiata Species 0.000 description 2
- 241000218683 Pseudotsuga Species 0.000 description 2
- 235000005386 Pseudotsuga menziesii var menziesii Nutrition 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 238000003490 calendering Methods 0.000 description 2
- 239000000839 emulsion Substances 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 230000036571 hydration Effects 0.000 description 2
- 238000006703 hydration reaction Methods 0.000 description 2
- 239000011229 interlayer Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000004949 mass spectrometry Methods 0.000 description 2
- 238000000045 pyrolysis gas chromatography Methods 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- -1 softeners Substances 0.000 description 2
- 230000008961 swelling Effects 0.000 description 2
- 239000002966 varnish Substances 0.000 description 2
- 238000009816 wet lamination Methods 0.000 description 2
- 239000002023 wood Substances 0.000 description 2
- YAXXOCZAXKLLCV-UHFFFAOYSA-N 3-dodecyloxolane-2,5-dione Chemical class CCCCCCCCCCCCC1CC(=O)OC1=O YAXXOCZAXKLLCV-UHFFFAOYSA-N 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- BRLQWZUYTZBJKN-UHFFFAOYSA-N Epichlorohydrin Chemical compound ClCC1CO1 BRLQWZUYTZBJKN-UHFFFAOYSA-N 0.000 description 1
- 241000218652 Larix Species 0.000 description 1
- 235000005590 Larix decidua Nutrition 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- NIPNSKYNPDTRPC-UHFFFAOYSA-N N-[2-oxo-2-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 NIPNSKYNPDTRPC-UHFFFAOYSA-N 0.000 description 1
- 241000383295 Notholithocarpus densiflorus Species 0.000 description 1
- 241000218657 Picea Species 0.000 description 1
- 235000008331 Pinus X rigitaeda Nutrition 0.000 description 1
- 235000011613 Pinus brutia Nutrition 0.000 description 1
- 241000018646 Pinus brutia Species 0.000 description 1
- 241000218606 Pinus contorta Species 0.000 description 1
- 235000011334 Pinus elliottii Nutrition 0.000 description 1
- 241000142776 Pinus elliottii Species 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 229920001807 Urea-formaldehyde Polymers 0.000 description 1
- FHKPLLOSJHHKNU-INIZCTEOSA-N [(3S)-3-[8-(1-ethyl-5-methylpyrazol-4-yl)-9-methylpurin-6-yl]oxypyrrolidin-1-yl]-(oxan-4-yl)methanone Chemical compound C(C)N1N=CC(=C1C)C=1N(C2=NC=NC(=C2N=1)O[C@@H]1CN(CC1)C(=O)C1CCOCC1)C FHKPLLOSJHHKNU-INIZCTEOSA-N 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- GZCGUPFRVQAUEE-SLPGGIOYSA-N aldehydo-D-glucose Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C=O GZCGUPFRVQAUEE-SLPGGIOYSA-N 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 239000002216 antistatic agent Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 210000000988 bone and bone Anatomy 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 230000003750 conditioning effect Effects 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 238000009820 dry lamination Methods 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 229920006332 epoxy adhesive Polymers 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
- 239000012948 isocyanate Substances 0.000 description 1
- 150000002513 isocyanates Chemical class 0.000 description 1
- 235000014684 lodgepole pine Nutrition 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- SFMJNHNUOVADRW-UHFFFAOYSA-N n-[5-[9-[4-(methanesulfonamido)phenyl]-2-oxobenzo[h][1,6]naphthyridin-1-yl]-2-methylphenyl]prop-2-enamide Chemical compound C1=C(NC(=O)C=C)C(C)=CC=C1N1C(=O)C=CC2=C1C1=CC(C=3C=CC(NS(C)(=O)=O)=CC=3)=CC=C1N=C2 SFMJNHNUOVADRW-UHFFFAOYSA-N 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920000768 polyamine Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 235000000673 shore pine Nutrition 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000010902 straw Substances 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- YSGSDAIMSCVPHG-UHFFFAOYSA-N valyl-methionine Chemical compound CSCCC(C(O)=O)NC(=O)C(N)C(C)C YSGSDAIMSCVPHG-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Wrappers (AREA)
- Laminated Bodies (AREA)
- Paper (AREA)
Abstract
【課題】加湿成形による高いレベルでの成形性及び耐落下衝撃性を達成し、さらに高温高湿度環境で湿潤し振動を受けても表面の美麗性を維持できる加湿成形用の紙基材。【解決手段】加湿成形用の紙基材であって、前記紙基材が、2層以上の紙層を有し、前記紙基材の厚みが、0.8~1.5mmであり、前記紙基材の一方の表面をA面とし、他方の表面をB面としたときに、前記紙基材の前記A面から測定したコッブ吸水度が、前記B面から測定したコッブ吸水度以下であって、前記A面から測定したコッブ吸水度が、10~700g/m2・60秒であり、前記B面から測定したコッブ吸水度が、10~1000g/m2・60秒であり、前記紙基材の、一方の表面を構成する紙層に含まれるパルプの平均繊維幅と、他方の表面を構成する紙層に含まれるパルプの平均繊維幅と、の両方が、28.0μm以下である。【選択図】なし[Problem] A paper base material for humid forming that achieves a high level of formability and drop impact resistance through humid forming, and furthermore maintains the beauty of its surface even when it is moistened in a high-temperature, high-humidity environment and subjected to vibration. [Solution] A paper base material for humid forming, the paper base material having two or more paper layers, the thickness of the paper base material being 0.8 to 1.5 mm, one surface of the paper base material being side A and the other surface being side B, the Cobb water absorbency measured from side A of the paper base material being equal to or lower than the Cobb water absorbency measured from side B, the Cobb water absorbency measured from side A being 10 to 700 g/m2·60 seconds, the Cobb water absorbency measured from side B being 10 to 1000 g/m2·60 seconds, and both the average fiber width of the pulp contained in the paper layer constituting one surface of the paper base material and the average fiber width of the pulp contained in the paper layer constituting the other surface are 28.0 μm or less. [Selected Figure] None
Description
本開示は、加湿成形用の紙基材、並びに該紙基材を用いてなる紙加工品及び紙容器に関する。 This disclosure relates to a paper substrate for moist forming, and a paper product and a paper container made using the paper substrate.
近年、環境への懸念などから、世界的に脱プラスチックへの取り組みが加速している。従来、合成樹脂などプラスチック材料が、トレーやボトルなどの容器、並びに食器、文具及び医療器具などに広く用いられてきたが、プラスチック製品から紙製品への代替が進められている。
紙を使用した容器などには、成形するための折り曲げ易さ、すなわち成形性(柔軟性)が必要である一方、耐落下衝撃性など成形後の強度も求められる。しかしながら、両者は紙の性質としてトレードオフの関係にあり、例えば、基材の厚みを大きくすることで耐落下衝撃性は良化するが、成形性は劣るようになる。そのため、成形性及び耐落下衝撃性が両立できる良好な紙が求められる。
一方、厚みの大きな紙基材の成形方法として、例えば特許文献1では、紙製段ボールを曲げ加工する際の加圧前にライナを加湿する工程を含む成形方法が開示されており、加工における皺や破れの発生が防止されている。
In recent years, efforts to reduce the use of plastic have been accelerating worldwide due to environmental concerns. Traditionally, plastic materials such as synthetic resins have been widely used for containers such as trays and bottles, as well as tableware, stationery, and medical equipment, but the replacement of plastic products with paper products is progressing.
Paper containers and the like require ease of folding for molding, i.e., moldability (flexibility), while strength after molding, such as drop impact resistance, is also required. However, there is a trade-off between the two as paper properties; for example, increasing the thickness of the base material improves drop impact resistance, but reduces moldability. Therefore, there is a demand for good paper that can achieve both moldability and drop impact resistance.
On the other hand, as a method for forming a thick paper base material, for example, Patent Document 1 discloses a forming method that includes a step of humidifying the liner before applying pressure when bending cardboard, thereby preventing the occurrence of wrinkles and tears during processing.
しかしながら、本発明者らの検討によると、上記文献の技術ではトレーやボトルなどの容器といった、加湿成形によってより複雑な加工を行う場合の成形性及び耐落下衝撃性の両立という観点では十分ではない。さらに、トレーやボトルなどの容器は、成形後の輸送や保管の際に高温高湿度環境といった表面が湿潤しやすい環境に晒され、さらに輸送による振動を受ける場合もある。そのような過酷な環境に晒されても表面の美麗性を維持することが可能な紙基材は未だ得られていない。
本開示は、加湿成形による高いレベルでの成形性及び耐落下衝撃性を達成し、さらに高温高湿度環境で湿潤し振動を受けても表面の美麗性を維持できる加湿成形用の紙基材を提供する。
However, according to the study by the present inventors, the technology of the above-mentioned documents is not sufficient in terms of both formability and drop impact resistance when more complicated processing is performed by humidification molding, such as for containers such as trays and bottles. Furthermore, containers such as trays and bottles are exposed to environments that make the surface easily moist, such as high temperature and humidity environments, during transportation and storage after molding, and may also be subjected to vibrations during transportation. A paper base material that can maintain the beauty of the surface even when exposed to such harsh environments has not yet been obtained.
The present disclosure provides a paper substrate for humid forming that achieves high levels of formability and drop impact resistance through humid forming, and further that can maintain the beauty of its surface even when moistened in a high-temperature, high-humidity environment and subjected to vibration.
本開示は、以下の<1>~<8>に関する。
<1> 加湿成形用の紙基材であって、
前記紙基材が、2層以上の紙層を有し、
前記紙基材の厚みが、0.8~1.5mmであり、
前記紙基材の一方の表面をA面とし、他方の表面をB面としたときに、
前記紙基材の前記A面から測定したコッブ吸水度が、前記B面から測定したコッブ吸水度以下であって、
前記A面から測定したコッブ吸水度が、10~700g/m2・60秒であり、
前記B面から測定したコッブ吸水度が、10~1000g/m2・60秒であり、
前記紙基材の、一方の表面を構成する紙層に含まれるパルプの平均繊維幅と、他方の表面を構成する紙層に含まれるパルプの平均繊維幅と、の両方が、28.0μm以下である、
ことを特徴とする加湿成形用の紙基材。
<2> 前記紙基材を含水率10質量%に調整して測定した、坪量当たりの前記紙基材の縦方向の引張強度と、坪量当たりの前記紙基材の横方向の引張強度と、の平均値が、12.0~43.0Nm/gである、<1>に記載の加湿成形用の紙基材。
<3> 前記紙基材が、2層以上の前記紙層を有する多層紙であるか、又は2枚以上の原紙を貼付した合紙であり、
前記2枚以上の前記原紙のそれぞれが、前記紙層を含む、<1>又は<2>に記載の加湿成形用の紙基材。
<4> 前記紙層に含まれるパルプが、広葉樹クラフトパルプと古紙パルプとを含有する、<1>~<3>のいずれかに記載の加湿成形用の紙基材。
<5> 前記B面から測定したコッブ吸水度と、前記A面から測定したコッブ吸水度との差(B面-A面)の値が、20~900g/m2・60秒である、<1>~<4>のいずれかに記載の加湿成形用の紙基材。
<6> <1>~<5>のいずれかのいずれかに記載の加湿成形用の紙基材を用いてなる、紙加工品。
<7> <1>~<5>のいずれかに記載の加湿成形用の紙基材を用いてなる、紙容器。<8> 前記紙容器が、ボトル型形状であり、
前記A面が、前記紙容器の外表面の少なくとも一部を構成する、<7>に記載の紙容器。
The present disclosure relates to the following <1> to <8>.
<1> A paper substrate for moist forming,
The paper base material has two or more paper layers,
The thickness of the paper base material is 0.8 to 1.5 mm;
When one surface of the paper base material is designated as side A and the other surface is designated as side B,
The Cobb water absorbency measured from the A side of the paper base material is equal to or lower than the Cobb water absorbency measured from the B side,
The Cobb water absorbency measured from the A side is 10 to 700 g/ m2 ·60 seconds,
The Cobb water absorbency measured from the side B is 10 to 1000 g/ m2 ·60 seconds,
Both of the average fiber width of the pulp contained in the paper layer constituting one surface of the paper base material and the average fiber width of the pulp contained in the paper layer constituting the other surface of the paper base material are 28.0 μm or less.
A paper substrate for moist forming, comprising:
<2> The paper base material for moist forming according to <1>, wherein the average value of the longitudinal tensile strength of the paper base material per basis weight and the transverse tensile strength of the paper base material per basis weight, measured after adjusting the moisture content of the paper base material to 10% by mass, is 12.0 to 43.0 Nm/g.
<3> The paper base material is a multi-layer paper having two or more paper layers, or an interleaving paper having two or more base papers attached thereto,
The paper base material for moist forming according to <1> or <2>, wherein each of the two or more base papers includes the paper layer.
<4> The paper base material for moist forming according to any one of <1> to <3>, wherein the pulp contained in the paper layer contains hardwood kraft pulp and recycled paper pulp.
<5> The paper base material for moist forming according to any one of <1> to <4>, wherein the difference between the Cobb water absorbency measured from the side B and the Cobb water absorbency measured from the side A (side B-side A) is 20 to 900 g/ m2 ·60 seconds.
<6> A paper product obtained by using the paper base material for moist forming according to any one of <1> to <5>.
<7> A paper container using the paper base material for moist forming according to any one of <1> to <5>. <8> The paper container has a bottle shape,
The paper container according to <7>, wherein the A side constitutes at least a part of the outer surface of the paper container.
本開示によれば、より高いレベルで成形性及び耐落下衝撃性を達成し、さらに高温高湿度環境で湿潤しても表面の美麗性を維持できる加湿成形用紙基材を提供することができる。 This disclosure makes it possible to provide a humidified paper substrate that achieves higher levels of formability and drop impact resistance, and that can maintain the beauty of its surface even when moistened in a high-temperature, high-humidity environment.
本明細書において、数値範囲を表す「X以上Y以下」や「X~Y」の記載は、特に断りのない限り、端点である下限及び上限を含む数値範囲を意味する。数値範囲が段階的に記載されている場合、各数値範囲の上限及び下限は任意に組み合わせることができる。 In this specification, the expressions "X or more and Y or less" or "X to Y" that express a numerical range mean a numerical range including the upper and lower limits that are the endpoints, unless otherwise specified. When a numerical range is described in stages, the upper and lower limits of each numerical range can be combined in any way.
縦方向とは紙基材における抄紙方向(MD)であり、繊維が配向する方向と同じである。また、横方向とは抄紙方向に対して垂直方向(CD)である。 The machine direction is the machine direction (MD) of the paper base material, which is the same as the direction in which the fibers are oriented. The cross direction is the direction perpendicular to the machine direction (CD).
