Nothing Special   »   [go: up one dir, main page]

JP2024022460A - Method for producing polyarylene sulfide resin - Google Patents

Method for producing polyarylene sulfide resin Download PDF

Info

Publication number
JP2024022460A
JP2024022460A JP2023039560A JP2023039560A JP2024022460A JP 2024022460 A JP2024022460 A JP 2024022460A JP 2023039560 A JP2023039560 A JP 2023039560A JP 2023039560 A JP2023039560 A JP 2023039560A JP 2024022460 A JP2024022460 A JP 2024022460A
Authority
JP
Japan
Prior art keywords
alkali metal
mixture
oligomer
resin
phase component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2023039560A
Other languages
Japanese (ja)
Inventor
幸平 笠谷
Kohei Kasaya
啓一郎 深澤
Keiichiro Fukazawa
俊男 檜森
Toshio Himori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
DIC Corp
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DIC Corp, Dainippon Ink and Chemicals Co Ltd filed Critical DIC Corp
Publication of JP2024022460A publication Critical patent/JP2024022460A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)

Abstract

To provide a method for producing, without increasing steps, a polyarylene sulfide (PAS) resin which suppresses increase in a gas generation amount of when a PAS oligomer is recovered, and is excellent in reactivity to other materials.SOLUTION: There is provided a production method of a PAS resin which includes: a step 1 of reacting a polyhalo aromatic compound with a sulfidizing agent in an organic polar solvent to obtain a crude reaction mixture; a step 2 of adding an acid to the crude reaction mixture; a step 3 of solid-liquid separating the crude reaction mixture by a quench method to obtain a solid-phase component (A); a step 4 of cleaning the solid-phase component (A), removing the alkali metal halide to obtain a solid-phase component (B); and a step 5 of washing the solid-phase component (B) with hot water to obtain a mixture (C) having a pH of 7.0-12.0. The method is characterized in, in addition to comprising the steps, that: the steps 3 to 4 add an oligomer mixture, and the oligomer mixture is an organic polar solvent containing at least a PAS oligomer which is obtained by solid-liquid separation, after a crude reaction mixture is obtained by reacting a polyhalo aromatic compound with a sulfidizing agent in an organic polar solvent.SELECTED DRAWING: None

Description

本発明は、ポリアリーレンスルフィド樹脂の製造方法に関する。 The present invention relates to a method for producing polyarylene sulfide resin.

ポリフェニレンスルフィド(以下、PPSと略すことがある)樹脂に代表されるポリアリーレンスルフィド(以下、PASと略すことがある)樹脂は、耐熱性、耐薬品性等に優れ、電気電子部品、自動車部品、給湯機部品、繊維、フィルム用途等に幅広く利用されている。 Polyarylene sulfide (hereinafter sometimes abbreviated as PAS) resin, represented by polyphenylene sulfide (hereinafter sometimes abbreviated as PPS) resin, has excellent heat resistance, chemical resistance, etc., and is used in electrical and electronic parts, automobile parts, It is widely used for water heater parts, textiles, films, etc.

PPS樹脂は基本骨格に反応性部位をほぼ含まないため、耐薬品性等に優れる一方で、反応性官能基を有するエラストマーやシランカップリング剤等の他の材料と混合した際の反応性に乏しい。樹脂組成物中でPPS樹脂をマトリックスとして用いる場合には、他の材料との界面強度が樹脂組成物の機械的性質に大きく影響するため、樹脂の反応性を調整することが不可欠である。 PPS resin contains almost no reactive sites in its basic skeleton, so while it has excellent chemical resistance, it has poor reactivity when mixed with other materials such as elastomers and silane coupling agents that have reactive functional groups. . When using a PPS resin as a matrix in a resin composition, it is essential to adjust the reactivity of the resin, since the interfacial strength with other materials greatly affects the mechanical properties of the resin composition.

PPS樹脂の反応性を向上させる方法としては、例えば、末端官能基として含まれるCOONa部位をCOOHに変換することが挙げられる(特許文献1等)。しかしながら、この方法では樹脂の結晶化特性も変化するため、好適に用いられる形状が限定され、押出成形品や大型成形品等の比較的時間をかけて成形する部品に利用するためには課題があった。 A method for improving the reactivity of PPS resin includes, for example, converting a COONa moiety included as a terminal functional group to COOH (Patent Document 1, etc.). However, since this method also changes the crystallization characteristics of the resin, the shapes that can be suitably used are limited, and there are issues with using this method for parts that take a relatively long time to mold, such as extrusion molded products and large molded products. there were.

また、PPS樹脂は、N-メチル-2-ピロリドン(NMP)などの極性有機溶媒中で、スルフィド化剤と、ポリハロ芳香族化合物とを重合反応させる方法等により得られる。この時、PPSオリゴマー、残存スルフィド化剤、塩化ナトリウムなどの副生成物も同時に生成されるが、当該副生成物は不純物とされ、従来活用が進んでいなかった。特に、PPSオリゴマーは、そのほとんどが産業廃棄物として廃棄され、原料費ロスと廃棄費の点から生産における多大な損失を招いていた。 Further, the PPS resin can be obtained by a method of polymerizing a sulfidating agent and a polyhaloaromatic compound in a polar organic solvent such as N-methyl-2-pyrrolidone (NMP). At this time, by-products such as PPS oligomers, residual sulfidating agents, and sodium chloride are also produced, but these by-products are considered impurities and have not been utilized in the past. In particular, most of the PPS oligomers were discarded as industrial waste, resulting in a large loss in production in terms of raw material cost loss and disposal cost.

しかしながら、PPSオリゴマーをPPS樹脂に回収する場合、分子量の小ささから樹脂よりも揮発温度が低く、溶融混練時や溶融成形時に発生するガス量が増加する傾向にあった。予めPPSオリゴマーを精製することで、ガス発生量は低減することができたが、工程増加に伴うコストや環境負荷の問題があった。 However, when PPS oligomers are recovered into PPS resins, their volatilization temperature is lower than that of resins due to their small molecular weights, and the amount of gas generated during melt-kneading and melt-molding tends to increase. Although it was possible to reduce the amount of gas generated by refining the PPS oligomer in advance, there were problems in cost and environmental impact due to the increase in the number of steps.

特開2008-247955号公報Japanese Patent Application Publication No. 2008-247955

そこで、本発明が解決しようとする課題は、工程を増やすことなくPASオリゴマーを回収したときのガス発生量増加を抑制し、かつ、他の材料との反応性に優れるPAS樹脂を提供することにある。 Therefore, the problem to be solved by the present invention is to suppress the increase in gas generation when PAS oligomer is recovered without increasing the number of steps, and to provide a PAS resin that has excellent reactivity with other materials. be.

本願発明者らは種々の検討を行った結果、PAS樹脂の粗反応混合物に酸を添加し、その後の特定の洗浄工程で塩基を添加して、得られる混合物のpHを調整すること、かつ、特定の工程でPASオリゴマーを添加することで、他の材料との反応性に優れるPAS樹脂を製造できること、また、予めPASオリゴマーを精製しなくても添加に伴う発生ガスの増加を抑制することを見出し、本発明を完成するに至った。 As a result of various studies, the inventors of the present application found that the pH of the resulting mixture was adjusted by adding an acid to the crude reaction mixture of the PAS resin and adding a base in a subsequent specific washing step, and By adding PAS oligomer in a specific process, it is possible to produce PAS resin with excellent reactivity with other materials, and the increase in gas generated due to addition can be suppressed without refining the PAS oligomer in advance. This discovery led to the completion of the present invention.

すなわち、本発明は、有機極性溶媒中で、ポリハロ芳香族化合物と、(i)アルカリ金属硫化物とを、又は、(ii)アルカリ金属水硫化物及びアルカリ金属水酸化物とを反応させて、少なくとも、PAS樹脂(a)、アルカリ金属ハロゲン化物及び有機極性溶媒を含む粗反応混合物を得る工程(1)、
前記粗反応混合物に酸を添加する工程(2)、
前記粗反応混合物、クウェンチ法により固液分離により液相成分を除去して、少なくともPAS樹脂(a)及びアルカリ金属ハロゲン化物を含む固相成分(A)を得る工程(3)、
前記固相成分(A)を洗浄し、アルカリ金属ハロゲン化物を除去して少なくともPAS樹脂(a)を含む固相成分(B)を得る工程(4)、
前記固相成分(B)を熱水洗し、pH7.0~12.0の混合物(C)を得る工程(5)を有し、かつ、
前記工程(3)から前記工程(4)において、前記粗反応混合物、前記固相成分(A)及び前記固相成分(B)の少なくとも1つにオリゴマー混合物を添加すること、かつ、
前記オリゴマー混合物が、有機極性溶媒中で、ポリハロ芳香族化合物と、(i)アルカリ金属硫化物とを、または、(ii)アルカリ金属水硫化物及びアルカリ金属水酸化物とを反応させて、少なくとも、PAS樹脂(b)、PASオリゴマー、有機極性溶媒を含む粗反応混合物を得たのち、固液分離により固相成分を除去して得られた、少なくとも、PASオリゴマーを含む有機極性溶媒であること、を特徴とするPAS樹脂の製造方法に関する。
That is, the present invention allows a polyhaloaromatic compound to react with (i) an alkali metal sulfide, or (ii) an alkali metal hydrosulfide and an alkali metal hydroxide, in an organic polar solvent, Step (1) of obtaining a crude reaction mixture containing at least a PAS resin (a), an alkali metal halide, and an organic polar solvent;
step (2) of adding an acid to the crude reaction mixture;
Step (3) of removing the liquid phase component from the crude reaction mixture by solid-liquid separation using a quench method to obtain a solid phase component (A) containing at least a PAS resin (a) and an alkali metal halide;
a step (4) of washing the solid phase component (A) and removing the alkali metal halide to obtain a solid phase component (B) containing at least the PAS resin (a);
a step (5) of washing the solid phase component (B) with hot water to obtain a mixture (C) having a pH of 7.0 to 12.0, and
In the step (3) to the step (4), adding an oligomer mixture to at least one of the crude reaction mixture, the solid phase component (A), and the solid phase component (B), and
The oligomer mixture is prepared by reacting a polyhaloaromatic compound with (i) an alkali metal sulfide, or (ii) an alkali metal hydrosulfide and an alkali metal hydroxide in an organic polar solvent, and at least , PAS resin (b), a PAS oligomer, and an organic polar solvent containing at least a PAS oligomer obtained by removing a solid phase component by solid-liquid separation after obtaining a crude reaction mixture containing a PAS oligomer and an organic polar solvent. The present invention relates to a method for producing a PAS resin characterized by the following.

なお、本発明において、繰り返し単位2~40(2量体~40量体)を有する重合生成物を「オリゴマー」と称することがある。 In the present invention, a polymerization product having 2 to 40 repeating units (dimer to 40mer) may be referred to as an "oligomer."

本発明によれば、工程を増やすことなくPASオリゴマーを回収したときのガス発生量増加を抑制し、かつ、他の材料との反応性に優れるPAS樹脂を製造する方法を提供することができる。 According to the present invention, it is possible to provide a method for producing a PAS resin that suppresses an increase in the amount of gas generated when PAS oligomers are recovered without increasing the number of steps, and has excellent reactivity with other materials.

以下、本発明の一実施形態について詳細に説明するが、本発明の範囲はここで説明する一実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々の変更ができる。また、特定のパラメータについて、複数の上限値及び下限値が記載されている場合、これらの上限値及び下限値の内、任意の上限値と下限値とを組合せて好適な数値範囲とすることができる。 Hereinafter, one embodiment of the present invention will be described in detail, but the scope of the present invention is not limited to the one embodiment described here, and various changes can be made without departing from the spirit of the present invention. Additionally, if multiple upper and lower limit values are listed for a specific parameter, any of these upper and lower limit values may be combined to form a suitable numerical range. can.

<PAS樹脂の製造方法>
本発明のPAS樹脂の製造方法は、有機極性溶媒中で、ポリハロ芳香族化合物と、(i)アルカリ金属硫化物とを、又は、(ii)アルカリ金属水硫化物及びアルカリ金属水酸化物とを反応させて、少なくとも、PAS樹脂(a)、アルカリ金属ハロゲン化物及び有機極性溶媒を含む粗反応混合物を得る工程(1)、
前記粗反応混合物に酸を添加する工程(2)、
前記粗反応混合物を、クウェンチ法により固液分離により液相成分を除去して、少なくともPAS樹脂(a)及びアルカリ金属ハロゲン化物を含む固相成分(A)を得る工程(3)、
前記固相成分(A)を洗浄し、アルカリ金属ハロゲン化物を除去して少なくともPAS樹脂(a)を含む固相成分(B)を得る工程(4)、
前記固相成分(B)を熱水洗し、pH7.0~12.0の混合物(C)を得る工程(5)を有する。以下、詳述する。
<Method for manufacturing PAS resin>
The method for producing a PAS resin of the present invention comprises combining a polyhaloaromatic compound and (i) an alkali metal sulfide, or (ii) an alkali metal hydrosulfide and an alkali metal hydroxide in an organic polar solvent. A step (1) of reacting to obtain a crude reaction mixture containing at least a PAS resin (a), an alkali metal halide, and an organic polar solvent;
step (2) of adding an acid to the crude reaction mixture;
Step (3) of removing the liquid phase component from the crude reaction mixture by solid-liquid separation using a quench method to obtain a solid phase component (A) containing at least a PAS resin (a) and an alkali metal halide;
a step (4) of washing the solid phase component (A) and removing the alkali metal halide to obtain a solid phase component (B) containing at least the PAS resin (a);
The solid phase component (B) is washed with hot water to obtain a mixture (C) having a pH of 7.0 to 12.0 (5). The details will be explained below.