本発明者らは、紙基材を2層以上の紙層を含む紙基材とし、紙基材の厚み、紙基材の両方の表面のコッブ吸水度、及び紙基材の両方の表面を構成するパルプの平均繊維幅のすべてを特定の範囲内に制御することで、加湿成形による高いレベルでの成形性(以下、単に「加湿成形時の成形性」ともいう。)及び耐落下衝撃性を達成でき、さらに高温高湿度環境で湿潤し振動を受けても表面の美麗性(以下、単に「湿潤後の美麗性」ともいう。)を維持できる加湿成形用の紙基材が得られることを見出した。 The inventors have discovered that by making the paper base material a paper base material containing two or more paper layers, and controlling the thickness of the paper base material, the Cobb water absorbency of both surfaces of the paper base material, and the average fiber width of the pulp constituting both surfaces of the paper base material all within specific ranges, it is possible to obtain a paper base material for humid forming that can achieve a high level of formability through humid forming (hereinafter also simply referred to as "formability during humid forming") and drop impact resistance, and that can maintain the beauty of its surface even when it is moistened in a high-temperature, high-humidity environment and subjected to vibration (hereinafter also simply referred to as "beauty after wetting").
紙基材の厚みを特定の範囲にすることで、紙基材の強度が向上することにより耐落下衝撃性を制御し、加湿成形時の成形性を制御しうる。また、紙基材の一方の表面をA面とし、他方の表面をB面としたとき、A面から測定したコッブ吸水度が、B面から測定したコッブ吸水度以下である。そして、A面から測定したコッブ吸水度及びB面から測定したコッブ吸水度を特定の範囲にする。これらのコッブ吸水度の関係により加湿成形時の成形性及び湿潤後の美麗性を達成しうる。さらに、紙基材の両方の表面を構成するパルプのそれぞれの平均繊維幅を特定の範囲にする。これにより、加湿成形時の繊維の膨潤を制御し、湿潤後の美麗性や加湿成形時の成形性を達成しうる。 By setting the thickness of the paper base material within a specific range, the strength of the paper base material is improved, thereby controlling the drop impact resistance and the moldability during moistening. Furthermore, when one surface of the paper base material is side A and the other surface is side B, the Cobb water absorbency measured from side A is equal to or lower than the Cobb water absorbency measured from side B. The Cobb water absorbency measured from side A and the Cobb water absorbency measured from side B are set within a specific range. The relationship between these Cobb water absorbencies makes it possible to achieve moldability during moistening and beauty after wetting. Furthermore, the average fiber width of each of the pulps constituting both surfaces of the paper base material is set within a specific range. This makes it possible to control the swelling of the fibers during moistening and achieve beauty after wetting and moldability during moistening.
そのため、紙基材の厚み、紙基材の両方の表面のコッブ吸水度、及び紙基材の両方の表
面を構成するパルプの平均繊維幅を特定の範囲内に制御することで、加湿成形時の成形性、耐落下衝撃性及び湿潤後の美麗性のすべてに優れる加湿成形用の紙基材を得ることができる、と本発明者らは考えている。
Therefore, the inventors believe that by controlling the thickness of the paper base material, the Cobb water absorbency of both surfaces of the paper base material, and the average fiber width of the pulp that constitutes both surfaces of the paper base material within specific ranges, it is possible to obtain a paper base material for humid molding that is excellent in all respects: formability during humid molding, drop impact resistance, and aesthetics after wetting.
以下、本開示における加湿成形用の紙基材について説明する。
紙基材は2層以上の紙層を有する。具体的には、紙基材は、好ましくは2層以上の紙層を有する多層紙又は2枚以上の原紙を貼付した合紙である。紙基材が合紙の場合は、2枚以上の原紙のそれぞれが紙層を含む。合紙を構成する原紙のそれぞれは、単層紙でも多層紙でもよい。紙基材が2層以上の紙層を有する構成であることで、各層や各原紙の原料配合や坪量、抄造条件などを任意に調整しやすくなる。
紙基材における紙層の数は、2~9層が好ましく、2~4層がより好ましく、2~3層がさらに好ましく、2層がさらにより好ましい。
The paper substrate for moist forming according to the present disclosure will be described below.
The paper base material has two or more paper layers. Specifically, the paper base material is preferably a multilayer paper having two or more paper layers or a slip sheet in which two or more base papers are pasted. When the paper base material is a slip sheet, each of the two or more base papers includes a paper layer. Each of the base papers constituting the slip sheet may be a single-layer paper or a multilayer paper. When the paper base material has two or more paper layers, it becomes easier to arbitrarily adjust the raw material composition, basis weight, and papermaking conditions of each layer and each base paper.
The number of paper layers in the paper base material is preferably 2 to 9 layers, more preferably 2 to 4 layers, even more preferably 2 to 3 layers, and even more preferably 2 layers.
紙基材が2層以上の紙層を有する多層紙である場合は、紙基材は、後述する多層抄きで得られた多層構成の原紙である。多層紙を構成する原紙である紙層の数の上限は、特に限定されないが、通常9層以下である。紙基材は、好ましくは2層の多層紙である。 When the paper base material is a multi-layer paper having two or more paper layers, the paper base material is a base paper having a multi-layer structure obtained by multi-layer papermaking, which will be described later. There is no particular limit to the upper limit of the number of base paper layers that make up the multi-layer paper, but it is usually 9 layers or less. The paper base material is preferably a multi-layer paper having two layers.
紙基材が2枚以上の原紙を貼付した合紙である場合は、合紙は該2枚以上の原紙の間に、さらに接着層を含む。例えば、原紙Aと接着層と原紙Bのみからなる合紙であってもよく、さらに別の原紙Cを、接着層を介して積層させた合紙であってもよい。合紙を構成する原紙の数の上限は、特に限定されないが、通常3枚以下である。紙基材は、好ましくは2枚の原紙を貼付した合紙である。
紙基材が合紙の場合、本開示の効果を損なわない範囲で、合紙に含まれる原紙は、後述する単層抄きで得られた単層紙であってもよく、後述する多層抄きで得られた多層紙であってもよい。2枚以上の原紙には、単層紙及び多層紙を併用してもよい。
When the paper substrate is an interleaving paper in which two or more base papers are pasted together, the interleaving paper further includes an adhesive layer between the two or more base papers. For example, the interleaving paper may be made of only base paper A, an adhesive layer, and base paper B, or may be made by laminating another base paper C via an adhesive layer. The upper limit of the number of base papers constituting the interleaving paper is not particularly limited, but is usually three or less. The paper substrate is preferably an interleaving paper in which two base papers are pasted together.
When the paper base material is an interleaving paper, the base paper contained in the interleaving paper may be a single-layer paper obtained by the single-layer papermaking process described later, or a multi-layer paper obtained by the multi-layer papermaking process described later, within the scope of not impairing the effects of the present disclosure. For two or more base papers, a single-layer paper and a multi-layer paper may be used in combination.
加湿成形用の紙基材の厚みは、0.8~1.5mmである。厚みが0.8mm以上であると耐落下衝撃性が良好になる。一方、厚みが1.5mm以下であると加湿成形時の成形性が良好になる。上記範囲の厚みは、成形用の紙基材としては比較的厚い範囲であり、本開示ではこのような厚みの紙基材において高いレベルでの成形性及び耐落下衝撃性を達成し、さらに表面の美麗性を備えるものである。加湿成形用の紙基材の厚みは、好ましくは0.9~1.5mmであり、より好ましくは1.0~1.4mmである。
なお、紙基材の厚みとは、紙基材が2枚以上の原紙を貼付した合紙である場合、該2枚以上の原紙の間の接着層の厚みも含む紙基材の合計の厚みである。
The thickness of the paper substrate for humid forming is 0.8 to 1.5 mm. If the thickness is 0.8 mm or more, the drop impact resistance is good. On the other hand, if the thickness is 1.5 mm or less, the moldability during humid forming is good. The thickness in the above range is a relatively thick range for a paper substrate for forming, and in the present disclosure, a paper substrate of such a thickness achieves high levels of moldability and drop impact resistance, and further has a beautiful surface. The thickness of the paper substrate for humid forming is preferably 0.9 to 1.5 mm, more preferably 1.0 to 1.4 mm.
In addition, when the paper base material is a laminated paper in which two or more base papers are adhered to each other, the thickness of the paper base material refers to the total thickness of the paper base material including the thickness of the adhesive layer between the two or more base papers.
また、紙基材の一方の表面をA面とし、他方の表面をB面としたときに、紙基材のA面から測定したコッブ吸水度が、B面から測定したコッブ吸水度以下であることが必要である。紙基材のA面から測定したコッブ吸水度が、B面から測定したコッブ吸水度未満であることが好ましい。そして、A面から測定したコッブ吸水度が、10~700g/m2・60秒であり、B面から測定したコッブ吸水度が、10~1000g/m2・60秒である。なお、紙基材のA面から測定したコッブ吸水度と、B面から測定したコッブ吸水度と、が同じ場合はどちらをA面としてもよい。 In addition, when one surface of the paper substrate is designated as side A and the other surface is designated as side B, it is necessary that the Cobb water absorbency measured from side A of the paper substrate is equal to or lower than the Cobb water absorbency measured from side B. It is preferable that the Cobb water absorbency measured from side A of the paper substrate is lower than the Cobb water absorbency measured from side B. The Cobb water absorbency measured from side A is 10 to 700 g/ m2 ·60 seconds, and the Cobb water absorbency measured from side B is 10 to 1000 g/ m2 ·60 seconds. When the Cobb water absorbency measured from side A of the paper substrate and the Cobb water absorbency measured from side B are the same, either side may be designated as side A.
B面は、紙基材の加湿成形において水蒸気を当てる面となり得る。B面から測定したコッブ吸水度が上記範囲であることで、吸湿性が良好になり、加湿成形時の成形性を向上させやすくなる。またA面は、紙基材を用いてなる紙加工品において、外表面の少なくとも一部を構成しうる面である。A面から測定したコッブ吸水度が上記範囲であることで、紙基材を用いてなる紙加工品の外表面の耐水性が向上し、湿潤後の美麗性を向上させやすくなる。また、A面にラベルなどをプリントして外表面として用いる場合、加湿成形においても美麗性を維持できることから、意匠性の向上にも寄与しうる。 Side B can be the surface to which water vapor is applied during humidification molding of the paper base material. When the Cobb water absorbency measured from side B is within the above range, the moisture absorbency is good, making it easier to improve moldability during humidification molding. Side A can also be the surface that can form at least a part of the outer surface of a paper product made using the paper base material. When the Cobb water absorbency measured from side A is within the above range, the water resistance of the outer surface of a paper product made using the paper base material is improved, making it easier to improve the beauty after wetting. In addition, when a label or the like is printed on side A and used as the outer surface, the beauty can be maintained even during humidification molding, which can also contribute to improving the design.
A面から測定したコッブ吸水度が10g/m2・60秒以上であると、加湿成形時の成形性を向上させやすくなる。A面から測定したコッブ吸水度が700g/m2・60秒以下であると、湿潤後の美麗性を向上させやすくなる。A面から測定したコッブ吸水度は、10~500g/m2・60秒であることが好ましく、10~200g/m2・60秒であることがより好ましく、12~50g/m2・60秒であることがさらに好ましい。 If the Cobb water absorbency measured from side A is 10 g/ m2 ·60 seconds or more, the moldability during wet molding is likely to be improved. If the Cobb water absorbency measured from side A is 700 g/ m2 ·60 seconds or less, the aesthetics after wetting are likely to be improved. The Cobb water absorbency measured from side A is preferably 10 to 500 g/ m2 ·60 seconds, more preferably 10 to 200 g/ m2 ·60 seconds, and even more preferably 12 to 50 g/ m2 ·60 seconds.
一方、B面から測定したコッブ吸水度が10g/m2・60秒以上であると、加湿成形時の成形性を向上させやすくなる。B面から測定したコッブ吸水度が1000g/m2・60秒以下であると、加湿成形における過度の膨潤を抑制でき、加湿成形時の成形性を向上させやすくなる。B面から測定したコッブ吸水度は、11~1000g/m2・60秒であることが好ましく、90~900g/m2・60秒であることがより好ましく、300~900g/m2・60秒であることがさらに好ましく、600~800g/m2・60秒であることがさらにより好ましい。 On the other hand, if the Cobb water absorbency measured from side B is 10 g/ m2 ·60 seconds or more, the moldability during humidification molding is easily improved. If the Cobb water absorbency measured from side B is 1000 g/ m2 ·60 seconds or less, excessive swelling during humidification molding can be suppressed, and the moldability during humidification molding is easily improved. The Cobb water absorbency measured from side B is preferably 11 to 1000 g/ m2 ·60 seconds, more preferably 90 to 900 g/ m2 ·60 seconds, even more preferably 300 to 900 g/ m2 ·60 seconds, and even more preferably 600 to 800 g/ m2 ·60 seconds.
B面から測定したコッブ吸水度とA面から測定したコッブ吸水度との差(B面-A面)の値は、20~900g/m2・60秒であることが好ましく、300~800g/m2・60秒であることがより好ましく、500~750g/m2・60秒であることがさらに好ましい。上記範囲であると、加湿成形時の成形性と湿潤後の美麗性をより向上させやすい。 The difference between the Cobb water absorbency measured from side B and the Cobb water absorbency measured from side A (side B-side A) is preferably 20 to 900 g/ m2 ·60 seconds, more preferably 300 to 800 g/ m2 ·60 seconds, and even more preferably 500 to 750 g/ m2 ·60 seconds. Within the above ranges, it is easy to further improve the moldability during humid molding and the aesthetics after wetting.
コッブ吸水度は、サイズ剤の添加量などにより制御することができる。コッブ吸水度を小さくするには、サイズ剤の添加量を増やすなどの方法が挙げられる。また、紙基材のA面から測定したコッブ吸水度を、B面から測定したコッブ吸水度よりも小さくするには、A面側を構成する紙層において、B面側を構成する紙層よりもサイズ剤の添加量を増やす、紙基材のA面側にオーバープリントニス(OPニス)を塗布するなどの方法が挙げられる。 The Cobb absorbency can be controlled by the amount of sizing agent added, etc. In order to reduce the Cobb absorbency, the amount of sizing agent added can be increased. In addition, in order to make the Cobb absorbency measured from side A of the paper substrate smaller than the Cobb absorbency measured from side B, the amount of sizing agent added can be increased in the paper layer constituting the A side compared to the paper layer constituting the B side, or an overprint varnish (OP varnish) can be applied to the A side of the paper substrate.
紙基材の、一方の表面を構成する紙層に含まれるパルプの平均繊維幅と、他方の表面を構成する紙層に含まれるパルプの平均繊維幅と、の両方は、28.0μm以下である。紙基材の少なくとも一方の表面を構成する紙層に含まれるパルプの平均繊維幅が上記上限超えである場合、加湿成形時に繊維が膨潤しやすくなり、湿潤後の美麗性や加湿成形時の成形性が低下する。特に、A面側においては湿潤後の美麗性が低下しやすくなり、B面側においては加湿成形時の成形性が低下しやすくなる。
上記パルプの平均繊維幅の測定においては、一方の表面を構成する紙層及び他方の表面を構成する紙層を分離して測定する。具体的な手段は後述する。
The average fiber width of the pulp contained in the paper layer constituting one surface of the paper base material and the average fiber width of the pulp contained in the paper layer constituting the other surface are both 28.0 μm or less. If the average fiber width of the pulp contained in the paper layer constituting at least one surface of the paper base material exceeds the above upper limit, the fibers tend to swell during moistening and molding, and the beauty after moistening and the moldability during moistening and molding are reduced. In particular, the beauty after moistening is likely to decrease on the A-side, and the moldability during moistening and molding is likely to decrease on the B-side.
In measuring the average fiber width of the pulp, the paper layer constituting one surface and the paper layer constituting the other surface are separated and measured. The specific method will be described later.
上記パルプの平均繊維幅は、上記一方の表面と他方の表面の両方とも27.0μm以下であることが好ましく、両方とも26.0μm以下であることがより好ましく、両方とも21.0μm以下であることがさらに好ましい。下限は特に制限されないが、好ましくは12.0μm以上であり、より好ましくは15.0μm以上である。
例えば、パルプの平均繊維幅は、上記一方の表面と他方の表面の両方とも12.0μm~27.0μmであることが好ましく、両方とも12.0μm~26.0μmであることがより好ましく、両方とも15.0μm~21.0μmであることがさらに好ましい。
また、紙基材を構成するパルプの平均繊維幅が上記範囲であることも好ましい態様である。
パルプの平均繊維幅は、紙基材を構成するパルプのうち、針葉樹クラフトパルプの質量比率などにより制御することができる。パルプの平均繊維幅を小さくするには、紙基材を構成する針葉樹クラフトパルプの質量比率を減らすなどの方法が挙げられる。
The average fiber width of the pulp on both the one surface and the other surface is preferably 27.0 μm or less, more preferably 26.0 μm or less, and even more preferably 21.0 μm or less. There is no particular lower limit, but it is preferably 12.0 μm or more, and more preferably 15.0 μm or more.
For example, the average fiber width of the pulp on both the one surface and the other surface is preferably 12.0 μm to 27.0 μm, more preferably 12.0 μm to 26.0 μm on both, and even more preferably 15.0 μm to 21.0 μm on both.
It is also a preferred embodiment that the average fiber width of the pulp constituting the paper base material is within the above range.
The average fiber width of the pulp can be controlled by the mass ratio of softwood kraft pulp among the pulps constituting the paper base material. In order to reduce the average fiber width of the pulp, a method such as reducing the mass ratio of softwood kraft pulp constituting the paper base material can be used.
紙基材の、一方の表面を構成する紙層に含まれるパルプの長さ加重平均繊維長と、他方の表面を構成する紙層に含まれるパルプの長さ加重平均繊維長と、の両方は、0.5~2.5mmであることが好ましく、0.6~2.4mmであることがより好ましく、0.6~1.2mmであることがさらに好ましい。
また、紙基材を構成するパルプの長さ加重平均繊維長が上記範囲であることも好ましい態様である。
The length-weighted average fiber length of the pulp contained in the paper layer constituting one surface of the paper base material and the length-weighted average fiber length of the pulp contained in the paper layer constituting the other surface are both preferably 0.5 to 2.5 mm, more preferably 0.6 to 2.4 mm, and even more preferably 0.6 to 1.2 mm.
It is also a preferred embodiment that the length-weighted average fiber length of the pulp constituting the paper base material is within the above range.
紙基材の、一方の表面を構成する紙層に含まれるパルプの長さ加重平均繊維長と、他方の表面を構成する紙層に含まれるパルプの長さ加重平均繊維長と、の両方が上記上限以下であることで、加湿成形時に繊維がより膨潤しにくくなるため、前述したA面側においては湿潤後の美麗性をより向上させることができ、前述したB面側においては加湿成形時の成形性をより向上させやすくなる。
パルプの長さ加重平均繊維長は、紙基材を構成するパルプのうち、針葉樹クラフトパルプの質量比率などにより制御することができる。パルプの長さ加重平均繊維長を小さくするには、紙基材を構成する針葉樹クラフトパルプの質量比率を減らすなどの方法が挙げられる。
When both the length-weighted average fiber length of the pulp contained in the paper layer constituting one surface of the paper base material and the length-weighted average fiber length of the pulp contained in the paper layer constituting the other surface are below the above-mentioned upper limit, the fibers are less likely to swell during moist molding, which makes it possible to further improve the aesthetics after moistening on the aforementioned side A, and makes it easier to further improve the formability during moist molding on the aforementioned side B.
The length-weighted average fiber length of the pulp can be controlled by the mass ratio of softwood kraft pulp among the pulps constituting the paper base material. In order to reduce the length-weighted average fiber length of the pulp, a method such as reducing the mass ratio of softwood kraft pulp constituting the paper base material can be used.
坪量当たりの紙基材の引張強度を、以下、比引張強度ともいう。紙基材を含水率10質量%に調整して、JIS P 8111:1998に規定された調湿環境下にて測定した、坪量当たりの紙基材の縦方向の引張強度と、坪量当たりの紙基材の横方向の引張強度と、の平均値(以下、単に「加湿時の比引張強度」ともいう。)は、12.0~43.0Nm/gであることが好ましい。紙基材の加湿時の比引張強度は、14.0~38.0Nm/gであることがより好ましく、16.0~35.0Nm/gであることがさらに好ましく、20.0~30.0Nm/gであることがさらにより好ましい。加湿時の比引張強度を上記範囲とすることで、加湿成形時の成形性をより向上させることができる。 The tensile strength of the paper base material per basis weight is hereinafter also referred to as the specific tensile strength. The average value of the longitudinal tensile strength of the paper base material per basis weight and the transverse tensile strength of the paper base material per basis weight (hereinafter also simply referred to as the "specific tensile strength when humidified") measured under a humidity controlled environment specified in JIS P 8111:1998 with the paper base material adjusted to a moisture content of 10% by mass is preferably 12.0 to 43.0 Nm/g. The specific tensile strength of the paper base material when humidified is more preferably 14.0 to 38.0 Nm/g, even more preferably 16.0 to 35.0 Nm/g, and even more preferably 20.0 to 30.0 Nm/g. By setting the specific tensile strength when humidified within the above range, the moldability during humidification molding can be further improved.
上記縦方向の比引張強度は、15.0~50.0Nm/gであることが好ましく、17.0~40.0Nm/gであることがより好ましく、27.0~35.0Nm/gであることがさらに好ましい。上記横方向の比引張強度は、9.5~32.0Nm/gであることが好ましく、13.0~27.0Nm/gであることがより好ましく、16.0~24.0Nm/gであることがさらに好ましい。また、紙基材の加湿時の縦方向の比引張強度と、横方向の比引張強度と、の両方が上記範囲を満たすことが好ましい。加湿時の縦方向の比引張強度と、横方向の比引張強度と、を上記範囲にすることで、加湿成形時の成形性をより向上させることができる。
加湿時の比引張強度は、紙力増強剤の添加量などにより制御することができる。加湿時の比引張強度を大きくするには、紙力増強剤の添加量を増やすなどの方法が挙げられる。
The longitudinal tensile specific strength is preferably 15.0 to 50.0 Nm/g, more preferably 17.0 to 40.0 Nm/g, and even more preferably 27.0 to 35.0 Nm/g. The transverse tensile specific strength is preferably 9.5 to 32.0 Nm/g, more preferably 13.0 to 27.0 Nm/g, and even more preferably 16.0 to 24.0 Nm/g. It is also preferable that both the longitudinal tensile specific strength and the transverse tensile specific strength of the paper base material when moistened satisfy the above range. By setting the longitudinal tensile specific strength and the transverse tensile specific strength when moistened within the above range, the moldability during moistening molding can be further improved.
The tensile strength index when humidified can be controlled by the amount of paper strength enhancer added, etc. To increase the tensile strength index when humidified, a method such as increasing the amount of paper strength enhancer added can be used.
紙基材の繊維配向比は、1.40~2.50であることが好ましい。繊維配向比は、パルプスラリーが抄紙機のワイヤー上に流出され、脱水され、紙層が形成される過程で流れ方向(縦方向)に並ぶ傾向を示す。すなわち、繊維配向比は繊維の配向度を示し、1以上の数値となる。繊維配向比が低ければ繊維がランダム配向していることを示し、繊維配向比が高ければ繊維が縦方向に配向していることを示す。
繊維配向比が上記下限以上であることで、紙基材の横方向の剛度を適度に抑えることができ、成形時に横方向に丸まりやすくなり、割れや変形を抑制できるため、加湿成形時の成形性をより向上させやすくなる。繊維配向比が上記上限以下であることで、紙基材の縦方向の剛度を適度に抑えることができ、縦方向のシワを抑制できるため、湿潤後の美麗性を向上させることができる。
The fiber orientation ratio of the paper base material is preferably 1.40 to 2.50. The fiber orientation ratio indicates the tendency of the fibers to align in the flow direction (longitudinal direction) during the process in which the pulp slurry is discharged onto the wire of a papermaking machine, dehydrated, and the paper layer is formed. In other words, the fiber orientation ratio indicates the degree of fiber orientation, and is a value of 1 or more. A low fiber orientation ratio indicates that the fibers are randomly oriented, and a high fiber orientation ratio indicates that the fibers are oriented in the longitudinal direction.
By having a fiber orientation ratio equal to or greater than the lower limit, the stiffness in the lateral direction of the paper base material can be appropriately controlled, and the paper base material is more likely to curl in the lateral direction during molding, and cracks and deformations can be suppressed, which makes it easier to improve the moldability during humid molding. By having a fiber orientation ratio equal to or less than the upper limit, the stiffness in the longitudinal direction of the paper base material can be appropriately controlled, and wrinkles in the longitudinal direction can be suppressed, which improves the aesthetics after wetting.
紙基材の繊維配向比は、1.45~2.30であることがより好ましく、1.50~2.10であることがさらに好ましい。
繊維配向比は、紙層又は原紙の抄紙における、パルプを含有する紙料の吐出速度と、抄紙機のワイヤー速度との比率の調整などにより制御することができる。該比率は、J/W比(ジェット/ワイヤー比)ともいう。繊維配向比を大きくするには、J/W比を大きくするなどの方法が挙げられる。
The fiber orientation ratio of the paper base material is more preferably 1.45 to 2.30, and even more preferably 1.50 to 2.10.
The fiber orientation ratio can be controlled by adjusting the ratio between the discharge speed of the pulp-containing paper material and the wire speed of the papermaking machine in the paper layer or base paper making process. This ratio is also called the J/W ratio (jet/wire ratio). To increase the fiber orientation ratio, a method such as increasing the J/W ratio can be used.
紙基材の坪量は、500~1400g/m2であることが好ましく、600~1300g/m2であることがより好ましく、700~1220g/m2であることがさらに好ましい。なお、紙基材の坪量とは、紙基材が2枚以上の原紙を貼付した合紙である場合、該2枚以上の原紙の間の接着層の重量も含む紙基材の合計の坪量である。
紙基材の全体の坪量が上記範囲であることで、紙基材の厚みを調整しやすくなり、耐落下衝撃性及び加湿成形時の成形性をより向上させやすくなる。
The basis weight of the paper base material is preferably 500 to 1400 g/m 2 , more preferably 600 to 1300 g/m 2 , and even more preferably 700 to 1220 g/m 2. When the paper base material is an interleaving paper in which two or more base papers are attached, the basis weight of the paper base material refers to the total basis weight of the paper base material, including the weight of the adhesive layer between the two or more base papers.
By having the entire basis weight of the paper base material within the above range, it becomes easier to adjust the thickness of the paper base material, and it becomes easier to further improve drop impact resistance and moldability during humid molding.
A面を構成する側の紙層の坪量(A面側の坪量)は、250~700g/m2であることが好ましく、300~650g/m2であることがより好ましく、350~600g/m2であることがさらに好ましい。上記範囲であることで所望のコッブ吸水度を満足しやすく、湿潤後の美麗性をより向上させることができる。 The basis weight of the paper layer constituting the A side (basis weight of the A side) is preferably 250 to 700 g/m 2 , more preferably 300 to 650 g/m 2 , and even more preferably 350 to 600 g/m 2. By being in the above range, it is easy to satisfy the desired Cobb water absorbency, and the aesthetics after wetting can be further improved.
B面を構成する側の紙層の坪量(B面側の坪量)は、250~700g/m2であることが好ましく、300~650g/m2であることがより好ましく、350~600g/m2であることがさらに好ましい。上記範囲であることで紙基材を良好に膨潤させやすく、加湿成形時の成形性をより向上させることができる。 The basis weight of the paper layer constituting the B side (basis weight of the B side) is preferably 250 to 700 g/m 2 , more preferably 300 to 650 g/m 2 , and even more preferably 350 to 600 g/m 2. By being in the above range, the paper base material is easily swollen and the formability during moist forming can be further improved.
A面を構成する側の紙層の坪量の、B面を構成する側の紙層の坪量に対する比の値(A面/B面)は、0.5~2.0であることが好ましく、0.8~1.2であることがより好ましく、0.9~1.1であることがさらに好ましい。上記範囲であることで、加湿成形時の成形性、耐落下衝撃性及び湿潤後の美麗性をより達成しやすい。 The ratio of the basis weight of the paper layer on the side constituting side A to the basis weight of the paper layer on the side constituting side B (side A/side B) is preferably 0.5 to 2.0, more preferably 0.8 to 1.2, and even more preferably 0.9 to 1.1. By being in the above range, it is easier to achieve moldability during humid molding, drop impact resistance, and aesthetics after wetting.
紙層は、一般的に用いられている紙であれば特に限定されず、植物由来のパルプを主成分として含む紙であることが好ましく、木材パルプを主成分とする紙であることがより好ましい。また、紙層に含まれる原料パルプは、木材パルプが好ましく、クラフトパルプが好ましい。クラフトパルプは、原料の違いから、広葉樹クラフトパルプ(LKP)及び針葉樹クラフトパルプ(NKP)が挙げられる。また、処理状態の違いから、晒クラフトパルプ(BKP)、未晒クラフトパルプ(UKP)及び酸素漂白クラフトパルプ(OKP)が挙げられ、印刷適正の観点から、晒クラフトパルプ(BKP)が好ましい。また、古紙パルプを用いてもよい。 The paper layer is not particularly limited as long as it is a commonly used paper, and is preferably a paper containing plant-derived pulp as a main component, and more preferably a paper containing wood pulp as a main component. The raw pulp contained in the paper layer is preferably wood pulp, and more preferably kraft pulp. Kraft pulp, which differs in raw material, includes hardwood kraft pulp (LKP) and softwood kraft pulp (NKP). In addition, which differs in processing state, includes bleached kraft pulp (BKP), unbleached kraft pulp (UKP), and oxygen bleached kraft pulp (OKP), and from the viewpoint of printability, bleached kraft pulp (BKP) is preferred. Waste paper pulp may also be used.