工程(1)
工程(1)は、有機極性溶媒中で、ポリハロ芳香族化合物と、(i)アルカリ金属硫化物とを、又は、(ii)アルカリ金属水硫化物及びアルカリ金属水酸化物とを反応させて、少なくとも、PAS樹脂(a)、アルカリ金属ハロゲン化物及び有機極性溶媒を含む粗反応混合物を得る工程である。
Process (1)
Step (1) involves reacting a polyhaloaromatic compound with (i) an alkali metal sulfide, or (ii) an alkali metal hydrosulfide and an alkali metal hydroxide in an organic polar solvent, This is a step of obtaining a crude reaction mixture containing at least the PAS resin (a), an alkali metal halide, and an organic polar solvent.

ここで、本発明においてポリハロ芳香族化合物としては、例えば、芳香族環に直接結合した2個以上のハロゲン原子を有するハロゲン化芳香族化合物であり、具体的には、p-ジクロルベンゼン、o-ジクロルベンゼン、m-ジクロルベンゼン、トリクロルベンゼン、テトラクロルベンゼン、ジブロムベンゼン、ジヨードベンゼン、トリブロムベンゼン、ジブロムナフタレン、トリヨードベンゼン、ジクロルジフェニルベンゼン、ジブロムジフェニルベンゼン、ジクロルベンゾフェノン、ジブロムベンゾフェノン、ジクロルジフェニルエーテル、ジブロムジフェニルエーテル、ジクロルジフェニルスルフィド、ジブロムジフェニルスルフィド、ジクロルビフェニル、ジブロムビフェニル等のジハロ芳香族化合物及びこれらの混合物が挙げられ、これらの化合物をブロック共重合してもよい。これらの中でも好ましいのはジハロゲン化ベンゼン類であり、特に好ましいのはp-ジクロルベンゼンを80モル%以上含むものである。また、枝分かれ構造とすることによってPAS樹脂の粘度増大を図る目的で、1分子中に3個以上のハロゲン置換基を有するポリハロ芳香族化合物を分岐剤として所望に応じて用いてもよい。このようなポリハロ芳香族化合物としては、例えば、1,2,4-トリクロルベンゼン、1,3,5-トリクロルベンゼン、1,4,6-トリクロルナフタレン等が挙げられる。更に、アミノ基、チオール基、ヒドロキシル基等の活性水素を持つ官能基を有するポリハロ芳香族化合物を挙げることが出来、具体的には、2,6-ジクロルアニリン、2,5-ジクロルアニリン、2,4-ジクロルアニリン、2,3-ジクロルアニリン等のジハロアニリン類;2,3,4-トリクロルアニリン、2,3,5-トリクロルアニリン、2,4,6-トリクロルアニリン、3,4,5-トリクロルアニリン等のトリハロアニリン類;2,2’-ジアミノ-4,4’-ジクロルジフェニルエーテル、2,4’-ジアミノ-2’,4-ジクロルジフェニルエーテル等のジハロアミノジフェニルエーテル類及びこれらの混合物においてアミノ基がチオール基やヒドロキシル基に置き換えられた化合物などが例示される。また、これらの活性水素含有ポリハロ芳香族化合物中の芳香族環を形成する炭素原子に結合した水素原子が他の不活性基、例えばアルキル基などの炭化水素基に置換している活性水素含有ポリハロ芳香族化合物も使用できる。 Here, in the present invention, the polyhaloaromatic compound is, for example, a halogenated aromatic compound having two or more halogen atoms directly bonded to an aromatic ring, and specifically, p-dichlorobenzene, o -Dichlorobenzene, m-dichlorobenzene, trichlorobenzene, tetrachlorobenzene, dibromobenzene, diiodobenzene, tribromobenzene, dibromnaphthalene, triiodobenzene, dichlorodiphenylbenzene, dibromodiphenylbenzene, dichlor Dihaloaromatic compounds such as benzophenone, dibrombenzophenone, dichlorodiphenyl ether, dibromodiphenyl ether, dichlordiphenyl sulfide, dibromodiphenylsulfide, dichlorbiphenyl, dibrombiphenyl, and mixtures thereof are mentioned, and these compounds can be blocked. May be copolymerized. Among these, preferred are dihalogenated benzenes, and particularly preferred are those containing 80 mol% or more of p-dichlorobenzene. Further, in order to increase the viscosity of the PAS resin by creating a branched structure, a polyhaloaromatic compound having three or more halogen substituents in one molecule may be used as a branching agent as desired. Examples of such polyhaloaromatic compounds include 1,2,4-trichlorobenzene, 1,3,5-trichlorobenzene, and 1,4,6-trichloronaphthalene. Furthermore, polyhaloaromatic compounds having functional groups with active hydrogen such as amino groups, thiol groups, and hydroxyl groups can be mentioned, and specifically, 2,6-dichloroaniline, 2,5-dichloroaniline, etc. , 2,4-dichloroaniline, dihaloanilines such as 2,3-dichloroaniline; 2,3,4-trichloroaniline, 2,3,5-trichloroaniline, 2,4,6-trichloroaniline, 3, Trihaloanilines such as 4,5-trichloroaniline; dihaloaminodiphenyl ethers such as 2,2'-diamino-4,4'-dichlorodiphenyl ether and 2,4'-diamino-2',4-dichlorodiphenyl ether Examples include compounds in which the amino group is replaced with a thiol group or a hydroxyl group in a mixture thereof. In addition, active hydrogen-containing polyhaloaromatic compounds in which the hydrogen atom bonded to the carbon atom forming the aromatic ring in these active hydrogen-containing polyhaloaromatic compounds are substituted with other inert groups, for example, hydrocarbon groups such as alkyl groups. Aromatic compounds can also be used.

これらの各種活性水素含有ポリハロ芳香族化合物の中でも、好ましいのは活性水素含有ジハロ芳香族化合物であり、特に好ましいのはジクロルアニリンである。 Among these various active hydrogen-containing polyhaloaromatic compounds, active hydrogen-containing dihaloaromatic compounds are preferred, and dichloroaniline is particularly preferred.

ニトロ基を有するポリハロ芳香族化合物としては、例えば、2,4-ジニトロクロルベンゼン、2,5-ジクロルニトロベンゼン等のモノ又はジハロニトロベンゼン類;2-ニトロ-4,4’-ジクロルジフェニルエーテル等のジハロニトロジフェニルエーテル類;3,3’-ジニトロ-4,4’-ジクロルジフェニルスルホン等のジハロニトロジフェニルスルホン類;2,5-ジクロル-3-ニトロピリジン、2-クロル-3,5-ジニトロピリジン等のモノ又はジハロニトロピリジン類;あるいは各種ジハロニトロナフタレン類などが挙げられる。 Examples of polyhaloaromatic compounds having a nitro group include mono- or dihalonitrobenzenes such as 2,4-dinitrochlorobenzene and 2,5-dichloronitrobenzene; 2-nitro-4,4'-dichlorodiphenyl ether, etc. dihalonitrodiphenyl ethers; dihalonitrodiphenyl sulfones such as 3,3'-dinitro-4,4'-dichlorodiphenylsulfone; 2,5-dichloro-3-nitropyridine, 2-chloro-3,5 - Mono- or dihalonitropyridines such as dinitropyridine; or various dihalonitronaphthalenes.

また、本発明においては、アルカリ金属硫化物又はアルカリ水硫化物及びアルカリ金属水酸化物(以下、スルフィド化剤ということがある)を原料として用いる。 Further, in the present invention, an alkali metal sulfide or an alkali hydrosulfide and an alkali metal hydroxide (hereinafter sometimes referred to as a sulfidating agent) are used as raw materials.

本発明において、前記アルカリ金属硫化物としては、硫化リチウム、硫化ナトリウム、硫化ルビジウム、硫化セシウム及びこれらの混合物が含まれる。かかるアルカリ金属硫化物は、水和物あるいは水性混合物あるいは無水物として使用することができる。また、アルカリ金属硫化物はアルカリ金属水硫化物とアルカリ金属水酸化物との反応によっても導くことができる。尚、通常、アルカリ金属硫化物中に微量存在するアルカリ金属水硫化物、チオ硫酸アルカリ金属と反応させるために、少量のアルカリ金属水酸化物を加えても差し支えない。 In the present invention, the alkali metal sulfide includes lithium sulfide, sodium sulfide, rubidium sulfide, cesium sulfide, and mixtures thereof. Such alkali metal sulfides can be used as hydrates or aqueous mixtures or as anhydrides. Moreover, an alkali metal sulfide can also be derived by a reaction between an alkali metal hydrosulfide and an alkali metal hydroxide. Note that a small amount of alkali metal hydroxide may be added in order to react with alkali metal hydrosulfide and alkali metal thiosulfate, which are usually present in a small amount in the alkali metal sulfide.

また、前記アルカリ金属水硫化物としては、硫化水素リチウム、硫化水素ナトリウム、硫化水素ルビジウム、硫化水素セシウム及びこれらの混合物が含まれる。かかるアルカリ金属水硫化物は、水和物あるいは水性混合物あるいは無水物として使用することができる。 Further, the alkali metal hydrosulfide includes lithium hydrogen sulfide, sodium hydrogen sulfide, rubidium hydrogen sulfide, cesium hydrogen sulfide, and mixtures thereof. Such alkali metal hydrosulfides can be used as hydrates or aqueous mixtures or as anhydrides.

また、前記アルカリ金属水硫化物はアルカリ金属水酸化物と伴に用いる。当該アルカリ金属水酸化物としては、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化ルビジウム、水酸化セシウム等が挙げられるが、これらはそれぞれ単独で用いても良いし、2種以上を混合して用いても良い。これらの中でも、入手が容易なことから水酸化リチウムと水酸化ナトリウム及び水酸化カリウムが好ましく、特に水酸化ナトリウムが好ましい。 Further, the alkali metal hydrosulfide is used together with an alkali metal hydroxide. Examples of the alkali metal hydroxide include lithium hydroxide, sodium hydroxide, potassium hydroxide, rubidium hydroxide, cesium hydroxide, etc. Each of these may be used alone, or two or more types may be used in combination. It may also be used as Among these, lithium hydroxide, sodium hydroxide, and potassium hydroxide are preferred because they are easily available, and sodium hydroxide is particularly preferred.

本発明のPAS樹脂の製造方法は、原料として含水スルフィド化剤を用いることもでき、その場合、少なくとも非プロトン性極性溶媒の存在下で、含水スルフィド化剤を脱水する工程を経て、PAS樹脂の重合反応に供することが好ましい。また、非プロトン性極性溶媒の仕込み量が少ない場合、例えば、スルフィド化剤の硫黄原子1モルに対して、1モル未満の場合、ポリハロ芳香族化合物の存在下で、含水スルフィド化剤と、非プロトン性極性溶媒とを、脱水させることが好ましい。 The method for producing PAS resin of the present invention can also use a hydrous sulfidating agent as a raw material. In that case, the PAS resin is It is preferable to subject it to a polymerization reaction. In addition, when the amount of the aprotic polar solvent charged is small, for example, when it is less than 1 mol per 1 mol of sulfur atoms of the sulfidating agent, in the presence of the polyhaloaromatic compound, the water-containing sulfidating agent and the non-protic polar solvent are It is preferable to dehydrate the protic polar solvent.

含水スルフィド化剤の脱水工程は、少なくとも非プロトン性極性溶媒と、含水スルフィド化剤として含水アルカリ金属硫化物又は含水アルカリ水硫化物及びアルカリ金属水酸化物を、蒸留装置が設けられた反応容器に仕込み、水が共沸により除去される温度、具体的には、300℃以下の範囲、好ましくは80~220℃の範囲、より好ましくは100~200℃の範囲にまで加熱して、蒸留により水を系外に排出することにより行う。脱水工程では、重合反応を行う系内の水分量が、スルフィド化剤の硫黄原子1モルに対して、5モル以下、より好ましくは、0.01~2.0モルの範囲となるまで脱水することが好ましい。 The dehydration step of the hydrous sulfidating agent is performed by adding at least an aprotic polar solvent and a hydrous alkali metal sulfide or a hydrous alkali hydrosulfide and an alkali metal hydroxide as the hydrous sulfidating agent to a reaction vessel equipped with a distillation apparatus. Water is removed by distillation by heating to a temperature at which water is removed azeotropically, specifically in the range of 300°C or lower, preferably in the range of 80 to 220°C, more preferably in the range of 100 to 200°C. This is done by discharging it out of the system. In the dehydration step, dehydration is performed until the amount of water in the system performing the polymerization reaction becomes 5 mol or less, more preferably in the range of 0.01 to 2.0 mol, per 1 mol of sulfur atoms of the sulfidating agent. It is preferable.