これらの中でも、原料パルプとしては、広葉樹クラフトパルプ(LKP)、針葉樹クラフトパルプ(NKP)、古紙パルプからなる群から選択される少なくとも一が好ましい。広葉樹クラフトパルプ(LKP)と古紙パルプとを併用すること、又は、針葉樹クラフトパルプ(NKP)と広葉樹クラフトパルプ(LKP)とを併用することがより好ましい。紙層に含まれるパルプは、広葉樹クラフトパルプ(LKP)と古紙パルプとを含有することがさらに好ましい。 Among these, the raw material pulp is preferably at least one selected from the group consisting of hardwood kraft pulp (LKP), softwood kraft pulp (NKP), and recycled paper pulp. It is more preferable to use hardwood kraft pulp (LKP) and recycled paper pulp in combination, or to use softwood kraft pulp (NKP) and hardwood kraft pulp (LKP) in combination. It is even more preferable that the pulp contained in the paper layer contains hardwood kraft pulp (LKP) and recycled paper pulp.
広葉樹クラフトパルプ(LKP)と古紙パルプとを併用した場合の質量比(LKP/古紙パルプ)は、一般的な紙に用いられる比率であれば特に限定されないが、10/90~90/10が好ましく、20/80~80/20がより好ましく、30/70~70/30がさらに好ましく、40/60~60/40がよりさらに好ましい。
針葉樹クラフトパルプ(NKP)と広葉樹クラフトパルプ(LKP)とを併用した場合の質量比(NKP/LKP)は、一般的な紙に用いられる比率であれば特に限定されないが、20/80~80/20が好ましく、40/60~80/20がより好ましく、50
/50~70/30がさらに好ましい。
When hardwood kraft pulp (LKP) and recycled paper pulp are used in combination, the mass ratio (LKP/recycled paper pulp) is not particularly limited as long as it is a ratio used in general paper, but is preferably 10/90 to 90/10, more preferably 20/80 to 80/20, even more preferably 30/70 to 70/30, and even more preferably 40/60 to 60/40.
The mass ratio (NKP/LKP) of softwood kraft pulp (NKP) and hardwood kraft pulp (LKP) used in combination is not particularly limited as long as it is a ratio used in general paper, but is preferably 20/80 to 80/20, more preferably 40/60 to 80/20, and more preferably 50/60 to 80/20.
/50 to 70/30 is even more preferable.
また、広葉樹クラフトパルプ(LKP)としては、広葉樹晒クラフトパルプ(LBKP)が好ましく、針葉樹クラフトパルプ(NKP)としては、針葉樹晒クラフトパルプ(NBKP)が好ましい。 As hardwood kraft pulp (LKP), hardwood bleached kraft pulp (LBKP) is preferred, and as softwood kraft pulp (NKP), softwood bleached kraft pulp (NBKP) is preferred.
広葉樹クラフトパルプ(LKP)には、例えば、ユーカリ、タンオーク、アカシアなど公知の広葉樹の木材チップを使用することができる。また、針葉樹クラフトパルプ(NKP)には、例えば、カラマツ、エゾマツ、スギ、スラッシュパイン、ロッジポールパインなど公知の針葉樹の木材チップを使用することができる。 For hardwood kraft pulp (LKP), wood chips of well-known hardwoods such as eucalyptus, tanoak, and acacia can be used. For softwood kraft pulp (NKP), wood chips of well-known softwoods such as larch, spruce, cedar, slash pine, and lodgepole pine can be used.
パルプのカナディアンスタンダードフリーネス(CSF)は、特に制限されないが、好ましくは350~700mlであり、より好ましくは400~500mlである。
なお、CSFは、JIS-P8220に準拠して標準離解機にて試料を離解処理した後、JIS-P8121に準拠してカナダ標準濾水度試験機にて測定した濾水度の値である。
The Canadian Standard Freeness (CSF) of the pulp is not particularly limited, but is preferably 350 to 700 ml, and more preferably 400 to 500 ml.
The CSF is a value of freeness measured by a Canadian standard freeness tester in accordance with JIS-P8121 after disintegrating a sample with a standard disintegrator in accordance with JIS-P8220.
紙層又は原紙の調製の際に、内添剤を添加してもよい。内添剤としては、サイズ剤、填料、紙力増強剤、歩留り向上剤、pH調整剤、濾水性向上剤、耐水化剤、柔軟剤、帯電防止剤、消泡剤、スライムコントロール剤、染料・顔料等が挙げられる。 Internal additives may be added when preparing the paper layer or base paper. Examples of internal additives include sizing agents, fillers, paper strength agents, retention improvers, pH adjusters, drainage improvers, water resistance agents, softeners, antistatic agents, defoamers, slime control agents, dyes and pigments, etc.
紙基材のコッブ吸水度を制御しやすくする観点から、紙基材はサイズ剤を含有することが好ましい。サイズ剤は特に制限されず公知のものを用いることができる。サイズ剤は、例えば、ロジン系サイズ剤、アルキルケテンダイマー、アルケニル無水コハク酸、スチレン-(メタ)アクリレート共重合体などのスチレン含有ポリマー合挙げられる。サイズ剤は、好ましくはロジン系サイズ剤である。
ロジン系サイズ剤の含有量は、所望のコッブ吸水度が得られる程度であればよい。例えば、パルプ100質量部に対し、0.05~2.00質量部が好ましい。なお、紙層中のサイズ剤の含有量は、熱分解GC/MSを用いた質量分析で測定することができる。
From the viewpoint of easily controlling the Cobb water absorbency of the paper base material, it is preferable that the paper base material contains a sizing agent. There is no particular limitation on the sizing agent, and any known sizing agent can be used. Examples of the sizing agent include rosin-based sizing agents, alkyl ketene dimers, alkenyl succinic anhydrides, and styrene-containing polymers such as styrene-(meth)acrylate copolymers. The sizing agent is preferably a rosin-based sizing agent.
The content of the rosin-based sizing agent may be such that the desired Cobb water absorbency can be obtained. For example, the content is preferably 0.05 to 2.00 parts by mass per 100 parts by mass of pulp. The content of the sizing agent in the paper layer can be measured by mass spectrometry using pyrolysis GC/MS.
紙基材の加湿時の比引張強度を制御しやすくする観点から、紙層は紙力増強剤を含有することが好ましい。
紙力増強剤としては、乾燥紙力増強剤及び湿潤紙力増強剤があり、乾燥紙力増強剤としてはカチオン化澱粉、ポリアクリルアミド、カルボキシメチルセルロースなどが挙げられ、湿潤紙力増強剤としてはポリアミドポリアミンエピクロロヒドリン、尿素ホルムアルデヒド樹脂、メラミンホルムアルデヒド樹脂などが挙げられる。紙基材は、乾燥紙力増強剤を含有することが好ましく、ポリアクリルアミド系乾燥紙力増強剤がより好ましい。
From the viewpoint of making it easier to control the tensile strength index of the paper base material when moistened, it is preferable that the paper layer contains a paper strength agent.
Paper strength enhancers include dry strength enhancers and wet strength enhancers, and examples of the dry strength enhancers include cationic starch, polyacrylamide, carboxymethyl cellulose, etc., and examples of the wet strength enhancers include polyamide polyamine epichlorohydrin, urea formaldehyde resin, melamine formaldehyde resin, etc. The paper base material preferably contains a dry strength enhancer, and a polyacrylamide-based dry strength enhancer is more preferred.
紙力増強剤の含有量は、前述したA面側を構成する紙層においては、0.01~0.8質量%であることが好ましい。前述したB面側を構成する紙層においては、0.001~0.3質量%であることが好ましい。なお、紙層中の紙力剤の含有量は、熱分解GC/MSを用いた質量分析で測定することができる。 The content of the paper strength agent in the paper layer constituting the aforementioned A-side is preferably 0.01 to 0.8 mass %. In the paper layer constituting the aforementioned B-side, the content is preferably 0.001 to 0.3 mass %. The content of the paper strength agent in the paper layer can be measured by mass spectrometry using pyrolysis GC/MS.
紙層又は原紙の調製においては、パルプスラリー100部(固形分換算)に対し、紙力増強剤を0.09~0.42部(固形分換算)添加することが好ましく、0.11~0.37部(固形分換算)添加することがより好ましく、0.13~0.33部(固形分換算)添加することがさらに好ましい。上記範囲であることで、紙基材の加湿時の比引張強度が制御しやすくなる。 When preparing the paper layer or base paper, it is preferable to add 0.09 to 0.42 parts (solids equivalent) of paper strength agent to 100 parts (solids equivalent) of pulp slurry, more preferably 0.11 to 0.37 parts (solids equivalent), and even more preferably 0.13 to 0.33 parts (solids equivalent). The above ranges make it easier to control the specific tensile strength of the paper base material when moistened.
紙層又は原紙の抄紙においては、公知の湿式抄紙機を適宜選択して使用することができ
る。抄紙機としては、長網抄紙機、ギャップフォーマー型抄紙機、円網式抄紙機、短網式抄紙機等が挙げられる。
In making the paper layer or base paper, a known wet paper machine can be appropriately selected and used, such as a Fourdrinier paper machine, a gap former type paper machine, a cylinder type paper machine, and a short wire type paper machine.
紙層又は原紙の抄紙においては、例えば、紙料をワイヤー等に流延させ、脱水して湿紙を得て、必要に応じて複数の湿紙を重ね、この単層又は多層の湿紙をプレスし、乾燥させる方法が挙げられる。このとき、複数の湿紙を重ねない場合は単層抄きの原紙が得られ、複数の湿紙を重ねる場合は多層抄きの原紙が得られる。多層抄きの原紙を得る場合は、抄紙工程中、層間接着を強化する澱粉、ポリアクリルアミドなどを層間に塗布し、抄き合わせてもよい。 In making paper layers or base paper, for example, the paper stock is cast onto a wire or the like, dehydrated to obtain a wet paper, and multiple wet papers are stacked as necessary, and this single-layer or multi-layer wet paper is pressed and dried. In this case, if multiple wet papers are not stacked, a single-layer base paper is obtained, and if multiple wet papers are stacked, a multi-layer base paper is obtained. When obtaining a multi-layer base paper, starch or polyacrylamide, which strengthens the interlayer adhesion, may be applied between the layers during the papermaking process, and the layers may be stacked together.
澱粉を塗布する場合、澱粉の量(例えば、乾燥後の塗工量)としては、0.1~5.0g/m2であることが好ましく、0.5~2.0g/m2であることがより好ましい。
抄紙機によって形成された紙層又は原紙は、たとえば、フェルトにて搬送し、ドライヤーで乾燥させることが好ましい。ドライヤー乾燥前にプレドライヤーとして、多段式シリンダードライヤーを使用してもよい。
When starch is applied, the amount of starch (for example, the amount of starch applied after drying) is preferably 0.1 to 5.0 g/ m2 , and more preferably 0.5 to 2.0 g/ m2 .
The paper layer or base paper formed by the papermaking machine is preferably transported on a felt and dried in a dryer. A multi-stage cylinder dryer may be used as a pre-dryer before drying in the dryer.
また、上記のようにして得られた紙層又は原紙に、カレンダーによる表面処理を施して厚さやプロファイルの均一化を図ってもよい。カレンダー処理としては公知のカレンダー処理機を適宜選択して使用することができる。 The paper layer or base paper obtained as described above may be surface-treated with a calendar to make the thickness and profile uniform. A known calendaring machine can be appropriately selected and used for the calendaring.
紙層又は原紙の王研式平滑度(JIS P 8155:2010)は特に制限されないが、5秒以上であることが好ましく、10~1000秒がより好ましい。また、紙層又は原紙の75°光沢度も特に制限されないが、5%以上であることが好ましく、10~70%がより好ましい。 The Oken smoothness (JIS P 8155:2010) of the paper layer or base paper is not particularly limited, but is preferably 5 seconds or more, and more preferably 10 to 1000 seconds. In addition, the 75° gloss of the paper layer or base paper is not particularly limited, but is preferably 5% or more, and more preferably 10 to 70%.
紙基材が2枚以上の原紙を貼付した合紙である場合は、さらに該2枚以上の原紙の間の接着層を含む。すなわち、紙基材が合紙である場合は、原紙と原紙とは、接着層を介して積層される。接着層は、接着性を有する材料からなる層であればよい。接着層は、ドライラミネートとウェットラミネートに適する樹脂系の接着剤であることが好ましい。ウェットラミネートに適した接着剤がより好ましい。 When the paper substrate is a laminate of two or more base papers, it further includes an adhesive layer between the two or more base papers. In other words, when the paper substrate is a laminate, the base papers are laminated via an adhesive layer. The adhesive layer may be any layer made of a material having adhesive properties. The adhesive layer is preferably a resin-based adhesive suitable for dry lamination and wet lamination. An adhesive suitable for wet lamination is more preferable.
接着層として、接着剤を用いて原紙と原紙とを積層してもよい。接着剤として特に限定されないが、水系、溶剤系、UV系などの種類を用いることができ、その中でも、水系接着剤が好ましい。すなわち、接着層は水系接着剤により形成された水系接着剤層であることが好ましい。また、水系接着剤の中でもアクリル系接着剤、ポリウレタン系接着剤、エポキシ系接着剤及びイソシアネート系接着剤からなる群より選ばれる少なくとも1つであることが好ましく、接着力の制御がしやすい点と耐熱性の観点からアクリル系接着剤がより好ましい。 The adhesive layer may be formed by laminating the base paper and the base paper using an adhesive. There are no particular limitations on the adhesive, but water-based, solvent-based, UV-based, and other types of adhesives can be used, and among these, water-based adhesives are preferred. In other words, the adhesive layer is preferably a water-based adhesive layer formed from a water-based adhesive. Furthermore, among the water-based adhesives, it is preferable to use at least one selected from the group consisting of acrylic adhesives, polyurethane adhesives, epoxy adhesives, and isocyanate adhesives, and acrylic adhesives are more preferred from the viewpoints of ease of control of adhesive strength and heat resistance.
接着剤を用いる場合の、接着層の単位面積当たりの量(例えば、乾燥後の塗工量)としては、1~50g/m2であることが好ましく、より好ましくは3~10g/m2である。固形分がこの量となるように原紙上に塗工することが好ましい。 When an adhesive is used, the amount of the adhesive layer per unit area (e.g., the amount of coating after drying) is preferably 1 to 50 g/m 2 , and more preferably 3 to 10 g/m 2. It is preferable to coat the base paper so that the solid content is within this amount.