また、本発明において有機極性溶媒としては、ホルムアミド、アセトアミド、N-メチルホルムアミド、N,N-ジメチルアセトアミド、テトラメチル尿素、N-メチル-2-ピロリドン、2-ピロリドン、N-メチル-ε-カプロラクタム、ε-カプロラクタム、ヘキサメチルホスホルアミド、N-ジメチルプロピレン尿素、1,3-ジメチル-2-イミダゾリジノン酸などのアミド、尿素及びラクタム類;スルホラン、ジメチルスルホラン等のスルホラン類;ベンゾニトリル等のニトリル類;メチルフェニルケトン等のケトン類及びこれらの混合物を挙げることができ、これらの中でもN-メチル-2-ピロリドン、2-ピロリドン、N-メチル-ε-カプロラクタム、ε-カプロラクタム、ヘキサメチルホスホルアミド、N-ジメチルプロピレン尿素、1,3-ジメチル-2-イミダゾリジノン酸の脂肪族系環状構造を有するアミドが好ましく、N-メチル-2-ピロリドンがさらに好ましい。 In the present invention, examples of organic polar solvents include formamide, acetamide, N-methylformamide, N,N-dimethylacetamide, tetramethylurea, N-methyl-2-pyrrolidone, 2-pyrrolidone, N-methyl-ε-caprolactam. , ε-caprolactam, hexamethylphosphoramide, N-dimethylpropylene urea, amides such as 1,3-dimethyl-2-imidazolidinonic acid, urea and lactams; sulfolanes such as sulfolane and dimethylsulfolane; benzonitrile, etc. nitriles; ketones such as methylphenylketone and mixtures thereof; among these, N-methyl-2-pyrrolidone, 2-pyrrolidone, N-methyl-ε-caprolactam, ε-caprolactam, hexamethyl Amides having an aliphatic cyclic structure such as phosphoramide, N-dimethylpropylene urea, and 1,3-dimethyl-2-imidazolidinonic acid are preferred, and N-methyl-2-pyrrolidone is more preferred.

PAS重合工程におけるPAS樹脂の重合反応は、これらの有機極性溶媒の存在下、スルフィド化剤として上記アルカリ金属硫化物と、ポリハロ芳香族化合物とを反応させる。又は、PAS樹脂の重合反応は、これらの有機極性溶媒の存在下、スルフィド化剤として上記アルカリ金属水硫化物及びアルカリ金属水酸化物と、ポリハロ芳香族化合物とを反応させる。重合条件は一般に、温度200~330℃の範囲であり、圧力は重合溶媒及び重合モノマーであるポリハロ芳香族化合物を実質的に液相に保持するような範囲であるべきであり、一般には0.1~20MPaの範囲、好ましくは0.1~2MPaの範囲より選択される。ポリハロ芳香族化合物の仕込量は、前記スルフィド化剤の硫黄原子1モルに対して、0.2モル~5.0モルの範囲、好ましくは0.8~1.3モルの範囲、さらに好ましくは0.9~1.1モルの範囲となるよう調製する。また、非プロトン性極性溶媒の仕込量は、スルフィド化剤の硫黄原子1モルに対して、1.0~6.0モルの範囲、好ましくは2.5~4.5モルの範囲となるよう調整する。なお、重合反応は少量の水の存在下に行うことが好ましく、その割合は、重合方法や得られるポリマーの分子量や生産性との兼ね合いで適宜調整することが好ましい。具体的には、スルフィド化剤の硫黄原子1モルに対して2.0モル以下、好ましくは1.6モル以下の範囲となるよう脱水操作を行うが、さらにポリハロ芳香族化合物の存在下で脱水操作を行う場合(例えば、下記具体的態様における「5)」の方法)においては0.9モル以下、好ましくは0.05~0.3モル、より好ましくは0.01~0.02モル以下の範囲となるよう脱水操作を行えばよい。 The polymerization reaction of the PAS resin in the PAS polymerization step involves reacting the alkali metal sulfide as a sulfidating agent with a polyhaloaromatic compound in the presence of these organic polar solvents. Alternatively, in the polymerization reaction of the PAS resin, the alkali metal hydrosulfide and alkali metal hydroxide as a sulfidizing agent are reacted with a polyhaloaromatic compound in the presence of these organic polar solvents. Polymerization conditions generally range from 200 to 330° C. and pressure should be such as to maintain the polymerization solvent and monomer polyhaloaromatic substantially in the liquid phase, generally 0. The pressure is selected from the range of 1 to 20 MPa, preferably 0.1 to 2 MPa. The amount of the polyhaloaromatic compound charged is in the range of 0.2 mol to 5.0 mol, preferably in the range of 0.8 to 1.3 mol, more preferably in the range of 0.8 to 1.3 mol, per 1 mol of sulfur atom of the sulfidating agent. The amount is adjusted to be in the range of 0.9 to 1.1 mol. Further, the amount of the aprotic polar solvent to be charged is in the range of 1.0 to 6.0 mol, preferably in the range of 2.5 to 4.5 mol, per 1 mol of sulfur atom of the sulfidating agent. adjust. Note that the polymerization reaction is preferably carried out in the presence of a small amount of water, and the ratio is preferably adjusted as appropriate in consideration of the polymerization method, the molecular weight of the resulting polymer, and productivity. Specifically, dehydration is performed so that the amount is 2.0 mol or less, preferably 1.6 mol or less, per 1 mol of sulfur atoms of the sulfidating agent, and further dehydration is performed in the presence of a polyhaloaromatic compound. When performing the operation (for example, the method "5)" in the following specific embodiment), 0.9 mol or less, preferably 0.05 to 0.3 mol, more preferably 0.01 to 0.02 mol or less The dehydration operation may be performed so that the

上記した非プロトン性極性溶媒の存在下、スルフィド化剤とポリハロ芳香族化合物とを重合させる具体的態様としては、例えば、
1)アルカリ金属カルボン酸塩又はハロゲン化リチウム等の重合助剤を使用する方法、
2)芳香族ポリハロゲン化合物等の分岐剤を使用する方法、
3)少量の水の存在下に重合反応を行い次いで水を追加してさらに重合する方法、
4)アルカリ金属硫化物と芳香族ジハロゲン化合物との反応中に、反応釜の気相部分を冷却して反応釜内の気相の一部を凝縮させ液相に還流させる方法、
5)ポリハロ芳香族化合物の存在下、アルカリ金属硫化物、又は、含水アルカリ金属水硫化物及びアルカリ金属水酸化物と、脂肪族環状構造を有するアミド、尿素又はラクタムとを、脱水させながら反応させて固形のアルカリ金属硫化物を含むスラリーを製造する工程、該スラリーを製造した後、更にNMPなどの極性有機溶媒を加え、水を留去して脱水を行う工程、次いで、脱水工程を経て得られたスラリー中で、ポリハロ芳香族化合物と、アルカリ金属水硫化物と、前記脂肪族環状構造を有するアミド、尿素又はラクタムの加水分解物のアルカリ金属塩とを、NMPなどの極性有機溶媒1モルに対して反応系内に現存する水分量が0.02モル以下で反応させて重合を行う工程を必須の製造工程として有するPAS樹脂の製造方法、が挙げられる。
Specific embodiments of polymerizing the sulfidating agent and the polyhaloaromatic compound in the presence of the aprotic polar solvent described above include, for example,
1) A method using a polymerization aid such as an alkali metal carboxylate or lithium halide;
2) A method using a branching agent such as an aromatic polyhalogen compound,
3) A method of carrying out a polymerization reaction in the presence of a small amount of water, and then adding water and further polymerizing;
4) A method of cooling the gas phase portion of the reaction vessel during the reaction between the alkali metal sulfide and the aromatic dihalogen compound to condense a portion of the gas phase in the reaction vessel and refluxing it to a liquid phase;
5) In the presence of a polyhaloaromatic compound, an alkali metal sulfide, or a hydrous alkali metal hydrosulfide and an alkali metal hydroxide, and an amide, urea or lactam having an aliphatic cyclic structure are reacted while being dehydrated. After producing the slurry, a polar organic solvent such as NMP is further added and water is distilled off to perform dehydration. In the resulting slurry, a polyhaloaromatic compound, an alkali metal hydrosulfide, and an alkali metal salt of the hydrolyzate of an amide, urea, or lactam having an aliphatic cyclic structure are mixed in 1 mol of a polar organic solvent such as NMP. On the other hand, there is a method for producing a PAS resin which has as an essential production step a step of polymerizing the reaction in a state where the amount of water present in the reaction system is 0.02 mol or less.

このように、有機極性溶媒中で、ジハロ芳香族化合物と、スルフィド化剤とを重合反応させることにより、生成物として、PAS樹脂が得られるが、それ以外に、PASオリゴマーも副生される。粗反応混合物に含まれる物質としては、その他に、例えば、アルカリ金属含有無機塩、カルボキシアルキルアミノ基含有化合物、末端SH基含有化合物などの副生成物や未反応原料、水が含まれていても良い。 In this way, by polymerizing the dihalo aromatic compound and the sulfidating agent in an organic polar solvent, a PAS resin is obtained as a product, but in addition to that, a PAS oligomer is also produced as a by-product. Substances contained in the crude reaction mixture may also include by-products such as alkali metal-containing inorganic salts, carboxyalkylamino group-containing compounds, terminal SH group-containing compounds, unreacted raw materials, and water. good.

工程(2)
工程(2)は、前記粗反応混合物に酸を添加する工程である。本工程で酸を添加してから後続の工程を経ることによって、得られるPAS樹脂の反応性や結晶化温度、アルカリ金属含有量等を制御することができる。ここで用いられる酸は、例えば、塩酸、硫酸、炭酸、酢酸、シュウ酸、クエン酸等が挙げられ、これらの中でも酢酸、シュウ酸等が好ましい。
Process (2)
Step (2) is a step of adding an acid to the crude reaction mixture. By adding an acid in this step and performing subsequent steps, the reactivity, crystallization temperature, alkali metal content, etc. of the resulting PAS resin can be controlled. Examples of the acid used here include hydrochloric acid, sulfuric acid, carbonic acid, acetic acid, oxalic acid, citric acid, etc. Among these, acetic acid, oxalic acid, etc. are preferred.

本工程における酸の添加量は、特に限定されないが、例えば、仕込みアルカリ金属硫化物1モルに対して、好ましくは0.2モル%、特に好ましくは0.5モル%から、好ましくは10.0モル%以下、特に好ましくは6.0モル%以下の範囲である。 The amount of acid added in this step is not particularly limited, but for example, preferably 0.2 mol%, particularly preferably 0.5 mol%, and preferably 10.0 mol%, based on 1 mol of the charged alkali metal sulfide. The range is mol % or less, particularly preferably 6.0 mol % or less.

本工程において粗反応混合物に酸を添加する方法は、特に限定されないが、酸が液体であるときは、そのまま又は他の溶媒、好ましくは工程(1)で使用した有機極性溶媒で希釈して添加することが好ましく、酸が固体であるときは、適切な媒体例えば水、上記有機極性溶媒等に酸を溶解して添加することが好ましい。 The method of adding the acid to the crude reaction mixture in this step is not particularly limited, but when the acid is liquid, it is added as is or diluted with another solvent, preferably the organic polar solvent used in step (1). When the acid is a solid, it is preferable to dissolve the acid in an appropriate medium such as water or the above-mentioned organic polar solvent, and then add the acid.

酸処理の温度は、特に限定されないが、好ましくは常温からPAS樹脂の重合反応温度までの任意の温度を採ることができ、特に好ましくは常温~250℃である。処理温度が、上記下限未満では、本発明の効果を十分に達成できない。酸処理の時間は、処理温度及び処理されるPAS樹脂の性質等により異なるが、好ましくは5分間~24時間、特に好ましくは20分間~3時間である。処理時間が、上記下限未満では、上記と同様に本発明の効果を十分に達成できない。また、圧力については特に制限はなく、該処理は、好ましくは、反応終了後の反応缶中に酸を圧入することにより行われる。 The temperature of the acid treatment is not particularly limited, but can preferably be any temperature from room temperature to the polymerization reaction temperature of the PAS resin, particularly preferably from room temperature to 250°C. If the treatment temperature is less than the above lower limit, the effects of the present invention cannot be fully achieved. The acid treatment time varies depending on the treatment temperature, the properties of the PAS resin to be treated, etc., but is preferably 5 minutes to 24 hours, particularly preferably 20 minutes to 3 hours. If the treatment time is less than the above lower limit, the effects of the present invention cannot be sufficiently achieved as described above. Moreover, there is no particular restriction on the pressure, and the treatment is preferably carried out by injecting acid into the reaction vessel after the reaction is completed.

工程(3)
工程(3)は、工程(2)を経た粗反応混合物から、クウェンチ法により固液分離により液相成分を除去して、少なくともPAS樹脂(a)及びアルカリ金属ハロゲン化物を含む固相成分(A)を得る工程である。固液分離法は大きく分けて、後述するフラッシュ法とクウェンチ法の2種類があるが、本発明ではクウェンチ法を用いることが好ましい。
Process (3)
Step (3) is to remove a liquid phase component from the crude reaction mixture that has passed through step (2) through solid-liquid separation using a quench method to obtain a solid phase component (A) containing at least the PAS resin (a) and an alkali metal halide. ). Solid-liquid separation methods can be roughly divided into two types: a flash method and a quench method, which will be described later. However, in the present invention, it is preferable to use the quench method.

フラッシュ法は、粗反応混合物中の溶媒を蒸発させて溶媒回収し、同時に固形物を回収する方法であり、一般的に、粗反応混合物を高温高圧の状態から常圧もしくは減圧の雰囲気中へフラッシュさせ溶媒を留去及び回収すると同時にPAS樹脂を含む固形物を粉粒状にして回収する方法である。 The flash method is a method in which the solvent in the crude reaction mixture is evaporated to recover the solvent and solids are recovered at the same time.Generally, the crude reaction mixture is flashed from a high temperature and high pressure state into an atmosphere at normal pressure or reduced pressure. In this method, the solvent is distilled off and recovered, and at the same time, the solid material containing the PAS resin is turned into powder and recovered.

一方、クウェンチ法は、粗反応混合物を除冷して粒子状のPAS樹脂を回収する方法であり、一般的に、粗反応混合物を高温高圧の状態から徐々に冷却して反応系内のPAS樹脂を晶析させた後に、濾別等により固液分離することでPAS樹脂を含む固形分を顆粒として回収する方法である。冷却時間には特に制限は無いが、通常0.1℃/分~3℃/分が好ましい範囲である。また、徐冷工程の全行程において同一速度で徐冷する必要もなく、PAS樹脂の顆粒状物が晶析するまでは0.1℃/分~1℃/分の範囲とし、その後は1℃/分以上の速度で冷却する方法なども好ましい。最終的には70℃以上、好ましくは100℃以上かつ、200℃以下まで冷却し、その後、固液分離することでPAS樹脂を含む固形分を回収することが好ましい。クウェンチ法における固液分離は、濾過やスクリューデカンター等の遠心分離機を用いて分離した後、得られた濾過残渣に直接水を加えスラリー化したのち、固液分離を繰り返し行う方法や、得られた濾過残渣を非酸化性雰囲気下で加熱して、残存する溶媒を除去する方法などが挙げられる。クウェンチ法は、晶析時にポリマー粒子中に前記副生成物や未反応原料等の不純物を取り込みにくく、PASオリゴマーをより多く回収できるため、本工程においてはクウェンチ法がより好ましい。 On the other hand, the quench method is a method of gradually cooling the crude reaction mixture to recover particulate PAS resin. Generally, the crude reaction mixture is gradually cooled from a high temperature and high pressure state to recover the PAS resin in the reaction system. This is a method in which the solid content containing the PAS resin is recovered as granules by crystallizing the PAS resin and then performing solid-liquid separation by filtration or the like. There is no particular restriction on the cooling time, but the preferred range is usually 0.1°C/min to 3°C/min. In addition, there is no need to slow-cool at the same rate throughout the slow-cooling process; the speed should be in the range of 0.1°C/min to 1°C/min until the PAS resin granules crystallize, and then 1°C/min thereafter. A method of cooling at a rate of 1 minute or more is also preferable. It is preferable to finally cool the mixture to 70° C. or higher, preferably 100° C. or higher and 200° C. or lower, and then perform solid-liquid separation to recover the solid content containing the PAS resin. Solid-liquid separation in the quench method is performed by separating using filtration or a centrifugal separator such as a screw decanter, then adding water directly to the resulting filtration residue to form a slurry, and then repeating solid-liquid separation, or by repeatedly performing solid-liquid separation. For example, the remaining solvent may be removed by heating the filtration residue under a non-oxidizing atmosphere. The quench method is more preferable in this step because it makes it difficult for impurities such as the by-products and unreacted raw materials to be incorporated into the polymer particles during crystallization, and more PAS oligomers can be recovered.

工程(4)
工程(4)は、前記固相成分(A)を洗浄し、アルカリ金属ハロゲン化物を除去して少なくともPAS樹脂(a)を含む固相成分(B)を得る工程である。
Process (4)
Step (4) is a step of washing the solid phase component (A) and removing the alkali metal halide to obtain a solid phase component (B) containing at least the PAS resin (a).

本工程において、前記固相成分(A)は、水洗により洗浄される。水洗後、PAS樹脂を濾別することにより固液分離する方法としては、例えば、後述するPAS製造工程で得られた粗反応混合物から非プロトン性極性溶媒を固液分離させて得られた反応スラリーに水を加えて撹拌した後にろ過装置を用いてろ過する方法、前記したろ過によって得られた水分を含有するろ過残渣(以下「含水ケーキ」と略記する。)に再度水を加えてスラリーとした後にろ過する方法、又は前記含水ケーキがろ過器に保持された状態で再度水を加えろ過する方法等が挙げられる。 In this step, the solid phase component (A) is washed with water. After washing with water, the PAS resin is separated by filtration to perform solid-liquid separation, for example, a reaction slurry obtained by solid-liquid separation of the aprotic polar solvent from the crude reaction mixture obtained in the PAS manufacturing process described below A method in which water is added to the mixture, stirred, and then filtered using a filtration device, and water is added again to the filtration residue containing water obtained by the above-mentioned filtration (hereinafter abbreviated as "water-containing cake") to form a slurry. Examples include a method in which the cake is filtered afterwards, or a method in which water is added again to the water-containing cake while it is held in a filter and the cake is filtered.

前記水洗の際、前記固相成分(A)に加える水の量は最終的に得られるPAS樹脂の理論収量に対して2倍~10倍の範囲にあることが好ましく洗浄効率の点から好ましく、上記の量の水を2~10回、好ましくは2~4回に分割して水洗に供することが好ましい。前記水洗は、窒素ないし空気雰囲気下、水温20℃~100℃の範囲で行うことが好ましく、洗浄効率が良好となる点から、なかでも、50℃~100℃の範囲で行うことがより好ましく、さらに70℃~90℃の範囲で行うことが最も好ましい。前記水洗は、一回又は複数回繰り返し行うことができる。複数回繰り返し水洗浄する場合、前記雰囲気・温度条件は同一でも異なっていても良い。 During the water washing, the amount of water added to the solid phase component (A) is preferably in the range of 2 to 10 times the theoretical yield of the PAS resin finally obtained, from the viewpoint of washing efficiency. It is preferable to divide the above amount of water into 2 to 10 times, preferably 2 to 4 times, for washing. The washing with water is preferably carried out in a nitrogen or air atmosphere at a water temperature in the range of 20°C to 100°C, and more preferably in the range of 50°C to 100°C in order to improve the washing efficiency. Furthermore, it is most preferable to conduct the reaction at a temperature in the range of 70°C to 90°C. The water washing can be repeated once or multiple times. When water washing is repeated multiple times, the atmosphere and temperature conditions may be the same or different.

工程(5)
工程(5)は前記固相成分(B)を熱水洗し、pH7.0~12.0の混合物(C)を得る工程である。
Process (5)
Step (5) is a step of washing the solid phase component (B) with hot water to obtain a mixture (C) having a pH of 7.0 to 12.0.

本工程における熱水洗の温度は、例えば、100~280℃の範囲が好ましく、さらに120~275℃の範囲であることが、樹脂中に残留するアルカリ金属ハロゲン化物やスルフィド化剤の抽出効率が良好となる点から好ましい。更に具体的には、反応器内の気相の圧力を加圧下、より好ましくは0.2~4.6MPa(ゲージ圧)なる条件下、140~260℃の熱水で抽出処理を行うことが好ましい。 The temperature of hot water washing in this step is preferably in the range of 100 to 280°C, and more preferably in the range of 120 to 275°C, for good extraction efficiency of alkali metal halides and sulfidating agents remaining in the resin. This is preferable from the point of view. More specifically, the extraction treatment can be carried out with hot water at 140 to 260°C under the condition that the pressure of the gas phase in the reactor is increased, preferably 0.2 to 4.6 MPa (gauge pressure). preferable.

このような熱水洗を行う具体的方法は、前記の水洗後に濾別されたPAS樹脂を圧力容器中において所定の圧力条件及び温度条件下に水で攪拌下に洗浄する方法が挙げられる。熱水洗時の水量はPAS樹脂の質量に対して1.5倍~10倍であることが、前記アルカリ金属ハロゲン化物やスルフィド化剤の抽出効率が良好となる点から好ましく、この量の熱水を2回以上に分けて熱水洗を行ってもよい。例えば、熱水洗を2回繰り返す場合、1回目の熱水洗と2回目の熱水洗の間にはろ過を行い、1回目の熱水洗で抽出したアルカリ金属ハロゲン化物及びスルフィド化剤とPAS樹脂とを濾別することが好ましい。また、熱水洗を一回実施した後に濾過を行い、前記した水洗を実施しても良い。この操作によってもアルカリ金属ハロゲン化物及びスルフィド化剤と、PAS樹脂との分離、除去がより促進されうる。また1回目の熱水洗工程と2回目の熱水洗工程の条件は前記の条件より任意に選ぶことができるものの、1回目の熱水洗工程の温度は例えば120℃~200℃の範囲にある温度に設定して、まず高アルカリ性の濾液を濾別して除去した後に、2回目の熱水洗工程の温度を1回目の熱水洗工程の温度より高い温度、例えば150℃~275℃の範囲にある温度に設定して実施することが前記熱水洗で用いられる装置の耐薬品性の観点から好ましい。 A specific method for carrying out such hot water washing includes a method of washing the PAS resin filtered off after the water washing with water in a pressure vessel under stirring under predetermined pressure and temperature conditions. It is preferable that the amount of water during washing with hot water is 1.5 to 10 times the mass of the PAS resin in order to improve the extraction efficiency of the alkali metal halide and sulfidating agent. The hot water washing may be carried out in two or more times. For example, when hot water washing is repeated twice, filtration is performed between the first hot water washing and the second hot water washing, and the alkali metal halide and sulfidating agent extracted in the first hot water washing are combined with the PAS resin. It is preferable to separate by filtration. Alternatively, filtration may be performed after washing with hot water once, and the above-described washing with water may be performed. This operation can also facilitate the separation and removal of the alkali metal halide and sulfidating agent from the PAS resin. Furthermore, the conditions for the first hot water washing step and the second hot water washing step can be arbitrarily selected from the above conditions, but the temperature for the first hot water washing step is, for example, within the range of 120°C to 200°C. After setting and first filtering and removing the highly alkaline filtrate, the temperature of the second hot water washing step is set to a temperature higher than the temperature of the first hot water washing step, for example, a temperature in the range of 150 ° C. to 275 ° C. It is preferable to carry out the hot water washing from the viewpoint of chemical resistance of the equipment used in the hot water washing.

本工程においては、撹拌機を有する水洗槽及び固液分離するための遠心分離機を用いることも可能であるが、容器内部に撹拌翼を有し、且つ、底部に濾過用フィルターが配設された混合機能を有す容器内で行うこともできる。また、100℃を超える熱水洗でも、熱水洗を行う撹拌機を有する水洗槽、及び、その後の20~100℃でろ過するため、遠心分離機を用いることも可能であるが、容器内部に撹拌翼を有し、且つ、底部に濾過用フィルターが配設された密閉型あるいは密閉可能な混合機能を有す容器内で行うことも可能である。本発明において、水洗ないし熱水洗は連続的に行っても良いし、バッチ式に行ってもいずれでも良い。 In this process, it is possible to use a washing tank with an agitator and a centrifugal separator for solid-liquid separation, but it is also possible to use a washing tank with an agitator and a centrifugal separator for separating solid and liquid. It can also be carried out in a container with a mixing function. In addition, even for hot water washing exceeding 100°C, it is possible to use a washing tank with a stirrer to perform hot water washing, and a centrifuge for subsequent filtration at 20 to 100°C. It is also possible to conduct the mixing in a closed type container having wings and a filtration filter disposed at the bottom or a container having a mixing function that can be closed. In the present invention, water washing or hot water washing may be carried out continuously or batchwise.

本工程における熱水洗後の前記混合物(C)のpHは、7.0以上が好ましく10.0以上がより好ましく10.5以上がさらに好ましい。また、12.0以下が好ましく、12.0未満がより好ましく、11.5がさらに好ましい。かかる範囲に調整することで、オリゴマー混合物に含まれる不純物を効率よく除去することで、得られる樹脂の発生ガス量を低減することができる。 The pH of the mixture (C) after washing with hot water in this step is preferably 7.0 or higher, more preferably 10.0 or higher, and even more preferably 10.5 or higher. Further, it is preferably 12.0 or less, more preferably less than 12.0, and even more preferably 11.5. By adjusting it within this range, impurities contained in the oligomer mixture can be efficiently removed, thereby reducing the amount of gas generated from the resulting resin.

なお、本工程では熱水洗前にあらかじめ混合物(B)に塩基を添加することでpHを調節することもできる。用いることのできる塩基としては、特に限定されないが、例えば、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化セシウム、水酸化ルビジウム、水酸化マグネシウム、水酸化カルシウム、水酸化バリウム、水酸化アルミニウム、水酸化鉄等の金属水酸化物、又は炭酸リチウム、炭酸ナトリウム、炭酸アンモニウム、炭酸カリウム、炭酸水素ナトリウム、炭酸水素カリウム、リン酸ナトリウム、リン酸カルシウム、次亜塩素酸ナトリウム、次亜塩素酸カリウム、次亜塩素酸カルシウム、酢酸ナトリウム等が挙げられ、これらの中でも水酸化ナトリウムが好ましい。 In addition, in this step, the pH can also be adjusted by adding a base to the mixture (B) in advance before washing with hot water. The base that can be used is not particularly limited, but includes, for example, lithium hydroxide, sodium hydroxide, potassium hydroxide, cesium hydroxide, rubidium hydroxide, magnesium hydroxide, calcium hydroxide, barium hydroxide, aluminum hydroxide. , metal hydroxides such as iron hydroxide, or lithium carbonate, sodium carbonate, ammonium carbonate, potassium carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate, sodium phosphate, calcium phosphate, sodium hypochlorite, potassium hypochlorite, Examples include calcium hypochlorite and sodium acetate, and among these, sodium hydroxide is preferred.