塗工には、接着剤を含有する塗工液を用いることが好ましく、接着剤を含有する塗工液に硬化剤を混合した混合塗工液を用いることがより好ましい。例えば、接着層は、水系接着剤の硬化物であることが好ましい。 For coating, it is preferable to use a coating liquid containing an adhesive, and it is more preferable to use a mixed coating liquid in which a curing agent is mixed with a coating liquid containing an adhesive. For example, the adhesive layer is preferably a cured product of a water-based adhesive.
接着層は、熱可塑性樹脂を含む層であってもよい。熱可塑性樹脂を用いることで、原紙上に加熱溶融した樹脂をコーティングし、もう一方の原紙を貼合することにより、容易に積層体である合紙を得ることができる。
熱可塑性樹脂層に使用される熱可塑性樹脂としては特に限定されず、公知の熱可塑性樹脂の中から、適宜選択すればよい。
The adhesive layer may be a layer containing a thermoplastic resin. By using a thermoplastic resin, it is possible to easily obtain an interleaving paper as a laminate by coating the base paper with the resin that has been heated and melted, and then laminating another base paper.
The thermoplastic resin used in the thermoplastic resin layer is not particularly limited, and may be appropriately selected from known thermoplastic resins.
合紙を製造する方法は特に限定されず、公知の方法を採用することができる。以下の製造方法の一例を示す。
まず、A面を形成しうる紙層Aを含む原紙Aと、B面を形成しうる紙層Bを含む原紙Bと、を調製し、原紙Aの片面に上記接着層となる接着剤を塗工し、このコーティング面に原紙Bをウェットラミネートして貼合させ、合紙を得ることができる。
The method for producing the interleaf paper is not particularly limited, and any known method can be used. An example of the production method is shown below.
First, base paper A including paper layer A capable of forming side A and base paper B including paper layer B capable of forming side B are prepared, and an adhesive that will become the adhesive layer is coated on one side of base paper A, and base paper B is wet laminated to this coated surface to obtain an interleaving paper.
合紙は、前述の通り、2枚以上の原紙を含むもの(たとえば、原紙Aと原紙B)であるが、3枚以上の原紙を含むものでもよい。合紙が3枚以上の原紙を含む場合、それらの原紙同士を接着する接着層は、それぞれ異なってもよいし、同じであってもよい。 As mentioned above, the interleaving paper contains two or more base papers (for example, base paper A and base paper B), but it may contain three or more base papers. When the interleaving paper contains three or more base papers, the adhesive layers that bond the base papers together may be different or the same.
得られた紙基材を、収容物品の大きさや形状、輸送、展示への適合性を考慮し、適当な寸法に裁断してもよい。裁断は、同一形状の合紙を効率的に得る観点から、打ち抜き加工によることが好ましい。
打ち抜き加工は、高速自動打抜機、平盤打抜機、輪転打抜機を用いて行うことが好ましく、高速自動打抜機によることがより好ましい。高速自動打抜機、平盤打抜機によれば、四角形、角丸四角形、楕円形等の形状の紙基材を容易に効率的に得ることができる。
The obtained paper base material may be cut to an appropriate size taking into consideration the size and shape of the stored items, and suitability for transportation and display. Cutting is preferably performed by punching in order to efficiently obtain interleaf sheets of the same shape.
The punching process is preferably carried out using a high-speed automatic punching machine, a flat-bed punching machine, or a rotary punching machine, and more preferably a high-speed automatic punching machine. The high-speed automatic punching machine and the flat-bed punching machine can easily and efficiently obtain paper base materials in shapes such as a rectangle, a rounded rectangle, an ellipse, etc.
紙基材の用途は、加湿成形用であれば特に制限されず、加湿成形し、適宜さらなる加工をすることで、紙加工品として用いられてもよい。紙加工品としては、例えば、紙ボトル、紙カップ、紙トレー等の紙容器、紙ハンガー、紙ハンガーフック等の衣類掛け用具、紙皿、紙スプーン、紙フォーク、紙ナイフ、紙マドラー、紙ストロー等の紙食器が挙げられる。
紙基材は、紙容器として用いられることが好ましく、ボトル型形状である紙容器として用いられることがより好ましい。また、前述したA面が、該紙容器の外表面の少なくとも一部を構成することが好ましい。
The use of the paper substrate is not particularly limited as long as it is for humidification molding, and it may be used as a paper processed product by humidification molding and further processing as appropriate. Examples of the paper processed products include paper containers such as paper bottles, paper cups, and paper trays, clothing hanging tools such as paper hangers and paper hanger hooks, and paper tableware such as paper plates, paper spoons, paper forks, paper knives, paper stirrers, and paper straws.
The paper substrate is preferably used as a paper container, more preferably as a bottle-shaped paper container. Furthermore, it is preferable that the above-mentioned side A constitutes at least a part of the outer surface of the paper container.
加湿成形は、加湿して成形する公知の方法を含み、例えば、紙基材を加湿してから、プレス成形、折り曲げ成形する方法などにより、所望の形状に加工しうる。
紙基材を加湿する方法としては、特に限定されないが、紙基材の一方の表面に水蒸気を吹き付ける方法などが挙げられる。紙基材のB面に水蒸気を吹き付けることが加工性の観点から好ましい。
水蒸気を吹き付けたときの紙基材の含水率は、5~30質量%であることが好ましく、5~25質量%であることがより好ましく、8~15質量%であることがさらに好ましい。
Moisture forming includes known methods of humidifying and forming, for example, a paper substrate is moistened and then processed into a desired shape by press forming, folding forming, or the like.
The method for humidifying the paper base material is not particularly limited, but includes a method of blowing water vapor onto one surface of the paper base material, etc. From the viewpoint of processability, it is preferable to blow water vapor onto the B side of the paper base material.
The moisture content of the paper base material when the water vapor is sprayed is preferably 5 to 30% by mass, more preferably 5 to 25% by mass, and even more preferably 8 to 15% by mass.
以下、各物性の測定方法について記載する。
<紙基材の厚み>
紙基材の厚み(紙厚)は、JIS P 8118:2014に準拠して、JIS P 8111:1998に規定された調湿環境下にて調湿後に測定する。測定装置には、紙厚計(社名:株式会社東洋精機製作所、型番:No.132 デジタル測厚機)を用いることができる。サンプルを10点測定し、算術平均値を採用する。
The measurement methods for each physical property are described below.
<Thickness of paper base material>
The thickness of the paper base material (paper thickness) is measured in accordance with JIS P 8118:2014 after humidity control in a humidity control environment specified in JIS P 8111:1998. A paper thickness meter (company name: Toyo Seiki Seisakusho Co., Ltd., model number: No. 132 digital thickness meter) can be used as the measuring device. Ten samples are measured, and the arithmetic average value is used.
<コッブ吸水度>
コッブ吸水度は、JISP8140:1998に準拠して、JIS P 8111:1998に規定された調湿環境下にて調湿後に測定する。接触させる水(蒸留水を使用)の水温は23℃、接触時間は60秒とする。紙基材の一方の表面及び他方の表面のコッブ吸水度を測定する。測定装置は、日本T.M.C.株式会社製のコッブサイズ度テスターを
使用する。サンプルを10点測定し、算術平均値を採用する。
<Cobb Water Absorbency>
The Cobb water absorbency is measured in accordance with JIS P8140:1998 after conditioning under a humidity-conditioning environment specified in JIS P 8111:1998. The temperature of the water (distilled water is used) to be contacted is 23°C, and the contact time is 60 seconds. The Cobb water absorbency of one surface and the other surface of the paper substrate is measured. The measuring device used is a Cobb sizing degree tester manufactured by Japan T.M.C. Co., Ltd. Ten samples are measured, and the arithmetic average value is adopted.
<再離解パルプの長さ加重平均繊維長、平均繊維幅>
紙基材を80℃の水に1時間漬けた後、A面を構成する紙層と、B面を構成する紙層を分離する。具体的には、各層を確認しながら、手作業で丁寧に紙層を分離する。紙層が剥がれにくい場合は、80℃の水に漬ける工程を繰り返し行う。紙基材が合紙であり、測定対象の紙層に接着剤が付着している場合は、ナイフやカッターを使用して可能な限り接着剤を取り除く。
分離した紙層を40cm角に切り出し、それをイオン交換水に浸し、濃度2%に調整した上で、24時間浸す。
24時間浸した後、JISP8220-2:2012に準拠して、標準型離解機(熊谷理機工業株式会社製)を用いて、未離解繊維がなくなるまで処理して、パルプを繊維状に離解する。
離解後のスラリー(パルプ繊維の分散液)を固形分濃度0.1質量%に調整し、パルプ固形分濃度をJISP8225:2003に準拠して算出する。離解後のスラリーを固形分濃度0.004質量%、500gのスラリーになるよう調整し、分取量を記録する。固形分濃度及びスラリー分取量を用いてサンプルの乾燥重量を算出する。
得られたスラリーを用いて、繊維長測定機(型式Valmet FS-5 UHDベースユニット付、バルメット社製)を使用して、「長さ加重平均繊維長」、「繊維幅」を測定する。なお、測定は、ISO 16065-2:2007に準拠して行う。
また、同機器は、付属のカメラにより繊維の1本1本を検出し測定可能であり、ISO16505-2:2007規格に従って、被写界深度0.5mmの測定セル内で撮影される。同機器により、繊維長が0.01mm以上10.00mm以下の繊維長が撮影される。「繊維長」、「繊維幅」の測定には0.2mm以上7.0mm以下の繊維を選択するものとする。繊維幅は、得られたすべての繊維の繊維幅の算術平均値を平均繊維幅とする。
<Length-weighted average fiber length and average fiber width of refractory pulp>
After soaking the paper substrate in 80°C water for one hour, the paper layer constituting side A is separated from the paper layer constituting side B. Specifically, the paper layers are carefully separated manually while checking each layer. If the paper layers are difficult to peel off, the process of soaking in 80°C water is repeated. If the paper substrate is an interleaf paper and adhesive is attached to the paper layer to be measured, use a knife or cutter to remove as much of the adhesive as possible.
The separated paper layer is cut into a 40 cm square, soaked in ion-exchanged water adjusted to a concentration of 2%, and soaked for 24 hours.
After soaking for 24 hours, the pulp is defibrated into fibers using a standard defibrator (manufactured by Kumagai Riki Kogyo Co., Ltd.) in accordance with JIS P8220-2:2012 until no undefibrated fibers remain.
The slurry after disintegration (dispersion of pulp fibers) is adjusted to a solids concentration of 0.1% by mass, and the pulp solids concentration is calculated in accordance with JIS P8225: 2003. The slurry after disintegration is adjusted to a solids concentration of 0.004% by mass and 500 g of slurry, and the amount taken is recorded. The solids concentration and the amount of slurry taken are used to calculate the dry weight of the sample.
The obtained slurry is used to measure the "length-weighted average fiber length" and "fiber width" using a fiber length measuring machine (Valmet FS-5 with UHD base unit, manufactured by Valmet) in accordance with ISO 16065-2:2007.
The instrument can also detect and measure each fiber using an attached camera, and images are taken in a measurement cell with a depth of field of 0.5 mm in accordance with the ISO 16505-2:2007 standard. The instrument captures fiber lengths of 0.01 mm to 10.00 mm. Fibers of 0.2 mm to 7.0 mm are selected for the measurement of "fiber length" and "fiber width." The average fiber width is the arithmetic mean value of the fiber widths of all the fibers obtained.
<加湿時の比引張強度>
紙基材の引張強度は、ロードセル式引張試験機(社名:株式会社エー・アンド・デイ、型番:RTG-1310)を用いて、2個のつかみ具の間隔は100mm、引張速度は5mm/minの条件で測定する。測定環境は、JIS P 8111:1998に規定された調湿環境下とする。
試験片は、幅15mm、長さ140mmに裁断し、含水率10質量%になるよう温度50℃相対湿度65%に設定した恒温恒湿チャンバーに入れ、含水率が10質量%となるように調整した。含水率は、下記式により算出した。
含水率(質量%)={(試験片(含水後)の質量-試験片の絶乾質量)/試験片(含水後)の質量}×100
含水率が10質量%でない場合は、恒温恒湿チャンバーの相対湿度の設定を調整し、改めて恒温恒湿チャンバーに入れ、含水率が10質量%になるまで調整を繰り返す。なお、絶乾質量は、試験片を温度105℃の乾燥機に1時間入れた後、常温まで冷却したときの質量とし、事前に測定しておく。含水率10質量%に調整した試験片は、測定の直前までアルミパウチ内で保管する。
得られた引張強度を、JIS P 8124:2011に準拠して測定した坪量で割って、比引張強度とする。縦方向の比引張強度と、横方向の比引張強度と、をそれぞれ10点測定し、これらの算術平均値を採用する。
<Specific tensile strength when humidified>
The tensile strength of the paper substrate is measured using a load cell tensile tester (manufactured by A&D Co., Ltd., model number RTG-1310) with the distance between the two grippers set to 100 mm and the pulling speed set to 5 mm/min. The measurement environment is a humidity controlled environment specified in JIS P 8111:1998.
The test pieces were cut to a width of 15 mm and a length of 140 mm, and placed in a constant temperature and humidity chamber set to a temperature of 50° C. and a relative humidity of 65% so that the moisture content was adjusted to 10% by mass. The moisture content was calculated by the following formula.
Moisture content (mass%)={(mass of test piece (after hydration)−absolute dry mass of test piece)/mass of test piece (after hydration)}×100
If the moisture content is not 10% by mass, adjust the relative humidity setting of the thermo-hygroscopic chamber, place the specimen in the thermo-hygroscopic chamber again, and repeat the adjustment until the moisture content reaches 10% by mass. The bone dry mass is the mass of the specimen when it is cooled to room temperature after being placed in a dryer at 105°C for 1 hour, and is measured in advance. The specimen adjusted to a moisture content of 10% by mass is stored in an aluminum pouch until immediately before measurement.
The specific tensile strength is determined by dividing the obtained tensile strength by the basis weight measured in accordance with JIS P 8124: 2011. The specific tensile strength in the machine direction and the specific tensile strength in the cross direction are measured at 10 points each, and the arithmetic average value of these is used.
<繊維配向比>
紙基材の繊維配向比は、野村商事社製のSONIC SHEET TESTER(SST)を用いて、紙基材の縦方向の超音波伝播速度(Vmd)と、横方向の超音波伝播速度(Vcd)とを測定し、その比率(Vmd/Vcd)を繊維配向比として測定する。サンプルを10点測定し、算術平均値を採用する。
<Fiber orientation ratio>
The fiber orientation ratio of the paper substrate is measured by measuring the ultrasonic propagation velocity (Vmd) in the longitudinal direction of the paper substrate and the ultrasonic propagation velocity (Vcd) in the transverse direction of the paper substrate using a Sonic Sheet Tester (SST) manufactured by Nomura Shoji Co., Ltd. The ratio (Vmd/Vcd) is taken as the fiber orientation ratio. Ten samples are measured, and the arithmetic average value is used.
以下、実施例を用いて発明を具体的に説明するが、発明の範囲が実施例の記載により限定されることはない。また、特にことわりがない限り、「部」は、「質量部」を表す The invention will be explained in detail below using examples, but the scope of the invention is not limited to the description of the examples. Also, unless otherwise specified, "parts" refers to "parts by mass."
(実施例1-1)
(紙基材)
以下の手順で2層の紙層(紙層A及び紙層B)の多層紙である紙基材を製造した。
紙層Aのパルプ原料としてLBKP(王子製紙株式会社製アカシアパルプ、ユーカリパルプ)と古紙パルプ(雑誌古紙、新聞古紙)を50:50の質量比率で混ぜ、ダブルディスクレファイナーを使用して叩解し、パルプスラリーを得た。叩解の条件は、パルプスラリーのフリーネスが400~450mlになるように、パルプ濃度、処理量及び叩解電力を調整した。
得られたパルプスラリー100部(固形分換算)に対して、硫酸バンド(朝日化学工業社製液体硫酸バンド)を1.20部(固形分換算)、内添紙力増強剤としてポリアクリルアミド系乾燥紙力増強剤(荒川化学工業社製PS373-20)を0.20部(固形分換算)、内添サイズ剤としてロジン系サイズ剤(荒川化学工業社製サイズパインN811M)を1.00部(固形分換算)を添加し、紙層Aの紙料を調整した。
(Example 1-1)
(Paper base material)
A multi-layer paper base material having two paper layers (paper layer A and paper layer B) was manufactured by the following procedure.
As the pulp raw material for the paper layer A, LBKP (acacia pulp and eucalyptus pulp manufactured by Oji Paper Co., Ltd.) and waste paper pulp (waste magazine paper and waste newspaper paper) were mixed in a mass ratio of 50:50 and beaten using a double disc refiner to obtain a pulp slurry. The beating conditions were adjusted so that the freeness of the pulp slurry was 400 to 450 ml, including the pulp concentration, processing amount, and beating power.
To 100 parts (solids content) of the obtained pulp slurry, 1.20 parts (solids content) of aluminum sulfate (liquid aluminum sulfate manufactured by Asahi Chemical Industry Co., Ltd.) were added as an internal paper strength enhancer (PS373-20 manufactured by Arakawa Chemical Industry Co., Ltd.), 0.20 parts (solids content) of a polyacrylamide-based dry strength enhancer (PS373-20 manufactured by Arakawa Chemical Industry Co., Ltd.) as an internal sizing agent, and 1.00 parts (solids content) of a rosin-based sizing agent (Sizepine N811M manufactured by Arakawa Chemical Industry Co., Ltd.) as an internal sizing agent were added to prepare the paper material for paper layer A.
紙層Bのパルプ原料としてLBKP(王子製紙株式会社製アカシアパルプ、ユーカリパルプ)と古紙パルプ(雑誌古紙、新聞古紙)を50:50の質量比率で混ぜ、ダブルディスクレファイナーを使用して叩解し、パルプスラリーを得た。叩解の条件は、パルプスラリーのフリーネスが400~450mlになるように、パルプ濃度、処理量及び叩解電力を調整した。
得られたパルプスラリー100部(固形分換算)に対して、硫酸バンド(朝日化学工業社製液体硫酸バンド)を0.30部(固形分換算)、ポリアクリルアミド系乾燥紙力増強剤(荒川化学工業社製PS373-20)を0.20部(固形分換算)、ロジン系サイズ剤(荒川化学工業社製サイズパインN811M)を0.10部(固形分換算)を添加し、紙層Bの紙料を調整した。
As the pulp raw material for paper layer B, LBKP (acacia pulp and eucalyptus pulp manufactured by Oji Paper Co., Ltd.) and waste paper pulp (waste magazine paper and waste newspaper paper) were mixed in a mass ratio of 50:50 and beaten using a double disc refiner to obtain a pulp slurry. The beating conditions were adjusted as follows: pulp concentration, processing amount, and beating power so that the freeness of the pulp slurry was 400 to 450 ml.
To 100 parts (solids content) of the obtained pulp slurry, 0.30 parts (solids content) of aluminum sulfate (liquid aluminum sulfate manufactured by Asahi Chemical Industry Co., Ltd.), 0.20 parts (solids content) of a polyacrylamide-based dry strength agent (PS373-20 manufactured by Arakawa Chemical Industry Co., Ltd.), and 0.10 parts (solids content) of a rosin-based sizing agent (Sizepine N811M manufactured by Arakawa Chemical Industry Co., Ltd.) were added to prepare the paper material for paper layer B.
紙層Aと紙層Bの紙料をそれぞれ坪量560g/m2になるよう長網抄紙機を用いて、繊維配向比が1.62になるようにJ/W比を調節して抄紙し、層間スプレーで澱粉をA面とB面の層間に1.0g/m2塗布し、抄き合わせることで坪量1121g/m2の紙基材を得た。 The paper materials for paper layers A and B were each made using a Fourdrinier papermaking machine to have a basis weight of 560 g/ m2 , with the J/W ratio adjusted to give a fiber orientation ratio of 1.62. Starch was then applied between the layers A and B at 1.0 g/ m2 by interlayer spray, and the layers were combined to obtain a paper base material with a basis weight of 1,121 g/ m2 .
(実施例1-2)
紙層Aと紙層Bの紙料をそれぞれ坪量400g/m2になるよう長網抄紙機を用いて抄紙し、坪量801g/m2の紙基材とした以外は実施例1-1と同様の条件で紙基材を得た。
(Example 1-2)
The paper base material of the paper layer A and the paper layer B were each made using a Fourdrinier paper machine so that the basis weight was 400 g/ m2 , and a paper base material of 801 g/ m2 was obtained under the same conditions as in Example 1-1.
(実施例1-3)
紙層Aと紙層Bの紙料をそれぞれ坪量320g/m2になるよう長網抄紙機を用いて抄紙し、坪量641g/m2の紙基材とした以外は実施例1-1と同様の条件で紙基材を得た。
(Examples 1 to 3)
The paper base material of the paper layer A and the paper layer B were each made using a Fourdrinier paper machine so that the basis weight was 320 g/ m2 , and a paper base material of 641 g/ m2 was obtained under the same conditions as in Example 1-1.
(実施例1-4)
紙層Aのパルプスラリー100部(固形分換算)に対して、硫酸バンドを1.30部(固形分換算)、ロジン系サイズ剤を1.10部(固形分換算)添加した以外は実施例1-2と同様の条件で紙基材を得た。
(Examples 1 to 4)
A paper base material was obtained under the same conditions as in Example 1-2, except that 1.30 parts (solid content equivalent) of aluminum sulfate and 1.10 parts (solid content equivalent) of a rosin-based sizing agent were added to 100 parts (solid content equivalent) of the pulp slurry of paper layer A.
(実施例1-5)
紙層Aのパルプスラリー100部(固形分換算)に対して、硫酸バンドを0.70部(固形分換算)、ロジン系サイズ剤を0.50部(固形分換算)添加した以外は実施例1-2と同様の条件で紙基材を得た。
(Examples 1 to 5)
A paper base material was obtained under the same conditions as in Example 1-2, except that 0.70 parts (solids content equivalent) of aluminum sulfate and 0.50 parts (solids content equivalent) of a rosin-based sizing agent were added to 100 parts (solids content equivalent) of the pulp slurry of paper layer A.
(実施例1-6)
紙層Aのパルプスラリー100部(固形分換算)に対して、硫酸バンドを0.50部(固形分換算)、ロジン系サイズ剤を0.25部(固形分換算)添加した以外は実施例1-2と同様の条件で紙基材を得た。
(Examples 1 to 6)
A paper base material was obtained under the same conditions as in Example 1-2, except that 0.50 parts (solids) of aluminum sulfate and 0.25 parts (solids) of a rosin-based sizing agent were added to 100 parts (solids) of the pulp slurry of paper layer A.
(実施例1-7)
紙層Bのパルプスラリー100部(固形分換算)に対して、硫酸バンドを0.70部(固形分換算)、ロジン系サイズ剤を0.50部(固形分換算)添加した以外は実施例1-2と同様の条件で紙基材を得た。
(Examples 1 to 7)
A paper base material was obtained under the same conditions as in Example 1-2, except that 0.70 parts (solids equivalent) of aluminum sulfate and 0.50 parts (solids equivalent) of a rosin-based sizing agent were added to 100 parts (solids equivalent) of the pulp slurry of paper layer B.
(実施例1-8)
紙層Bのパルプスラリー100部(固形分換算)に対して、硫酸バンドを1.00部(固形分換算)、ロジン系サイズ剤を0.90部(固形分換算)添加した以外は実施例1-2と同様の条件で紙基材を得た。
(Examples 1 to 8)
A paper base material was obtained under the same conditions as in Example 1-2, except that 1.00 part (solid content equivalent) of aluminum sulfate and 0.90 parts (solid content equivalent) of a rosin-based sizing agent were added to 100 parts (solid content equivalent) of the pulp slurry of paper layer B.
(実施例1-9)
紙層Aのパルプ原料としてNBKP(王子製紙株式会社製ダグラスファーパルプ、ラジアータパインパルプ、スギパルプ)とLBKPを60:40の質量比率で混ぜた以外は実施例1-2と同様の条件で紙基材を得た。
(Examples 1 to 9)
A paper base material was obtained under the same conditions as in Example 1-2, except that NBKP (Douglas fir pulp, radiata pine pulp, and cedar pulp manufactured by Oji Paper Co., Ltd.) and LBKP were mixed in a mass ratio of 60:40 as the pulp raw material for paper layer A.
(実施例1-10)
紙層Aのパルプ原料としてNBKPとLBKPを80:20の質量比率で混ぜた以外は実施例1-2と同様の条件で紙基材を得た。
(Examples 1 to 10)
A paper base material was obtained under the same conditions as in Example 1-2, except that NBKP and LBKP were mixed in a mass ratio of 80:20 as the pulp raw material for paper layer A.
(実施例1-11)
紙層Bのパルプ原料としてNBKPとLBKPを60:40の質量比率で混ぜた以外は実施例1-2と同様の条件で紙基材を得た。
(Examples 1 to 11)
A paper base material was obtained under the same conditions as in Example 1-2, except that NBKP and LBKP were mixed in a mass ratio of 60:40 as the pulp raw material for paper layer B.
(実施例1-12)
紙層Bのパルプ原料としてNBKPとLBKPを80:20の質量比率で混ぜた以外は実施例1-2と同様の条件で紙基材を得た。
(Example 1-12)
A paper base material was obtained under the same conditions as in Example 1-2, except that NBKP and LBKP were mixed in a mass ratio of 80:20 as the pulp raw material for paper layer B.
(実施例1-13)
紙層Aのパルプスラリー100部(固形分換算)に対して、ポリアクリルアミド系乾燥紙力増強剤を0.05部(固形分換算)、紙層Bのパルプスラリー100部(固形分換算)に対して、ポリアクリルアミド系乾燥紙力増強剤を0.05部(固形分換算)添加した以外は実施例1-2と同様の条件で紙基材を得た。
(Example 1-13)
A paper base material was obtained under the same conditions as in Example 1-2, except that 0.05 parts (solids equivalent) of a polyacrylamide-based dry strength agent was added per 100 parts (solids equivalent) of the pulp slurry of paper layer A, and 0.05 parts (solids equivalent) of a polyacrylamide-based dry strength agent was added per 100 parts (solids equivalent) of the pulp slurry of paper layer B.
(実施例1-14)
紙層Aのパルプスラリー100部(固形分換算)に対して、ポリアクリルアミド系乾燥紙力増強剤を0.50部(固形分換算)、紙層Bのパルプスラリー100部(固形分換算)に対して、ポリアクリルアミド系乾燥紙力増強剤を0.50部(固形分換算)添加した以外は実施例1-2と同様の条件で紙基材を得た。
(Example 1-14)
A paper base material was obtained under the same conditions as in Example 1-2, except that 0.50 parts (solids equivalent) of a polyacrylamide-based dry strength agent was added per 100 parts (solids equivalent) of the pulp slurry of paper layer A, and 0.50 parts (solids equivalent) of a polyacrylamide-based dry strength agent was added per 100 parts (solids equivalent) of the pulp slurry of paper layer B.
(実施例1-15)
繊維配向比が1.42になるようにJ/W比を調節した以外は、実施例1-2と同様の条件で紙基材を得た。
(Example 1-15)
A paper base material was obtained under the same conditions as in Example 1-2, except that the J/W ratio was adjusted so that the fiber orientation ratio was 1.42.
(実施例1-16)
繊維配向比が2.48になるようにJ/W比を調節した以外は、実施例1-2と同様の条件で紙基材を得た。
(Example 1-16)
A paper base material was obtained under the same conditions as in Example 1-2, except that the J/W ratio was adjusted so that the fiber orientation ratio was 2.48.
(比較例1-1)
紙層Aと紙層Bの紙料をそれぞれ坪量200g/m2になるよう長網抄紙機を用いて抄紙し、坪量401g/m2の紙基材とした以外は実施例1-1と同様の条件で紙基材を得た。
(Comparative Example 1-1)
The paper base material of the paper layer A and the paper layer B were each made using a Fourdrinier paper machine so that the basis weight was 200 g/ m2 , and a paper base material of 401 g/ m2 was obtained under the same conditions as in Example 1-1.
(比較例1-2)
紙層Aと紙層Bの紙料をそれぞれ坪量800g/m2になるよう長網抄紙機を用いて抄紙し、坪量1601g/m2の紙基材とした以外は実施例1-1と同様の条件で紙基材を得た。
(Comparative Example 1-2)
The paper base material of the paper layer A and the paper layer B were each made using a Fourdrinier paper machine so that the basis weight was 800 g/ m2 , and a paper base material of 1601 g/ m2 was obtained under the same conditions as in Example 1-1.