また、本発明のPAS樹脂の製造方法は、前記工程(3)から前記工程(4)において、前記粗反応混合物、前記固相成分(A)及び前記固相成分(B)の少なくとも1つに対してオリゴマー混合物を添加することを特徴とする。具体的には、工程(3)における固液分離前の粗反応混合物や、工程(4)における洗浄前の固相成分(A)、工程(4)における洗浄後の固相成分(B)にオリゴマー混合物を添加することができる。オリゴマー混合物の添加は1回でもよく、2回以上に分けて行ってもよい。 Further, in the method for producing a PAS resin of the present invention, in the step (3) to the step (4), at least one of the crude reaction mixture, the solid phase component (A), and the solid phase component (B) is It is characterized in that an oligomer mixture is added to the mixture. Specifically, the crude reaction mixture before solid-liquid separation in step (3), the solid phase component (A) before washing in step (4), and the solid phase component (B) after washing in step (4) Oligomer mixtures can be added. The oligomer mixture may be added once, or may be added in two or more parts.

本発明で用いる前記オリゴマー混合物は、有機極性溶媒中で、ポリハロ芳香族化合物と、(i)アルカリ金属硫化物とを、または、(ii)アルカリ金属水硫化物及びアルカリ金属水酸化物とを反応させて、少なくとも、PAS樹脂(b)、PASオリゴマー、有機極性溶媒を含む粗反応混合物を得たのち、固液分離により固相成分を除去して得られた、少なくとも、PASオリゴマーを含む有機極性溶媒である。当該オリゴマー混合物を得る方法としては、特に限定されないが、例えば工程(1)と同様の方法で得られた粗反応混合物を固液分離する方法が挙げられる。固液分離方法については、工程(3)と同様の方法で行うことができる。 The oligomer mixture used in the present invention reacts a polyhaloaromatic compound with (i) an alkali metal sulfide, or (ii) an alkali metal hydrosulfide and an alkali metal hydroxide in an organic polar solvent. to obtain a crude reaction mixture containing at least a PAS resin (b), a PAS oligomer, and an organic polar solvent, and then a solid phase component was removed by solid-liquid separation to obtain an organic polar solvent containing at least a PAS oligomer. It is a solvent. The method for obtaining the oligomer mixture is not particularly limited, but includes, for example, a method of solid-liquid separation of the crude reaction mixture obtained by the same method as step (1). The solid-liquid separation method can be performed in the same manner as in step (3).

オリゴマー混合物の添加量は、特に限定されないが、添加する対象物に含まれるPAS樹脂(a)100質量部に対して、オリゴマー混合物に含まれるPASオリゴマーが10質量部以下となることが好ましい。複数回に分けてオリゴマー混合物を添加する場合には、合計の添加量がPAS樹脂(a)100質量部に対して10質量部以下となることが好ましい。かかる範囲において、発生ガスを抑制しながら効率よくPASオリゴマーをPAS樹脂に回収することができる。 The amount of the oligomer mixture added is not particularly limited, but it is preferable that the amount of PAS oligomer contained in the oligomer mixture is 10 parts by mass or less with respect to 100 parts by mass of PAS resin (a) contained in the object to be added. When adding the oligomer mixture in multiple portions, the total amount added is preferably 10 parts by mass or less based on 100 parts by mass of the PAS resin (a). Within this range, PAS oligomer can be efficiently recovered into PAS resin while suppressing generated gas.

濾別されたPAS樹脂は回収され、その後、そのまま乾燥してPAS樹脂粉末として用いても良いし、更に洗浄処理した後、固液分離し、乾燥を行って粉末状ないし顆粒状のPAS樹脂として調製することもできる。さらに、得られた粉末状ないし顆粒状のPAS樹脂に熱処理を行い、架橋PAS樹脂とすることもできる。 The filtered PAS resin is collected, and then it can be dried as it is and used as a PAS resin powder, or it can be further washed, separated into solid and liquid, and dried to be used as a powder or granular PAS resin. It can also be prepared. Furthermore, the obtained powdery or granular PAS resin can be heat-treated to form a crosslinked PAS resin.

上記の工程(1)~(5)を経た混合物(C)に含まれるPAS樹脂(a)の末端カルボキシ基の具体的な数値は、特に限定する必要はないが、当該樹脂中に10~100〔μmol/g〕以下の範囲とすることが好ましく、20~50〔μmol/g〕の範囲とすることがより好ましくは、30~40〔μmol/g〕の範囲とすることがさらに好ましい。なお、0〔μmol/g〕は好ましくは末端カルボキシ基を含有しないことを意味するが、通常は、検出限界以下であることを意味する。かかる範囲において、得られるPAS樹脂が反応性に優れるため好ましい。 The specific numerical value of the terminal carboxyl group of the PAS resin (a) contained in the mixture (C) that has undergone the above steps (1) to (5) does not need to be particularly limited, It is preferably in the range of [μmol/g] or less, more preferably in the range of 20 to 50 [μmol/g], and even more preferably in the range of 30 to 40 [μmol/g]. Note that 0 [μmol/g] preferably means that the terminal carboxy group is not contained, but it usually means that it is below the detection limit. This range is preferable because the resulting PAS resin has excellent reactivity.

さらに、上記の工程(1)~(5)を経た混合物(C)に含まれるPAS樹脂(a)の末端金属塩の具体的な数値は、特に限定する必要はないが、当該樹脂中に5~30〔μmol/g〕の範囲とすることが好ましく、10~30〔μmol/g〕の範囲とすることがより好ましい。かかる範囲において、溶融した際にPAS樹脂とPASオリゴマーが付加反応してPAS樹脂の分子量が高くなりやすく、溶融加工後に得られる樹脂組成物や成形品が耐衝撃性に優れるため好ましい。 Furthermore, the specific numerical value of the terminal metal salt of the PAS resin (a) contained in the mixture (C) that has undergone the above steps (1) to (5) does not need to be particularly limited; The range is preferably from 10 to 30 [μmol/g], more preferably from 10 to 30 [μmol/g]. This range is preferable because when melted, the PAS resin and the PAS oligomer tend to undergo an addition reaction to increase the molecular weight of the PAS resin, and the resin composition and molded product obtained after melt processing have excellent impact resistance.

なお、本願におけるPAS樹脂(a)とPAS樹脂(b)は、異なるバッチのPAS樹脂である。本願の製造方法で得られるPAS樹脂は、PAS樹脂(a)が含まれており、PAS樹脂(b)は含まれない。 Note that the PAS resin (a) and the PAS resin (b) in this application are different batches of PAS resin. The PAS resin obtained by the production method of the present application contains PAS resin (a) and does not contain PAS resin (b).

上述した本発明の製造方法を経て得られたPAS樹脂は以下の特徴を有する。 The PAS resin obtained through the production method of the present invention described above has the following characteristics.

上記の製造方法により得られたPAS樹脂は、反応性に優れる傾向を有する。具体的な反応性については特に限定されるものではないが、例えば、同一粘度のPAS樹脂において、実施例の方法で評価した混練トルクがより大きい値を示す傾向にある。その他の方法としては、例えば、実施例の方法を用いて測定した混練トルクの値と、γ-グリシドキシプロピルトリメトキシシランを添加せずに測定した混練トルクの値の変化率によっても、反応性を評価することができる。 PAS resins obtained by the above production method tend to have excellent reactivity. Although the specific reactivity is not particularly limited, for example, in PAS resins of the same viscosity, the kneading torque evaluated by the method of the example tends to show a larger value. As another method, for example, the reaction may be determined by the rate of change between the kneading torque value measured using the method of the example and the kneading torque value measured without adding γ-glycidoxypropyltrimethoxysilane. be able to evaluate gender.

本発明により得られたPAS樹脂は、従来と同様、充填剤や他の樹脂と配合して溶融混練後、直接または一旦ペレットに成形した後、射出成形、押出成形、圧縮成形、ブロー成形のごとき各種溶融加工法により、耐熱性、成形加工性、寸法安定性等に優れた成形物にすることができる。しかしながら強度、耐熱性、寸法安定性等の性能をさらに改善するために、本発明の目的を損なわない範囲で各種充填材と組み合わせて使用することも可能である。充填材としては、繊維状充填材、無機充填材等が挙げられる。また、成形加工の際に添加剤として本発明の目的を逸脱しない範囲で少量の、離型剤、着色剤、耐熱安定剤、紫外線安定剤、発泡剤、防錆剤、難燃剤、滑剤、カップリング剤を含有せしめることができる。更に、同様に下記のごとき合成樹脂及びエラストマーを混合して使用できる。これら合成樹脂としては、ポリエステル、ポリアミド、ポリイミド、ポリエーテルイミド、ポリカーボネート、ポリフェニレンエーテル、ポリスルフォン、ポリエーテルスルフォン、ポリエーテルエーテルケトン、ポリエーテルケトン、ポリアリーレン、ポリエチレン、ポリプロピレン、ポリ四弗化エチレン、ポリ二弗化エチレン、ポリスチレン、ABS樹脂、エポキシ樹脂、シリコーン樹脂、フェノール樹脂、ウレタン樹脂、液晶ポリマー等が挙げられ、エラストマーとしては、ポリオレフィン系ゴム、弗素ゴム、シリコーンゴム等が挙げられる。 As in the past, the PAS resin obtained by the present invention can be blended with fillers and other resins, melt-kneaded, directly or once formed into pellets, and then processed by injection molding, extrusion molding, compression molding, blow molding, etc. By various melt processing methods, it is possible to make molded products with excellent heat resistance, moldability, dimensional stability, etc. However, in order to further improve performance such as strength, heat resistance, and dimensional stability, it is also possible to use it in combination with various fillers as long as the purpose of the present invention is not impaired. Examples of the filler include fibrous fillers and inorganic fillers. In addition, small amounts of mold release agents, colorants, heat stabilizers, ultraviolet stabilizers, foaming agents, rust preventives, flame retardants, lubricants, and cups may be used as additives during molding without departing from the purpose of the present invention. A ring agent can be included. Furthermore, the following synthetic resins and elastomers can be mixed and used in the same manner. These synthetic resins include polyester, polyamide, polyimide, polyetherimide, polycarbonate, polyphenylene ether, polysulfone, polyethersulfone, polyetheretherketone, polyetherketone, polyarylene, polyethylene, polypropylene, polytetrafluoroethylene, Examples of the elastomer include polydifluoroethylene, polystyrene, ABS resin, epoxy resin, silicone resin, phenol resin, urethane resin, and liquid crystal polymer, and examples of the elastomer include polyolefin rubber, fluorine rubber, and silicone rubber.

本発明のPAS樹脂またはそれを含む樹脂組成物を溶融成形してなる成形品は、従来の方法で得られるPAS樹脂と同様に耐熱性、寸法安定性等に優れるので、例えば、コネクタ・プリント基板・封止成形品などの電気・電子部品、ランプリフレクター・各種電装部品などの自動車部品、各種建築物や航空機・自動車などの内装用材料、あるいはOA機器部品・カメラ部品・時計部品などの精密部品等の射出成形・圧縮成形品、あるいは繊維・フィルム・シート・パイプなどの押出成形・引抜成形品等として幅広く利用可能である。さらに、結晶化速度が従来の方法で得られるPPS樹脂よりも遅いことから、射出成形時にゲート部の固化を遅め肉厚部まで圧力を加えることができ、これによりこれまでの充填不足を解消し、強度低下を防止することができる。このことから、特に、大型ないし肉厚の成形品、好ましくは射出成形品に適しており、例えば、4mm以上の肉厚部を有する射出成形品、一辺が200mm以上の大型の射出成形品として特に好ましく利用可能である。 Molded products obtained by melt-molding the PAS resin of the present invention or a resin composition containing the same have excellent heat resistance and dimensional stability similar to PAS resins obtained by conventional methods.・Electrical/electronic parts such as encapsulated molded products, automotive parts such as lamp reflectors and various electrical components, interior materials for various buildings, aircraft, and automobiles, and precision parts such as OA equipment parts, camera parts, and watch parts. It can be widely used as injection molded or compression molded products such as, or extrusion molded or pultruded products such as fibers, films, sheets, pipes, etc. Furthermore, since the crystallization speed is slower than PPS resin obtained by conventional methods, it is possible to slow down the solidification of the gate part and apply pressure to the thick part during injection molding, which eliminates the lack of filling in the past. This can prevent a decrease in strength. For this reason, it is particularly suitable for large or thick molded products, preferably injection molded products, such as injection molded products with a wall thickness of 4 mm or more, and large injection molded products with a side of 200 mm or more. preferably available.

以下に実施例を挙げて本発明を具体的に説明する。これら例は例示的なものであって限定的なものではない。なお、以下、特に断りが無い場合「%」や「部」は質量基準とする。 The present invention will be specifically described below with reference to Examples. These examples are illustrative and not limiting. In addition, hereinafter, unless otherwise specified, "%" and "part" are based on mass.

<評価> <Evaluation>

(1)金属末端の定量
実施例1~8および比較例1~8で得られたPPS樹脂を白金るつぼに秤取り、そこに濃硫酸(原子吸光グレード)を浸る程度に加えて、TOSHIBA製コンロHP-103Kで加熱した。大半が灰化して残渣から煙が出なくったことを確認してから取り出し、さらにマッフル炉にて700℃5時間加熱することで、完全に灰化させた。室温まで冷却後、得られた灰分を1%塩酸水溶液に溶解させ、原子吸光光度計で水溶液中の金属量を測定した。得られた値から、PPS樹脂中の金属量を算出した。尚、本操作で使用する水は導電度18.2MΩ・cmのものを使用した。測定結果を表1~4に示す。
(1) Quantification of metal terminals The PPS resins obtained in Examples 1 to 8 and Comparative Examples 1 to 8 were weighed into a platinum crucible, and concentrated sulfuric acid (atomic absorption grade) was added thereto to the extent that the crucible was submerged. Heated with HP-103K. After confirming that most of the residue had been incinerated and no smoke was coming out of the residue, it was taken out and further heated in a muffle furnace at 700°C for 5 hours to completely incinerate it. After cooling to room temperature, the obtained ash was dissolved in a 1% aqueous hydrochloric acid solution, and the amount of metal in the aqueous solution was measured using an atomic absorption photometer. The amount of metal in the PPS resin was calculated from the obtained value. The water used in this operation had a conductivity of 18.2 MΩ·cm. The measurement results are shown in Tables 1 to 4.

(2)末端カルボキシル基の定量
実施例1~8および比較例1~8で得られたPPS樹脂を350℃でプレスしたのち、急冷することによって非晶性を示すフィルムを作製し、フーリエ変換赤外分光装置(以下「FT-IR装置」と略記する。)で測定した。赤外吸収スペクトルのうち630.6cm-1の吸光度に対する1705cm-1の吸光度の相対強度を求め、別途後述する方法により作成した検量線を用いて測定サンプル中のカルボキシ基の含有量を求めた。なお、カルボキシ基の含有量は樹脂混合物1g中のモル数で示され、その単位は〔μmol/g〕で表される。検量線は以下の方法で作成した。まず、酸処理を行わずカルボン酸塩を分子末端に含有するように作製したPPS樹脂に、所定量の4-クロロフェニル酢酸を加え良く混合したのち、前記と同様のフィルムを作製し、FT-IR装置で測定を行った。4-クロロフェニル酢酸の添加量から算出したカルボキシ基含有量に対する、前記2つの波長の吸光度の相対強度比をプロットした検量線を作成した。測定結果を表1~4に示す。
(2) Quantification of terminal carboxyl groups The PPS resins obtained in Examples 1 to 8 and Comparative Examples 1 to 8 were pressed at 350°C and then rapidly cooled to produce a film exhibiting amorphous properties. Measurement was performed using an external spectrometer (hereinafter abbreviated as "FT-IR device"). In the infrared absorption spectrum, the relative intensity of the absorbance at 1705 cm -1 to the absorbance at 630.6 cm -1 was determined, and the content of carboxy groups in the measurement sample was determined using a calibration curve prepared by a method described separately later. In addition, the content of the carboxyl group is shown by the number of moles in 1 g of the resin mixture, and its unit is expressed in [μmol/g]. A calibration curve was created using the following method. First, a predetermined amount of 4-chlorophenylacetic acid was added to a PPS resin prepared without acid treatment so as to contain carboxylate at the molecular end, and mixed well. A film similar to the above was prepared, and FT-IR Measurements were made with the device. A calibration curve was created by plotting the relative intensity ratio of the absorbance at the two wavelengths against the carboxy group content calculated from the amount of 4-chlorophenylacetic acid added. The measurement results are shown in Tables 1 to 4.

(3)ウェイトロスの評価
実施例1~8および比較例1~8で得られたPPS樹脂を精密天秤にて4.0000gアルミ製シャーレに秤量した。150℃に設定された乾燥機内に試料を1時間静置した後、シャーレを取出して、室温まで放冷してから秤量した。次いで、同シャーレを、370℃に設定された乾燥機内に1時間静置した後、シャーレを取出して、室温まで放冷してから秤量した。次式より各試料のウェイトロスを算出した。測定結果を表1~4に示す。
{(150℃加熱後の秤量値)-(370℃加熱後の秤量値)}/(150℃加熱後の秤量値)×100
(3) Evaluation of weight loss 4.0000 g of the PPS resins obtained in Examples 1 to 8 and Comparative Examples 1 to 8 were weighed into an aluminum petri dish using a precision balance. After leaving the sample in a dryer set at 150° C. for 1 hour, the Petri dish was taken out, allowed to cool to room temperature, and then weighed. Next, the petri dish was left to stand in a dryer set at 370° C. for 1 hour, then taken out, allowed to cool to room temperature, and then weighed. The weight loss of each sample was calculated using the following formula. The measurement results are shown in Tables 1 to 4.
{(Weighing value after heating at 150°C) - (Weighing value after heating at 370°C)}/(Weighing value after heating at 150°C) x 100

(4)溶融粘度(V6)の測定
実施例1~8および比較例1~8で得られたPPS樹脂の溶融粘度(V6)は、島津製作所製のフローテスター(CFT-500C型)を用いて、温度300℃、荷重1.96MPa、オリフィス長とオリフィス径との、前者/後者の比が10/1であるオリフィスを使用して6分間保持した後に測定した。測定結果を表1~4に示す。
(4) Measurement of melt viscosity (V6) The melt viscosity (V6) of the PPS resins obtained in Examples 1 to 8 and Comparative Examples 1 to 8 was measured using a flow tester (Model CFT-500C) manufactured by Shimadzu Corporation. The measurement was carried out after holding for 6 minutes at a temperature of 300° C., a load of 1.96 MPa, and an orifice having an orifice length to diameter ratio of 10/1. The measurement results are shown in Tables 1 to 4.

(5)反応性の評価
実施例1~8および比較例1~8で得られたPPS樹脂にγ-グリシドキシプロピルトリメトキシシランを0.8%(対PPS樹脂固形分質量比)を添加したものを試料とし、溶融混練時のトルク変化から、樹脂の反応性を評価した。溶融混練は、ラボプラストミル(20-200C、R-60タイプミキサー使用、株式会社東洋精機製作所製)を用いて、305
℃、40rpm、8分間行い、8分時のトルク〔kgf・m〕を測定した。測定結果を表1~4に示す。
(5) Evaluation of reactivity 0.8% (mass ratio of solid content to PPS resin) of γ-glycidoxypropyltrimethoxysilane was added to the PPS resins obtained in Examples 1 to 8 and Comparative Examples 1 to 8. The sample was used to evaluate the reactivity of the resin from the change in torque during melt-kneading. Melt kneading was carried out using a Laboplast Mill (20-200C, R-60 type mixer, manufactured by Toyo Seiki Seisakusho Co., Ltd.).
℃, 40 rpm, 8 minutes, and the torque [kgf·m] at 8 minutes was measured. The measurement results are shown in Tables 1 to 4.

(6)オリゴマー混合物中のPPSオリゴマーの定量
参考例1および2で得られたオリゴマー混合物10.0gに水を100.0g添加して室温で撹拌し、水スラリー化した。得られたスラリーを固液分離したあと、固相成分を水で洗浄してから十分に乾燥し、PPSオリゴマーを得た。質量を測定し、オリゴマー混合物中におけるPPSオリゴマーの含有量を算出した。
(6) Quantification of PPS oligomer in oligomer mixture 100.0 g of water was added to 10.0 g of the oligomer mixture obtained in Reference Examples 1 and 2, and the mixture was stirred at room temperature to form a water slurry. After solid-liquid separation of the obtained slurry, the solid phase component was washed with water and thoroughly dried to obtain a PPS oligomer. The mass was measured and the content of PPS oligomer in the oligomer mixture was calculated.

<参考例1>
圧力計、温度計、コンデンサ-を連結した撹拌翼及び底弁付き150Lオートクレーブに、フレーク状硫化ソーダ(60.3質量%NaS)19.413kg(150モル)と、N-メチル-2-ピロリドン(NMP)45.0kg(454モル)を仕込んだ。窒素気流下攪拌しながら209℃まで昇温して、水4.644kgを留出させた(残存する水分量は硫化ソーダ1モル当り1.13モル)。その後、オートクレーブを密閉して180℃まで冷却してから、p-ジクロロベンゼン(以下、p-DCBと略す)21.631kg(147モル)及びNMP18.0kg(182モル)を仕込んだ。さらに冷却し、液温150℃において、窒素ガスを用いてゲージ圧で0.1MPaに加圧してから液温240℃まで135分かけて昇温し30分保持した。その後40分かけて液温250℃まで昇温し、73分保持して反応させた。その後、オートクレーブを冷却した。100℃でオートクレーブの底弁を開き、反応スラリーを150L平板ろ過機に移送し120℃で加圧ろ過し、NMP48.0kgを加え、再度加圧ケーキ洗浄ろ過した。回収したNMPろ液の質量は80.0kgであり、PPSオリゴマー1.09kgが含まれていた。NMPろ液を缶壁温度150℃とした蒸発器に仕込み、減圧下でNMPを蒸留により除去し、オリゴマー含有量54質量%のPPSオリゴマー混合物2.02kgを得た。
<Reference example 1>
19.413 kg (150 mol) of flaky sodium sulfide (60.3% by mass Na 2 S) and N-methyl-2- 45.0 kg (454 mol) of pyrrolidone (NMP) was charged. The temperature was raised to 209° C. with stirring under a nitrogen stream, and 4.644 kg of water was distilled out (the amount of remaining water was 1.13 mol per 1 mol of sodium sulfide). Thereafter, the autoclave was sealed and cooled to 180° C., and then 21.631 kg (147 mol) of p-dichlorobenzene (hereinafter abbreviated as p-DCB) and 18.0 kg (182 mol) of NMP were charged. It was further cooled, and at a liquid temperature of 150° C., the liquid temperature was pressurized to 0.1 MPa at a gauge pressure using nitrogen gas, and then the temperature was raised to a liquid temperature of 240° C. over 135 minutes and held for 30 minutes. Thereafter, the temperature of the liquid was raised to 250° C. over 40 minutes, and the temperature was maintained for 73 minutes to allow reaction. Thereafter, the autoclave was cooled. The bottom valve of the autoclave was opened at 100° C., and the reaction slurry was transferred to a 150 L plate filter and filtered under pressure at 120° C., 48.0 kg of NMP was added, and the cake was washed and filtered under pressure again. The mass of the recovered NMP filtrate was 80.0 kg and contained 1.09 kg of PPS oligomer. The NMP filtrate was charged into an evaporator with a can wall temperature of 150° C., and NMP was removed by distillation under reduced pressure to obtain 2.02 kg of a PPS oligomer mixture with an oligomer content of 54% by mass.

<参考例2>
NMPろ液を缶壁温度250℃とした蒸発器に仕込んだこと以外は参考例1と同様に行い、オリゴマー含有量31質量%のPPSオリゴマー混合物3.52kgを得た。
<Reference example 2>
The same procedure as in Reference Example 1 was carried out except that the NMP filtrate was charged into an evaporator with a can wall temperature of 250° C., and 3.52 kg of a PPS oligomer mixture having an oligomer content of 31% by mass was obtained.

<実施例1>
工程(1)
圧力計、温度計、コンデンサ-を連結した撹拌翼および底弁付き150Lオートクレーブに、フレーク状硫化ソーダ(60.3質量%NaS)19.413kgと、NMP45.0kgを仕込んだ。窒素気流下攪拌しながら209℃まで昇温して、水4.644kgをコンデンサーを介して留出させた(オートクレーブ内に残存する水分量は硫化ソーダ1モル当り1.13モル)。その後、オートクレーブを密閉して180℃まで冷却し、p-DCB22.185kgをNMP18.0kgに溶解し、減圧下で仕込んだ。さらに冷却し、液温150℃において窒素ガスを用いてゲージ圧で0.1MPaに加圧して昇温を開始した。液温260℃でオートクレーブ上部を散水することにより冷却しつつ3時間攪拌し、反応を進めた。その後液温を降温させる際に、オートクレーブ上部の冷却を止めた。反応中の最高圧力は、0.85MPaであった。
<Example 1>
Process (1)
19.413 kg of flaky sodium sulfide (60.3% by mass Na 2 S) and 45.0 kg of NMP were charged into a 150 L autoclave equipped with a stirring blade and a bottom valve connected to a pressure gauge, a thermometer, and a condenser. The temperature was raised to 209° C. with stirring under a nitrogen stream, and 4.644 kg of water was distilled out via a condenser (the amount of water remaining in the autoclave was 1.13 mol per mol of sodium sulfide). Thereafter, the autoclave was sealed and cooled to 180° C., and 22.185 kg of p-DCB was dissolved in 18.0 kg of NMP and charged under reduced pressure. The solution was further cooled, and at a liquid temperature of 150° C., nitrogen gas was used to pressurize the solution to a gauge pressure of 0.1 MPa, thereby starting to raise the temperature. The reaction proceeded by stirring for 3 hours while cooling the autoclave at a liquid temperature of 260° C. by sprinkling water on the upper part of the autoclave. Thereafter, when the liquid temperature was lowered, cooling of the upper part of the autoclave was stopped. The maximum pressure during the reaction was 0.85 MPa.

工程(2)
反応後、冷却し、温度170℃の時点でシュウ酸2水和物0.471kg(スルフィド化剤に対して2.5モル%、3.7モル)をNMP1.099kgに含む溶液を加圧注入した。30分間撹拌後、100℃に冷却した。
Process (2)
After the reaction, it was cooled, and at a temperature of 170°C, a solution containing 0.471 kg of oxalic acid dihydrate (2.5 mol%, 3.7 mol relative to the sulfidating agent) in 1.099 kg of NMP was injected under pressure. did. After stirring for 30 minutes, the mixture was cooled to 100°C.

工程(3)
100℃に冷却した反応スラリーを150L平板ろ過機に移送し120℃で加圧ろ過したのち、NMP16kgを加え、加圧ろ過した。ろ過後、撹拌翼付き150L真空乾燥機を用いて、減圧下150℃で2時間撹拌してNMPを除去し、PPS樹脂を含む混合物(A)を得た。
Process (3)
The reaction slurry cooled to 100°C was transferred to a 150L flat plate filter and filtered under pressure at 120°C, and then 16 kg of NMP was added and filtered under pressure. After filtration, NMP was removed by stirring under reduced pressure at 150° C. for 2 hours using a 150 L vacuum dryer equipped with stirring blades, to obtain a mixture (A) containing PPS resin.