(比較例1-3)
紙層Aのパルプスラリー100部(固形分換算)に対して、硫酸バンドを0.30部(固形分換算)、ロジン系サイズ剤を0.10部(固形分換算)、紙層Bのパルプスラリー100部(固形分換算)に対して、硫酸バンドを0.30部(固形分換算)、ロジン系サイズ剤を0.08部(固形分換算)添加した以外は実施例1-2と同様の条件で紙基材を得た。
(Comparative Example 1-3)
A paper base material was obtained under the same conditions as in Example 1-2, except that 0.30 parts (solid content equivalent) of aluminum sulfate and 0.10 parts (solid content equivalent) of a rosin-based sizing agent were added per 100 parts (solid content equivalent) of the pulp slurry of paper layer A, and 0.30 parts (solid content equivalent) of aluminum sulfate and 0.08 parts (solid content equivalent) of a rosin-based sizing agent were added per 100 parts (solid content equivalent) of the pulp slurry of paper layer B.
(比較例1-4)
紙層Aのパルプスラリー100部(固形分換算)に対して、硫酸バンドを1.40部(固形分換算)、ロジン系サイズ剤を1.20部(固形分換算)、紙層Bのパルプスラリー100部(固形分換算)に対して、硫酸バンドを1.30部(固形分換算)、ロジン系サイズ剤を1.10部(固形分換算)添加した以外は実施例1-2と同様の条件で紙基材を得た。
(Comparative Examples 1 to 4)
A paper base material was obtained under the same conditions as in Example 1-2, except that 1.40 parts (solid content equivalent) of aluminum sulfate and 1.20 parts (solid content equivalent) of a rosin-based sizing agent were added per 100 parts (solid content equivalent) of the pulp slurry of paper layer A, and 1.30 parts (solid content equivalent) of aluminum sulfate and 1.10 parts (solid content equivalent) of a rosin-based sizing agent were added per 100 parts (solid content equivalent) of the pulp slurry of paper layer B.
(比較例1-5)
紙層Bのパルプスラリー100部(固形分換算)に対して、硫酸バンドを0.20部(固形分換算)、ロジン系サイズ剤を0.04部(固形分換算)添加した以外は実施例1-2と同様の条件で紙基材を得た。
(Comparative Example 1-5)
A paper base material was obtained under the same conditions as in Example 1-2, except that 0.20 parts (solids) of aluminum sulfate and 0.04 parts (solids) of a rosin-based sizing agent were added to 100 parts (solids) of the pulp slurry of paper layer B.
(比較例1-6)
紙層Aのパルプ原料としてNBKPとLBKPを85:15の質量比率で混ぜた以外は実施例1-2と同様の条件で紙基材を得た。
(Comparative Example 1-6)
A paper base material was obtained under the same conditions as in Example 1-2, except that NBKP and LBKP were mixed in a mass ratio of 85:15 as the pulp raw material for paper layer A.
(比較例1-7)
紙層Bのパルプ原料としてNBKPとLBKPを85:15の質量比率で混ぜた以外は実施例1-2と同様の条件で紙基材を得た。
(Comparative Example 1-7)
A paper base material was obtained under the same conditions as in Example 1-2, except that NBKP and LBKP were mixed in a mass ratio of 85:15 as the pulp raw material for paper layer B.
(実施例2-1)
(紙基材)
以下の手順で2枚の原紙(紙層A及び紙層B)を接着剤を用いて貼付した合紙である紙基材を製造した。
紙層Aのパルプ原料としてLBKP(王子製紙株式会社製アカシアパルプ、ユーカリパルプ)と古紙パルプ(雑誌古紙、新聞古紙)を50:50の質量比率で混ぜ、ダブルディ
スクレファイナーを使用して叩解し、パルプスラリーを得た。叩解の条件は、パルプスラリーのフリーネスが400~450mlになるように、パルプ濃度、処理量及び叩解電力を調整した。
得られたパルプスラリー100部(固形分換算)に対して、硫酸バンド(朝日化学工業社製液体硫酸バンド)を1.20部(固形分換算)、内添紙力増強剤としてポリアクリルアミド系乾燥紙力増強剤(荒川化学工業社製PS373-20)を0.20部(固形分換算)、内添サイズ剤としてロジン系サイズ剤(荒川化学工業社製サイズパインN811M)を1.00部(固形分換算)を添加し、紙料を調整した。得られた紙料を長網抄紙機を用いて、繊維配向比が1.62になるようにJ/W比を調節して抄紙し、坪量560g/m2の紙層Aを得た。
(Example 2-1)
(Paper base material)
A paper base material was produced in the form of an interleaving paper in which two sheets of base paper (paper layer A and paper layer B) were bonded together with an adhesive by the following procedure.
As the pulp raw material for the paper layer A, LBKP (acacia pulp and eucalyptus pulp manufactured by Oji Paper Co., Ltd.) and waste paper pulp (waste magazine paper and waste newspaper paper) were mixed in a mass ratio of 50:50 and beaten using a double disc refiner to obtain a pulp slurry. The beating conditions were adjusted so that the freeness of the pulp slurry was 400 to 450 ml, including the pulp concentration, processing amount, and beating power.
To 100 parts (solids equivalent) of the obtained pulp slurry, 1.20 parts (solids equivalent) of aluminum sulfate (liquid aluminum sulfate manufactured by Asahi Chemical Industry Co., Ltd.) were added as an internal paper strength enhancer, 0.20 parts (solids equivalent) of a polyacrylamide-based dry paper strength enhancer (PS373-20 manufactured by Arakawa Chemical Industry Co., Ltd.) as an internal paper strength enhancer, and 1.00 parts (solids equivalent) of a rosin-based sizing agent (Size Pine N811M manufactured by Arakawa Chemical Industry Co., Ltd.) as an internal sizing agent were added to prepare a paper stock. The obtained paper stock was made using a Fourdrinier paper machine, adjusting the J/W ratio so that the fiber orientation ratio was 1.62, to obtain a paper layer A having a basis weight of 560 g/ m2 .
紙層Bのパルプ原料としてLBKP(王子製紙株式会社製アカシアパルプ、ユーカリパルプ)と古紙パルプ(雑誌古紙、新聞古紙)を50:50の質量比率で混ぜ、ダブルディスクレファイナーを使用して叩解し、パルプスラリーを得た。叩解の条件は、パルプスラリーのフリーネスが400~450mlになるように、パルプ濃度、処理量及び叩解電力を調整した。
得られたパルプスラリー100部(固形分換算)に対して、硫酸バンド(朝日化学工業社製液体硫酸バンド)を0.30部(固形分換算)、ポリアクリルアミド系乾燥紙力増強剤(荒川化学工業社製PS373-20)を0.20部(固形分換算)、ロジン系サイズ剤(荒川化学工業社製サイズパインN811M)を0.10部(固形分換算)を添加し、紙料を調整した。得られた紙料を長網抄紙機を用いて、繊維配向比が1.62になるようにJ/W比を調節して抄紙し、坪量560g/m2の紙層Bを得た。
As the pulp raw material for paper layer B, LBKP (acacia pulp and eucalyptus pulp manufactured by Oji Paper Co., Ltd.) and waste paper pulp (waste magazine paper and waste newspaper paper) were mixed in a mass ratio of 50:50 and beaten using a double disc refiner to obtain a pulp slurry. The beating conditions were adjusted as follows: pulp concentration, processing amount, and beating power so that the freeness of the pulp slurry was 400 to 450 ml.
To 100 parts (solids equivalent) of the obtained pulp slurry, 0.30 parts (solids equivalent) of aluminum sulfate (liquid aluminum sulfate manufactured by Asahi Chemical Industry Co., Ltd.), 0.20 parts (solids equivalent) of a polyacrylamide-based dry strength agent (PS373-20 manufactured by Arakawa Chemical Industry Co., Ltd.), and 0.10 parts (solids equivalent) of a rosin-based sizing agent (Sizepine N811M manufactured by Arakawa Chemical Industry Co., Ltd.) were added to prepare a paper stock. The obtained paper stock was made using a Fourdrinier papermaking machine, adjusting the J/W ratio so that the fiber orientation ratio was 1.62, to obtain a paper layer B with a basis weight of 560 g/ m2 .
得られた紙層Aの一方の面にアクリル系エマルジョン接着剤を5g/m2塗布し、紙層Bを貼り合わせ、坪量1125g/m2の合紙の紙基材を得た。 An acrylic emulsion adhesive was applied to one side of the obtained paper layer A at 5 g/m2, and the paper layer B was laminated to obtain a paper base material for an interleaf paper having a basis weight of 1125 g/ m2 .
(実施例2-2)
紙層Aと紙層Bをそれぞれ坪量400g/m2になるよう長網抄紙機を用いて抄紙し、坪量805g/m2の紙基材とした以外は実施例2-1と同様の条件で紙基材を得た。
(Example 2-2)
The paper base material was obtained under the same conditions as in Example 2-1, except that the paper layers A and B were each made using a Fourdrinier paper machine so that the basis weight was 400 g/ m2 , and the paper base material had a basis weight of 805 g/ m2 .
(実施例2-3)
紙層Aと紙層Bをそれぞれ坪量320g/m2になるよう長網抄紙機を用いて抄紙し、坪量645g/m2の紙基材とした以外は実施例2-1と同様の条件で紙基材を得た。
(Example 2-3)
The paper base material was obtained under the same conditions as in Example 2-1, except that the paper layers A and B were each made using a Fourdrinier paper machine to have a basis weight of 320 g/ m2 , and the paper base material had a basis weight of 645 g/ m2 .
(実施例2-4)
紙層Aのパルプスラリー100部(固形分換算)に対して、硫酸バンドを1.30部(固形分換算)、ロジン系サイズ剤を1.10部(固形分換算)添加した以外は実施例2-2と同様の条件で紙基材を得た。
(Example 2-4)
A paper base material was obtained under the same conditions as in Example 2-2, except that 1.30 parts (solids equivalent) of aluminum sulfate and 1.10 parts (solids equivalent) of a rosin-based sizing agent were added to 100 parts (solids equivalent) of the pulp slurry of paper layer A.
(実施例2-5)
紙層Aのパルプスラリー100部(固形分換算)に対して、硫酸バンドを0.70部(固形分換算)、ロジン系サイズ剤を0.50部(固形分換算)添加した以外は実施例2-2と同様の条件で紙基材を得た。
(Example 2-5)
A paper base material was obtained under the same conditions as in Example 2-2, except that 0.70 parts (solids equivalent) of aluminum sulfate and 0.50 parts (solids equivalent) of a rosin-based sizing agent were added to 100 parts (solids equivalent) of the pulp slurry of paper layer A.
(実施例2-6)
紙層Aのパルプスラリー100部(固形分換算)に対して、硫酸バンドを0.50部(固形分換算)、ロジン系サイズ剤を0.25部(固形分換算)添加した以外は実施例2-2と同様の条件で紙基材を得た。
(Example 2-6)
A paper base material was obtained under the same conditions as in Example 2-2, except that 0.50 parts (solids content equivalent) of aluminum sulfate and 0.25 parts (solids content equivalent) of a rosin-based sizing agent were added to 100 parts (solids content equivalent) of the pulp slurry of paper layer A.
(実施例2-7)
紙層Bのパルプスラリー100部(固形分換算)に対して、硫酸バンドを0.70部(固形分換算)、ロジン系サイズ剤を0.50部(固形分換算)添加した以外は実施例2-2と同様の条件で紙基材を得た。
(Example 2-7)
A paper base material was obtained under the same conditions as in Example 2-2, except that 0.70 parts (solids content equivalent) of aluminum sulfate and 0.50 parts (solids content equivalent) of a rosin-based sizing agent were added to 100 parts (solids content equivalent) of the pulp slurry of paper layer B.
(実施例2-8)
紙層Bのパルプスラリー100部(固形分換算)に対して、硫酸バンドを1.00部(固形分換算)、ロジン系サイズ剤を0.90部(固形分換算)添加した以外は実施例2-2と同様の条件で紙基材を得た。
(Example 2-8)
A paper base material was obtained under the same conditions as in Example 2-2, except that 1.00 part (solid content equivalent) of aluminum sulfate and 0.90 parts (solid content equivalent) of a rosin-based sizing agent were added to 100 parts (solid content equivalent) of the pulp slurry of paper layer B.
(実施例2-9)
紙層Aのパルプ原料としてNBKP(王子製紙株式会社製ダグラスファーパルプ、ラジアータパインパルプ、スギパルプ)とLBKPを60:40の質量比率で混ぜた以外は実施例2-2と同様の条件で紙基材を得た。
(Example 2-9)
A paper base material was obtained under the same conditions as in Example 2-2, except that NBKP (Douglas fir pulp, radiata pine pulp, and cedar pulp manufactured by Oji Paper Co., Ltd.) and LBKP were mixed in a mass ratio of 60:40 as the pulp raw material for paper layer A.
(実施例2-10)
紙層Aのパルプ原料としてNBKPとLBKPを80:20の質量比率で混ぜた以外は実施例2-2と同様の条件で紙基材を得た。
(Example 2-10)
A paper base material was obtained under the same conditions as in Example 2-2, except that NBKP and LBKP were mixed in a mass ratio of 80:20 as the pulp raw material for paper layer A.
(実施例2-11)
紙層Bのパルプ原料としてNBKPとLBKPを60:40の質量比率で混ぜた以外は実施例2-2と同様の条件で紙基材を得た。
(Example 2-11)
A paper base material was obtained under the same conditions as in Example 2-2, except that NBKP and LBKP were mixed in a mass ratio of 60:40 as the pulp raw material for paper layer B.
(実施例2-12)
紙層Bのパルプ原料としてNBKPとLBKPを80:20の質量比率で混ぜた以外は実施例2-2と同様の条件で紙基材を得た。
(Example 2-12)
A paper base material was obtained under the same conditions as in Example 2-2, except that NBKP and LBKP were mixed in a mass ratio of 80:20 as the pulp raw material for paper layer B.
(実施例2-13)
紙層Aのパルプスラリー100部(固形分換算)に対して、ポリアクリルアミド系乾燥紙力増強剤を0.05部(固形分換算)、紙層Bのパルプスラリー100部(固形分換算)に対して、ポリアクリルアミド系乾燥紙力増強剤を0.05部(固形分換算)添加した以外は実施例2-2と同様の条件で紙基材を得た。
(Example 2-13)
A paper base material was obtained under the same conditions as in Example 2-2, except that 0.05 parts (solids equivalent) of a polyacrylamide-based dry strength agent was added per 100 parts (solids equivalent) of the pulp slurry of paper layer A, and 0.05 parts (solids equivalent) of a polyacrylamide-based dry strength agent was added per 100 parts (solids equivalent) of the pulp slurry of paper layer B.
(実施例2-14)
紙層Aのパルプスラリー100部(固形分換算)に対して、ポリアクリルアミド系乾燥紙力増強剤を0.50部(固形分換算)、紙層Bのパルプスラリー100部(固形分換算)に対して、ポリアクリルアミド系乾燥紙力増強剤を0.50部(固形分換算)添加した以外は実施例2-2と同様の条件で紙基材を得た。
(Example 2-14)
A paper base material was obtained under the same conditions as in Example 2-2, except that 0.50 parts (solids equivalent) of a polyacrylamide-based dry strength agent was added per 100 parts (solids equivalent) of the pulp slurry of paper layer A, and 0.50 parts (solids equivalent) of a polyacrylamide-based dry strength agent was added per 100 parts (solids equivalent) of the pulp slurry of paper layer B.