工程(4)
前記混合物(A)417gに70℃のイオン交換水1000gを加え、20分間撹拌したのちろ過した。同様の操作を2回繰り返し、混合物(B)を得た。得られた混合物(B)と、イオン交換水600gと、混合物(B)に含まれるPPS樹脂に対し、参考例1で製造したPPSオリゴマー混合物をPPSオリゴマーとして2質量%と、水酸化ナトリウム水溶液(48質量%NaOH)5g(スルフィド化剤に対して0.040モル%、59ミリモル)を撹拌機付き1Lオートクレーブに仕込んだ。
Process (4)
1000 g of ion-exchanged water at 70° C. was added to 417 g of the mixture (A), stirred for 20 minutes, and then filtered. The same operation was repeated twice to obtain a mixture (B). The obtained mixture (B), 600 g of ion-exchanged water, and 2% by mass of the PPS oligomer mixture produced in Reference Example 1 as a PPS oligomer were added to the PPS resin contained in the mixture (B), and an aqueous sodium hydroxide solution ( 5 g (0.040 mol %, 59 mmol based on the sulfidating agent) of 48% by mass NaOH was charged into a 1 L autoclave equipped with a stirrer.

工程(5)
仕込んだ混合溶液を160℃で3時間撹拌を行った。室温にまで冷却後、ろ過して、ろ液のpHが7.4であることを確認した。得られた含水ケーキに70℃のイオン交換水800gを加え、ろ過した。得られた含水ケーキを120℃の熱風循環乾燥機で6時間乾燥して白色粉末状のPPS樹脂を得た。
Process (5)
The charged mixed solution was stirred at 160°C for 3 hours. After cooling to room temperature, it was filtered and the pH of the filtrate was confirmed to be 7.4. 800 g of ion-exchanged water at 70° C. was added to the obtained water-containing cake and filtered. The obtained water-containing cake was dried in a hot air circulation dryer at 120° C. for 6 hours to obtain a white powdery PPS resin.

<実施例2>
工程(4)で用いるオリゴマー混合物を参考例2で製造したPPSオリゴマー混合物とし、その添加量を混合物(B)に含まれるPPS樹脂に対しPPSオリゴマーとして3質量%としたこと、水酸化ナトリウム水溶液(48質量%NaOH)を8g(スルフィド化剤に対して0.061モル%、90ミリモル)としたこと、工程(5)のろ液のpHが7.5であること以外は実施例1と同様に行い、白色粉末状のPPS樹脂を得た。
<Example 2>
The oligomer mixture used in step (4) was the PPS oligomer mixture produced in Reference Example 2, and the amount added was 3% by mass as PPS oligomer based on the PPS resin contained in mixture (B), and an aqueous sodium hydroxide solution ( Same as Example 1 except that 8 g (0.061 mol %, 90 mmol based on the sulfidating agent) of 48 mass% NaOH) and that the pH of the filtrate in step (5) was 7.5. A white powdery PPS resin was obtained.

<実施例3>
工程(4)の参考例1で製造したPPSオリゴマー混合物の添加量を混合物(B)に含まれるPPS樹脂に対しPPSオリゴマーとして3質量%としたこと、水酸化ナトリウム水溶液(48質量%NaOH)を10g(スルフィド化剤に対して0.080モル%、119ミリモル)としたこと、工程(5)のろ液のpHが7.9であること以外は実施例1と同様に行い、白色粉末状のPPS樹脂を得た。
<Example 3>
The addition amount of the PPS oligomer mixture produced in Reference Example 1 of step (4) was 3% by mass as PPS oligomer with respect to the PPS resin contained in mixture (B), and the sodium hydroxide aqueous solution (48% by mass NaOH) was The same procedure as in Example 1 was carried out except that 10 g (0.080 mol %, 119 mmol based on the sulfidating agent) and the pH of the filtrate in step (5) was 7.9, and a white powder was obtained. A PPS resin was obtained.

<実施例4>
工程(4)の混合物(A)に対して参考例1で製造したPPSオリゴマー混合物の添加量を混合物(A)に含まれるPPS樹脂に対しPPSオリゴマーとして3質量%添加したこと、水酸化ナトリウム水溶液(48質量%NaOH)を67g(スルフィド化剤に対して0.541モル%、801ミリモル)としたこと、工程(5)のろ液のpHが11.2であること以外は実施例1と同様に行い、白色粉末状のPPS樹脂を得た。
<Example 4>
The addition amount of the PPS oligomer mixture produced in Reference Example 1 to the mixture (A) in step (4) was 3% by mass as PPS oligomer to the PPS resin contained in the mixture (A), and an aqueous sodium hydroxide solution. Same as Example 1 except that 67 g (0.541 mol %, 801 mmol of the sulfidating agent) of (48 mass% NaOH) was used, and that the pH of the filtrate in step (5) was 11.2. A white powdery PPS resin was obtained in the same manner.

<実施例5>
工程(3)の加圧ろ過後のPPS樹脂を含む混合物に対して、参考例1で製造したPPSオリゴマー混合物の添加量を混合物に含まれるPPS樹脂に対しPPSオリゴマーとして3質量%としたこと、工程(4)の水酸化ナトリウム水溶液(48質量%NaOH)を27g(スルフィド化剤に対して0.216モル%、320ミリモル)としたこと、工程(5)のろ液のpHが10.7であること以外は実施例1と同様に行い、白色粉末状のPPS樹脂を得た。
<Example 5>
The amount of the PPS oligomer mixture produced in Reference Example 1 added to the mixture containing PPS resin after pressure filtration in step (3) was 3% by mass as PPS oligomer based on the PPS resin contained in the mixture; The sodium hydroxide aqueous solution (48 mass% NaOH) in step (4) was 27 g (0.216 mol%, 320 mmol relative to the sulfidating agent), and the pH of the filtrate in step (5) was 10.7. A white powdery PPS resin was obtained in the same manner as in Example 1 except for the following.

<実施例6>
工程(4)で用いるオリゴマー混合物を参考例2で製造したPPSオリゴマー混合物とし、その添加量を混合物(B)に含まれるPPS樹脂に対しPPSオリゴマーとして5質量%としたこと、水酸化ナトリウム水溶液(48質量%NaOH)を14g(スルフィド化剤に対して0.115モル%、169ミリモル)としたこと、工程(5)のろ液のpHが8.8であること以外は実施例1と同様に行い、白色粉末状のPPS樹脂を得た。
<Example 6>
The oligomer mixture used in step (4) was the PPS oligomer mixture produced in Reference Example 2, and the amount added was 5% by mass as PPS oligomer based on the PPS resin contained in mixture (B), and an aqueous sodium hydroxide solution ( Same as Example 1 except that 48% by mass NaOH) was 14g (0.115% by mole, 169 mmol based on the sulfidating agent) and the pH of the filtrate in step (5) was 8.8. A white powdery PPS resin was obtained.

<実施例7>
工程(4)の参考例1で製造したPPSオリゴマー混合物の添加量を混合物(B)に含まれるPPS樹脂に対しPPSオリゴマーとして7質量%としたこと、水酸化ナトリウム水溶液(48質量%NaOH)を19g(スルフィド化剤に対して0.153モル%、226ミリモル)としたこと、工程(5)のろ液のpHが9.2であること以外は実施例1と同様に行い、白色粉末状のPPS樹脂を得た。
<Example 7>
The amount of the PPS oligomer mixture produced in Reference Example 1 of step (4) was 7% by mass as PPS oligomer with respect to the PPS resin contained in mixture (B), and the sodium hydroxide aqueous solution (48% by mass NaOH) was The same procedure as in Example 1 was carried out except that 19 g (0.153 mol %, 226 mmol based on the sulfidating agent) and that the pH of the filtrate in step (5) was 9.2, and a white powder was obtained. A PPS resin was obtained.

<実施例8>
工程(4)の参考例1で製造したPPSオリゴマー混合物の添加量を混合物(B)に含まれるPPS樹脂に対しPPSオリゴマーとして10質量%としたこと、水酸化ナトリウム水溶液(48質量%NaOH)を60g(スルフィド化剤に対して0.487モル%、721ミリモル)としたこと、工程(5)のろ液のpHが11.0であること以外は実施例1と同様に行い、白色粉末状のPPS樹脂を得た。
<Example 8>
The addition amount of the PPS oligomer mixture produced in Reference Example 1 of step (4) was 10% by mass as PPS oligomer with respect to the PPS resin contained in mixture (B), and the sodium hydroxide aqueous solution (48% by mass NaOH) was The same procedure as in Example 1 was carried out except that 60 g (0.487 mol %, 721 mmol based on the sulfidating agent) and that the pH of the filtrate in step (5) was 11.0, and a white powder was obtained. A PPS resin was obtained.

<比較例1>
工程(4)のPPSオリゴマー混合物を添加しないこと、水酸化ナトリウム水溶液(48質量%NaOH)を53g(スルフィド化剤に対して0.433モル%、641ミリモル)としたこと、工程(5)のろ液のpHが11.0であること以外は実施例1と同様に行い、白色粉末状のPPS樹脂を得た。
<Comparative example 1>
The PPS oligomer mixture of step (4) was not added, the sodium hydroxide aqueous solution (48 mass% NaOH) was 53 g (0.433 mol %, 641 mmol based on the sulfidating agent), and the step (5) A white powdery PPS resin was obtained in the same manner as in Example 1 except that the pH of the filtrate was 11.0.

<比較例2>
工程(4)の参考例1で製造したPPSオリゴマー混合物の添加量を混合物(B)に含まれるPPS樹脂に対しPPSオリゴマーとして5質量%としたこと、水酸化ナトリウム水溶液(48質量%NaOH)を添加しないこと、工程(5)のろ液のpHが6.3であること以外は実施例1と同様に行い、白色粉末状のPPS樹脂組成物を得た。
<Comparative example 2>
The addition amount of the PPS oligomer mixture produced in Reference Example 1 of step (4) was 5% by mass as PPS oligomer with respect to the PPS resin contained in mixture (B), and the sodium hydroxide aqueous solution (48% by mass NaOH) was A white powdery PPS resin composition was obtained in the same manner as in Example 1, except that no addition was made and the pH of the filtrate in step (5) was 6.3.

<比較例3>
工程(4)の参考例1で製造したPPSオリゴマー混合物の添加量を混合物(B)に含まれるPPS樹脂に対しPPSオリゴマーとして5質量%としたこと、水酸化ナトリウム水溶液(48質量%NaOH)を334g(スルフィド化剤に対して2.705モル%、4003ミリモル)としたこと、工程(5)のろ液のpHが12.3であること以外は実施例1と同様に行い、白色粉末状のPPS樹脂組成物を得た。
<Comparative example 3>
The addition amount of the PPS oligomer mixture produced in Reference Example 1 of step (4) was 5% by mass as PPS oligomer with respect to the PPS resin contained in mixture (B), and the sodium hydroxide aqueous solution (48% by mass NaOH) was The same procedure as in Example 1 was carried out except that 334 g (2.705 mol %, 4003 mmol based on the sulfidating agent) and the pH of the filtrate in step (5) was 12.3, and a white powder was obtained. A PPS resin composition was obtained.

<比較例4>
工程(4)の参考例1で製造したPAPオリゴマー混合物の添加量を混合物(B)に含まれるPPS樹脂に対しPPSオリゴマーとして17質量%としたこと、水酸化ナトリウム水溶液(48質量%NaOH)を33g(スルフィド化剤に対して0.271モル%、400ミリモル)としたこと、工程(5)のろ液のpHが10.9であること以外は実施例1と同様に行い、白色粉末状のPPS樹脂組成物を得た。
<Comparative example 4>
The amount of the PAP oligomer mixture produced in Reference Example 1 of step (4) was 17% by mass as PPS oligomer with respect to the PPS resin contained in mixture (B), and the aqueous sodium hydroxide solution (48% by mass NaOH) was The procedure was carried out in the same manner as in Example 1, except that 33 g (0.271 mol %, 400 mmol based on the sulfidating agent) and that the pH of the filtrate in step (5) was 10.9, and a white powder was obtained. A PPS resin composition was obtained.

<比較例5>
工程(1)
圧力計、温度計、コンデンサ-を連結した撹拌翼および底弁付き150Lオートクレーブに、フレーク状硫化ソーダ(60.3質量%NaS)19.413kgと、NMP45.0kgを仕込んだ。窒素気流下攪拌しながら209℃まで昇温して、水4.644kgを留出させた(残存する水分量は硫化ソーダ1モル当り1.13モル)。その後、オートクレーブを密閉して180℃まで冷却し、p-DCB22.185kg及びNMP18.0kgを仕込んだ。液温150℃で窒素ガスを用いてゲージ圧で0.1MPaに加圧して昇温を開始した。液温260℃で3時間攪拌しつつ反応を進め、オートクレーブ上部を散水することにより冷却した。反応中の最高圧力は、0.85MPaであった。
<Comparative example 5>
Process (1)
19.413 kg of flaky sodium sulfide (60.3% by mass Na 2 S) and 45.0 kg of NMP were charged into a 150 L autoclave equipped with a stirring blade and a bottom valve connected to a pressure gauge, a thermometer, and a condenser. The temperature was raised to 209° C. while stirring under a nitrogen stream, and 4.644 kg of water was distilled out (the amount of remaining water was 1.13 mol per mol of sodium sulfide). Thereafter, the autoclave was sealed and cooled to 180°C, and 22.185 kg of p-DCB and 18.0 kg of NMP were charged. At a liquid temperature of 150° C., the pressure was increased to 0.1 MPa using nitrogen gas, and the temperature was increased. The reaction proceeded with stirring at a liquid temperature of 260° C. for 3 hours, and the autoclave was cooled by sprinkling water on the upper part of the autoclave. The maximum pressure during the reaction was 0.85 MPa.

工程(2)
オートクレーブを冷却し、温度170℃の時点でシュウ酸2水和物0.471kg(スルフィド化剤に対して2.5モル%、3.7モル)とNMP1.099kgの混合溶液を加圧注入した。その後、30分間攪拌してから100℃に冷却した。
Process (2)
The autoclave was cooled, and at a temperature of 170°C, a mixed solution of 0.471 kg of oxalic acid dihydrate (2.5 mol %, 3.7 mol relative to the sulfidating agent) and 1.099 kg of NMP was injected under pressure. . Thereafter, the mixture was stirred for 30 minutes and then cooled to 100°C.

工程(3)
100℃に達した後、オートクレーブの底弁を開いて、減圧状態のまま撹拌翼付き150L真空撹拌乾燥機に反応スラリーを抜き取った。続いて、減圧下150℃で2時間撹拌してNMPを十分除去し、粉末状のPPS樹脂と塩類との混合物を得た。
Process (3)
After the temperature reached 100° C., the bottom valve of the autoclave was opened and the reaction slurry was taken out into a 150 L vacuum stirring dryer equipped with stirring blades under reduced pressure. Subsequently, NMP was sufficiently removed by stirring at 150° C. under reduced pressure for 2 hours to obtain a powdery mixture of PPS resin and salts.

工程(4)
該混合物417gに70℃のイオン交換水1000gを加え、20分間撹拌したのちろ過する工程を2回繰り返した。得られた含水ケーキと、イオン交換水600g、参考例1で製造したPPSオリゴマー混合物をPPS樹脂に対しPPSオリゴマーとして5質量%、水酸化ナトリウム水溶液(48質量%NaOH)133g(スルフィド化剤に対して1.082モル%、1601ミリモル)を撹拌機付き1Lオートクレーブに仕込んだ。
Process (4)
The process of adding 1000 g of ion-exchanged water at 70° C. to 417 g of the mixture, stirring for 20 minutes, and then filtering was repeated twice. The obtained water-containing cake, 600 g of ion-exchanged water, and the PPS oligomer mixture produced in Reference Example 1 were added to the PPS resin in an amount of 5% by mass as PPS oligomer, and 133 g of an aqueous sodium hydroxide solution (48% by mass NaOH) (in relation to the sulfidation agent). (1.082 mol%, 1601 mmol) was charged into a 1 L autoclave equipped with a stirrer.

工程(5)
仕込んだ混合溶液を160℃で30分間撹拌した。室温にまで冷却後、ろ過して、ろ液のpHが11.5となることを確認した。得られた含水ケーキに70℃のイオン交換水800gを加え、ろ過した。得られた含水ケーキを120℃の熱風循環乾燥機で6時間乾燥して白色粉末状のPPS樹脂を得た。
Process (5)
The charged mixed solution was stirred at 160°C for 30 minutes. After cooling to room temperature, it was filtered and the pH of the filtrate was confirmed to be 11.5. 800 g of ion-exchanged water at 70° C. was added to the obtained water-containing cake and filtered. The obtained water-containing cake was dried in a hot air circulation dryer at 120° C. for 6 hours to obtain a white powdery PPS resin.

<比較例6>
工程(2)のシュウ酸2水和物を添加しないこと、工程(4)のPPSオリゴマー混合物を添加しないこと、水酸化ナトリウム水溶液(48質量%NaOH)を4g(スルフィド化剤に対して0.032モル%、48ミリモル)としたこと、工程(5)のろ液のpHが10.7であること以外は実施例1と同様に行い、白色粉末状のPPS樹脂を得た。
<Comparative example 6>
Do not add oxalic acid dihydrate in step (2), do not add PPS oligomer mixture in step (4), and add 4 g of sodium hydroxide aqueous solution (48% by mass NaOH) (0.0% to sulfidating agent). A white powdery PPS resin was obtained in the same manner as in Example 1, except that the pH of the filtrate in step (5) was 10.7.

<比較例7>
工程(2)のシュウ酸2水和物を添加しないこと、工程(4)の参考例1で製造したPPSオリゴマー混合物の添加量を混合物(B)に含まれるPPS樹脂に対しPPSオリゴマーとして5質量%としたこと、水酸化ナトリウム水溶液(48質量%NaOH)を4g(スルフィド化剤に対して0.032モル%、48ミリモル)としたこと、工程(5)のろ液のpHが10.9であること以外は実施例1と同様に行い、白色粉末状のPPS樹脂を得た。
<Comparative example 7>
Do not add oxalic acid dihydrate in step (2), and add the amount of the PPS oligomer mixture produced in Reference Example 1 in step (4) to 5 mass as PPS oligomer to the PPS resin contained in mixture (B). %, the sodium hydroxide aqueous solution (48 mass% NaOH) was 4 g (0.032 mol %, 48 mmol relative to the sulfidating agent), and the pH of the filtrate in step (5) was 10.9. A white powdery PPS resin was obtained in the same manner as in Example 1 except for the following.

<比較例8>
工程(4)のPPSオリゴマー混合物を添加せず、水酸化ナトリウム水溶液(48質量%NaOH)を89g(スルフィド化剤に対して0.725モル%、1073ミリモル)としたこと、工程(5)のろ液のpHが11.2であること、工程(5)の熱水洗したあと、ろ過して得られた含水ケーキに、PPS樹脂に対して参考例1で製造したPPSオリゴマー混合物をPASオリゴマーとして5質量%加えてから70℃のイオン交換水800gを加えてろ過したこと以外は実施例1と同様に行い、白色粉末状のPPS樹脂組成物を得た。
<Comparative example 8>
The PPS oligomer mixture in step (4) was not added, and the sodium hydroxide aqueous solution (48 mass% NaOH) was 89 g (0.725 mol %, 1073 mmol based on the sulfidating agent), and in step (5). The pH of the filtrate is 11.2, and after washing with hot water in step (5), the PPS oligomer mixture produced in Reference Example 1 is added to the filtered water-containing cake as a PAS oligomer for the PPS resin. A white powdery PPS resin composition was obtained in the same manner as in Example 1 except that 800 g of ion-exchanged water at 70° C. was added and filtered after adding 5% by mass.

Figure 2024022460000001
Figure 2024022460000001

Figure 2024022460000002
Figure 2024022460000002

Figure 2024022460000003
Figure 2024022460000003

Figure 2024022460000004
Figure 2024022460000004

表1~4の結果から、実施例の樹脂はPPSオリゴマーの高効率な回収と発生ガス増加の抑制を両立し、また、より大きい混練トルク値を示したことから、優れた反応性を呈することが示された。 From the results in Tables 1 to 4, the resins of the examples achieved both highly efficient recovery of PPS oligomers and suppression of the increase in generated gas, and also showed a higher kneading torque value, indicating that they exhibited excellent reactivity. It has been shown.

Claims (2)

有機極性溶媒中で、ポリハロ芳香族化合物と、(i)アルカリ金属硫化物とを、又は、(ii)アルカリ金属水硫化物及びアルカリ金属水酸化物とを反応させて、少なくとも、ポリアリーレンスルフィド樹脂(a)、アルカリ金属ハロゲン化物及び有機極性溶媒を含む粗反応混合物を得る工程(1)、
前記粗反応混合物に酸を添加する工程(2)、
前記粗反応混合物から、クウェンチ法により固液分離により液相成分を除去して、少なくともポリアリーレンスルフィド樹脂(a)及びアルカリ金属ハロゲン化物を含む固相成分(A)を得る工程(3)、
前記固相成分(A)を洗浄し、アルカリ金属ハロゲン化物を除去して少なくともポリアリーレンスルフィド樹脂(a)を含む固相成分(B)を得る工程(4)、
前記固相成分(B)を熱水洗し、pH7.0~12.0の混合物(C)を得る工程(5)を有し、かつ、
前記工程(3)から前記工程(4)において、前記粗反応混合物、前記固相成分(A)及び前記固相成分(B)の少なくとも1つにオリゴマー混合物を添加すること、かつ、
前記オリゴマー混合物が、有機極性溶媒中で、ポリハロ芳香族化合物と、(i)アルカリ金属硫化物とを、または、(ii)アルカリ金属水硫化物及びアルカリ金属水酸化物とを反応させて、少なくとも、ポリアリーレンスルフィド樹脂(b)、ポリアリーレンスルフィドオリゴマー、有機極性溶媒を含む粗反応混合物を得たのち、固液分離により固相成分を除去して得られた、少なくとも、ポリアリーレンスルフィドオリゴマーを含む有機極性溶媒であること、を特徴とするポリアリーレンスルフィド樹脂の製造方法。
At least a polyarylene sulfide resin is produced by reacting a polyhaloaromatic compound with (i) an alkali metal sulfide, or (ii) an alkali metal hydrosulfide and an alkali metal hydroxide in an organic polar solvent. (a), step (1) of obtaining a crude reaction mixture containing an alkali metal halide and an organic polar solvent;
step (2) of adding an acid to the crude reaction mixture;
Step (3) of removing a liquid phase component from the crude reaction mixture by solid-liquid separation using a quench method to obtain a solid phase component (A) containing at least a polyarylene sulfide resin (a) and an alkali metal halide;
a step (4) of washing the solid phase component (A) and removing the alkali metal halide to obtain a solid phase component (B) containing at least the polyarylene sulfide resin (a);
a step (5) of washing the solid phase component (B) with hot water to obtain a mixture (C) having a pH of 7.0 to 12.0, and
In the step (3) to the step (4), adding an oligomer mixture to at least one of the crude reaction mixture, the solid phase component (A), and the solid phase component (B), and
The oligomer mixture is prepared by reacting a polyhaloaromatic compound with (i) an alkali metal sulfide, or (ii) an alkali metal hydrosulfide and an alkali metal hydroxide in an organic polar solvent, and at least , a crude reaction mixture containing a polyarylene sulfide resin (b), a polyarylene sulfide oligomer, and an organic polar solvent is obtained, and then a solid phase component is removed by solid-liquid separation, and the mixture contains at least a polyarylene sulfide oligomer. A method for producing a polyarylene sulfide resin, characterized by using an organic polar solvent.
前記ポリアリーレンスルフィド樹脂(a)100質量部に対して、ポリアリーレンスルフィドオリゴマーが10質量部以下の範囲である、請求項1記載のポリアリーレンスルフィド樹脂の製造方法。 The method for producing a polyarylene sulfide resin according to claim 1, wherein the polyarylene sulfide oligomer is in a range of 10 parts by mass or less based on 100 parts by mass of the polyarylene sulfide resin (a).
JP2023039560A 2022-08-04 2023-03-14 Method for producing polyarylene sulfide resin Pending JP2024022460A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022124691 2022-08-04
JP2022124691 2022-08-04

Publications (1)

Publication Number Publication Date
JP2024022460A true JP2024022460A (en) 2024-02-16

Family

ID=89855433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2023039560A Pending JP2024022460A (en) 2022-08-04 2023-03-14 Method for producing polyarylene sulfide resin

Country Status (1)

Country Link
JP (1) JP2024022460A (en)

Similar Documents

Publication Publication Date Title
JP5794468B2 (en) Method for producing polyarylene sulfide resin
JP6402971B2 (en) Sulfiding agent and method for producing polyarylene sulfide resin
JP5888118B2 (en) Method for producing oligoarylene sulfide and carboxyalkylamino group-containing compound
JP6003345B2 (en) Method for producing polyarylene sulfide resin
JP2017071752A (en) Method for producing polyarylene sulfide resin
WO2021117795A1 (en) Polyarylene sulfide, and purification method and production method therefor
JP2017210559A (en) Method for producing composition containing carboxyalkylamino group-containing compound and oligomer
JP6136292B2 (en) Process for producing polyarylene sulfide
JP7331661B2 (en) Method for producing sulfidating agent and polyarylene sulfide resin
JP6120054B2 (en) Method for producing polyarylene sulfide resin
JP5888142B2 (en) Method for producing solution containing carboxyalkylamino group-containing compound and aprotic polar solvent, and method for producing composition containing alkali metal-containing inorganic salt and aprotic polar solvent
JP2024022460A (en) Method for producing polyarylene sulfide resin
JP6003346B2 (en) Method for producing polyarylene sulfide resin
JP7214998B2 (en) Method for producing carboxyalkylamino group-containing compound and method for producing cyclic polyarylene sulfide
JP7214997B2 (en) Method for producing carboxyalkylamino group-containing compound and method for producing cyclic polyarylene sulfide
JP6003347B2 (en) Method for producing polyarylene sulfide resin
JP2024021683A (en) Production method of polyarylene sulfide resin
JP7380278B2 (en) Sulfidating agent and method for producing polyarylene sulfide resin
JP7453617B2 (en) Sulfidating agent and method for producing polyarylene sulfide resin
JP7413820B2 (en) Sulfidating agent and method for producing polyarylene sulfide resin
JP2024013930A (en) Method for producing polyarylene sulfide resin
JPH0649208A (en) Production of high-molecular weight polyarylene sulfide
JP6390079B2 (en) Process for producing branched polyarylene sulfide resin
JP2024013931A (en) Method for producing polyarylene sulfide resin
JP2022161191A (en) Method for producing sulfidizing agent and polyarylene sulfide resin