(実施例2-15)
繊維配向比が1.42になるようにJ/W比を調節した以外は、実施例2-2と同様の条件で紙基材を得た。
(Example 2-15)
A paper base material was obtained under the same conditions as in Example 2-2, except that the J/W ratio was adjusted so that the fiber orientation ratio was 1.42.
(実施例2-16)
繊維配向比が2.48になるようにJ/W比を調節した以外は、実施例2-2と同様の条件で紙基材を得た。
(Example 2-16)
A paper base material was obtained under the same conditions as in Example 2-2, except that the J/W ratio was adjusted so that the fiber orientation ratio was 2.48.
(比較例2-1)
紙層Aと紙層Bをそれぞれ坪量200g/m2になるよう長網抄紙機を用いて抄紙し、坪量405g/m2の紙基材とした以外は実施例2-1と同様の条件で紙基材を得た。
(Comparative Example 2-1)
The paper base material was obtained under the same conditions as in Example 2-1, except that the paper layer A and the paper layer B were each made using a Fourdrinier paper machine so that the basis weight was 200 g/ m2 , and the paper base material had a basis weight of 405 g/ m2 .
(比較例2-2)
紙層Aと紙層Bをそれぞれ坪量800g/m2になるよう長網抄紙機を用いて抄紙し、坪量1605g/m2の紙基材とした以外は実施例2-1と同様の条件で紙基材を得た。
(Comparative Example 2-2)
The paper base material was obtained under the same conditions as in Example 2-1, except that the paper layers A and B were each made using a Fourdrinier paper machine so that the basis weight was 800 g/ m2 , and the paper base material had a basis weight of 1605 g/ m2 .
(比較例2-3)
紙層Aのパルプスラリー100部(固形分換算)に対して、硫酸バンドを0.30部(固形分換算)、ロジン系サイズ剤を0.10部(固形分換算)、紙層Bのパルプスラリー100部(固形分換算)に対して、硫酸バンドを0.30部(固形分換算)、ロジン系サイズ剤を0.08部(固形分換算)添加した以外は実施例2-2と同様の条件で紙基材を得た。
(Comparative Example 2-3)
A paper base material was obtained under the same conditions as in Example 2-2, except that 0.30 parts (solid content equivalent) of aluminum sulfate and 0.10 parts (solid content equivalent) of a rosin-based sizing agent were added per 100 parts (solid content equivalent) of the pulp slurry of paper layer A, and 0.30 parts (solid content equivalent) of aluminum sulfate and 0.08 parts (solid content equivalent) of a rosin-based sizing agent were added per 100 parts (solid content equivalent) of the pulp slurry of paper layer B.
(比較例2-4)
紙層Aのパルプスラリー100部(固形分換算)に対して、硫酸バンドを1.40部(固形分換算)、ロジン系サイズ剤を1.20部(固形分換算)、紙層Bのパルプスラリー100部(固形分換算)に対して、硫酸バンドを1.30部(固形分換算)、ロジン系サイズ剤を1.10部(固形分換算)添加した以外は実施例2-2と同様の条件で紙基材を得た。
(Comparative Example 2-4)
A paper base material was obtained under the same conditions as in Example 2-2, except that 1.40 parts (solid content equivalent) of aluminum sulfate and 1.20 parts (solid content equivalent) of a rosin-based sizing agent were added per 100 parts (solid content equivalent) of the pulp slurry of paper layer A, and 1.30 parts (solid content equivalent) of aluminum sulfate and 1.10 parts (solid content equivalent) of a rosin-based sizing agent were added per 100 parts (solid content equivalent) of the pulp slurry of paper layer B.
(比較例2-5)
紙層Bのパルプスラリー100部(固形分換算)に対して、硫酸バンドを0.20部(固形分換算)、ロジン系サイズ剤を0.04部(固形分換算)添加した以外は実施例2-2と同様の条件で紙基材を得た。
(Comparative Example 2-5)
A paper base material was obtained under the same conditions as in Example 2-2, except that 0.20 parts (solids) of aluminum sulfate and 0.04 parts (solids) of a rosin-based sizing agent were added to 100 parts (solids) of the pulp slurry of paper layer B.
(比較例2-6)
紙層Aのパルプ原料としてNBKPとLBKPを85:15の質量比率で混ぜた以外は実施例2-2と同様の条件で紙基材を得た。
(Comparative Example 2-6)
A paper base material was obtained under the same conditions as in Example 2-2, except that NBKP and LBKP were mixed in a mass ratio of 85:15 as the pulp raw material for paper layer A.
(比較例2-7)
紙層Bのパルプ原料としてNBKPとLBKPを85:15の質量比率で混ぜた以外は実施例2-2と同様の条件で紙基材を得た。
(Comparative Example 2-7)
A paper base material was obtained under the same conditions as in Example 2-2, except that NBKP and LBKP were mixed in a mass ratio of 85:15 as the pulp raw material for paper layer B.
<加湿成形>
実施例及び比較例で得られた紙基材を長さ122mm、幅167mmに打ち抜き、加湿成形用ブランク材とした。温度23℃、湿度50%RH環境下にて、ブランク材の含水率が10質量%となるよう、ブランク剤のB面に水蒸気を吹き付け、ブランク材の端1cm部分の一方の結合部にアクリル系エマルジョン接着剤を塗布し、所定の金型のオス型とメス型の間にブランク材を設置した後、圧力0.3kg/cm2、プレス時間5秒の条件で加圧成形し、直径50mmの円筒状の紙容器を作製した。
<Moisture molding>
The paper substrates obtained in the examples and comparative examples were punched out to a length of 122 mm and a width of 167 mm to prepare blanks for humid molding. In an environment with a temperature of 23°C and a humidity of 50% RH, water vapor was sprayed onto side B of the blank so that the moisture content of the blank was 10% by mass, and an acrylic emulsion adhesive was applied to one of the joints at a 1 cm portion of the edge of the blank. The blank was placed between the male and female dies of a specified mold, and then pressure molded under conditions of a pressure of 0.3 kg/ cm2 and a press time of 5 seconds to produce cylindrical paper containers with a diameter of 50 mm.
<加湿成形時の成形性の評価>
得られた紙容器3個の外面と内面を観察して、下記の基準で評価を行った。結果を表1及び表2に示す。
A:紙基材に割れ(破れや避け箇所)や凹み、折れが見られる容器が0個
B:紙基材に割れ(破れや避け箇所)や凹みが見られる容器は0個であり、折れが見られる容器が1個
C:紙基材に割れ(破れや避け箇所)や凹みが見られる容器は0個であり、折れが見られる容器が2個
D:紙基材に割れ(破れや避け箇所)や凹みが見られる容器は1個以上である、又は折れが見られる容器が3個
<Evaluation of moldability during humid molding>
The outer and inner surfaces of the three paper containers obtained were observed and evaluated according to the following criteria. The results are shown in Tables 1 and 2.
A: 0 containers with cracks (tears or avoided areas), dents, or folds in the paper base material. B: 0 containers with cracks (tears or avoided areas) or dents in the paper base material, and 1 container with a fold. C: 0 containers with cracks (tears or avoided areas) or dents in the paper base material, and 2 containers with a fold. D: 1 or more containers with cracks (tears or avoided areas) or dents in the paper base material, or 3 containers with a fold.
<落下時の耐久性の評価>
得られた紙容器の円筒の一方の開口部を水平にして、SUS版を置いた床の上に、80cmの高さから加速をつけずに落下させた。落下後の紙容器の外観を観察して、下記の基準で評価を行った。結果を表1及び表2に示す。なお「変形」とは、円筒の側面の凹み、紙基材の折れが1箇所以上見られた状態をいう。
A:3回落下させても変形が見られない。
B:3回落下させると変形が見られる。
C:2回落下させると変形が見られる。
D:1回の落下で変形が見られる。
<Evaluation of durability when dropped>
The obtained paper container was dropped from a height of 80 cm without acceleration onto a floor with a stainless steel plate placed on it, with one opening of the cylinder horizontal. The appearance of the paper container after the drop was observed and evaluated according to the following criteria. The results are shown in Tables 1 and 2. Note that "deformation" refers to a state in which a dent was found on the side of the cylinder and the paper base material was folded in one or more places.
A: No deformation was observed even after being dropped three times.
B: Deformation is observed after being dropped three times.
C: Deformation is observed after two drops.
D: Deformation is observed after one drop.
<湿潤後の美麗性>
得られた紙容器を、温度80℃、相対湿度65%の高温高湿度環境下に1時間静置した。振動試験を実施後、紙容器の外観の観察と、手触りの確認を実施して、下記の基準で評価を行った。結果を表1及び表2に示す。振動試験は、JIS Z0232:2020に準拠して、ランダム振動、垂直90分の条件で実施した。
A:紙容器のA面の表面にシワが全く見られず、触ってもしっかり感が保たれている。
B:紙容器のA面の表面にシワは見られないが、触ると柔らかさがある。
C:紙容器のA面の表面にシワが発生するが、触っても破れることはない。
D:紙容器のA面の表面にシワが発生し、触ると一部破れが見られる。
<Beauty after wetting>
The obtained paper container was left to stand for 1 hour in a high temperature and high humidity environment at a temperature of 80° C. and a relative humidity of 65%. After the vibration test, the appearance of the paper container was observed and the touch was confirmed, and the paper container was evaluated according to the following criteria. The results are shown in Tables 1 and 2. The vibration test was performed in accordance with JIS Z0232:2020 under conditions of random vibration and vertical orientation for 90 minutes.
A: No wrinkles were observed on the surface of side A of the paper container, and it felt firm to the touch.
B: No wrinkles are visible on the surface of side A of the paper container, but it feels soft to the touch.
C: Wrinkles appear on the surface of side A of the paper container, but it does not tear when touched.
D: Wrinkles have appeared on the surface of side A of the paper container, and some tears can be seen when touched.
Claims (8)
前記紙基材が、2層以上の紙層を有し、
前記紙基材の厚みが、0.8~1.5mmであり、
前記紙基材の一方の表面をA面とし、他方の表面をB面としたときに、
前記紙基材の前記A面から測定したコッブ吸水度が、前記B面から測定したコッブ吸水度以下であって、
前記A面から測定したコッブ吸水度が、10~700g/m2・60秒であり、
前記B面から測定したコッブ吸水度が、10~1000g/m2・60秒であり、
前記紙基材の、一方の表面を構成する紙層に含まれるパルプの平均繊維幅と、他方の表面を構成する紙層に含まれるパルプの平均繊維幅と、の両方が、28.0μm以下である、
ことを特徴とする加湿成形用の紙基材。 A paper substrate for moist forming, comprising:
The paper base material has two or more paper layers,
The thickness of the paper base material is 0.8 to 1.5 mm;
When one surface of the paper base material is designated as side A and the other surface is designated as side B,
The Cobb water absorbency measured from the A side of the paper base material is equal to or lower than the Cobb water absorbency measured from the B side,
The Cobb water absorbency measured from the A side is 10 to 700 g/ m2 ·60 seconds,
The Cobb water absorbency measured from the side B is 10 to 1000 g/ m2 ·60 seconds,
Both of the average fiber width of the pulp contained in the paper layer constituting one surface of the paper base material and the average fiber width of the pulp contained in the paper layer constituting the other surface of the paper base material are 28.0 μm or less.
A paper substrate for moist forming, comprising:
前記2枚以上の前記原紙のそれぞれが、前記紙層を含む、請求項1に記載の加湿成形用の紙基材。 The paper base material is a multi-layer paper having two or more layers of the paper, or a laminated paper having two or more base papers attached thereto,
The paper substrate for moist forming according to claim 1 , wherein each of the two or more base papers comprises the paper layer.
前記A面が、前記紙容器の外表面の少なくとも一部を構成する、請求項7に記載の紙容器。
The paper container has a bottle shape,
The paper container according to claim 7 , wherein the side A constitutes at least a portion of an outer surface of the paper container.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023063446A JP2024150170A (en) | 2023-04-10 | 2023-04-10 | Paper base material for humid forming, paper processed products and paper containers |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023063446A JP2024150170A (en) | 2023-04-10 | 2023-04-10 | Paper base material for humid forming, paper processed products and paper containers |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2024150170A true JP2024150170A (en) | 2024-10-23 |
Family
ID=93154087
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2023063446A Pending JP2024150170A (en) | 2023-04-10 | 2023-04-10 | Paper base material for humid forming, paper processed products and paper containers |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2024150170A (en) |
-
2023
- 2023-04-10 JP JP2023063446A patent/JP2024150170A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7435483B2 (en) | Process for coating paper, paperboard, and molded fiber with a water-dispersible polyester polymer | |
US8617692B2 (en) | Moisture resistant container | |
US11753773B2 (en) | Paperboard product | |
CN116669944A (en) | Laminate body | |
CN113748243B (en) | Box board for corrugated cardboard and method for manufacturing box board for corrugated cardboard | |
US8999491B2 (en) | Wet-strength corrugated fiberboard | |
JP7172819B2 (en) | Substrate for liquid container, container for liquid, and method for producing the same | |
JP2001098496A (en) | High bulky cardboard | |
CN115697855A (en) | Process for manufacturing improved cellulose-based materials and tanks | |
JP7205385B2 (en) | Paper substrate, paper sheet, cup-shaped packaging container, and manufacturing method thereof | |
JP2024150170A (en) | Paper base material for humid forming, paper processed products and paper containers | |
JP2024150172A (en) | Paper base material for humid forming, paper processed products and paper containers | |
JP2024150171A (en) | Paper base material for humid forming, paper processed products and paper containers | |
JP2002266294A (en) | Base paper for molded container and molded container using the same | |
JP2020079461A (en) | Foamed heat insulation paper container | |
JP7172818B2 (en) | Base material for cup, cup container for liquid, and method for producing the same | |
JP7559669B2 (en) | Deep drawing processing base paper and deep drawing products | |
JP7255723B1 (en) | Interleaving paper and processed paper products obtained by processing said interleaving paper | |
JP3997713B2 (en) | Formed base paper | |
JP7533348B2 (en) | Deep drawing processing base paper and deep drawing products | |
JP7533267B2 (en) | Deep drawing processing base paper and deep drawing products | |
JP7526343B1 (en) | Cushioning paper and paper cushioning | |
JP7443983B2 (en) | Foam insulation paper base paper, laminates, foam insulation paper containers | |
JP6455325B2 (en) | Plate clip and clip sheet | |
JP7281003B1 (en) | laminated paper and liquid containers |