Nothing Special   »   [go: up one dir, main page]

JP2024010048A - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
JP2024010048A
JP2024010048A JP2023181011A JP2023181011A JP2024010048A JP 2024010048 A JP2024010048 A JP 2024010048A JP 2023181011 A JP2023181011 A JP 2023181011A JP 2023181011 A JP2023181011 A JP 2023181011A JP 2024010048 A JP2024010048 A JP 2024010048A
Authority
JP
Japan
Prior art keywords
adhesive
film
semiconductor
component
semiconductor element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2023181011A
Other languages
Japanese (ja)
Inventor
由衣 國土
Yui Kokudo
和弘 山本
Kazuhiro Yamamoto
俊介 藤尾
Shunsuke Fujio
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Resonac Holdings Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Resonac Holdings Corp filed Critical Resonac Holdings Corp
Publication of JP2024010048A publication Critical patent/JP2024010048A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • C09J7/35Heat-activated
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/04Non-macromolecular additives inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/06Non-macromolecular additives organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J201/00Adhesives based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • C09J7/28Metal sheet
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/52Mounting semiconductor bodies in containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6835Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L21/6836Wafer tapes, e.g. grinding or dicing support tapes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/32Holders for supporting the complete device in operation, i.e. detachable fixtures
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2203/00Applications of adhesives in processes or use of adhesives in the form of films or foils
    • C09J2203/326Applications of adhesives in processes or use of adhesives in the form of films or foils for bonding electronic components such as wafers, chips or semiconductors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/30Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier
    • C09J2301/312Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier parameters being the characterizing feature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68327Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used during dicing or grinding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32135Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/32145Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Die Bonding (AREA)
  • Adhesive Tapes (AREA)
  • Dicing (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

To provide a semiconductor device using a film-like adhesive which is excellent in adhesive force while sufficiently suppressing copper ion permeation in the adhesive.SOLUTION: There is provided a semiconductor device. The semiconductor device includes a support member, a first semiconductor element bonded onto the support member by a first adhesive member, and a second semiconductor element bonded onto the first semiconductor element by a second adhesive member. The first adhesive member and the second adhesive member are cured products of the film-like adhesive. The film-like adhesive contains a thermosetting resin, a curing agent, acrylic rubber, and an inorganic filler. The content of the inorganic filler is 0.5-10 pts.mass with respect to 100 pts.mass of the total mass of the thermosetting resin, the curing agent, the acrylic rubber and the inorganic filler. The thickness of the film-like adhesive is 15 μm or less.SELECTED DRAWING: Figure 7

Description

本発明は、フィルム状接着剤、接着シート、並びに半導体装置及びその製造方法に関する。 The present invention relates to a film adhesive, an adhesive sheet, a semiconductor device, and a method for manufacturing the same.

近年、半導体素子(半導体チップ)を多段に積層したスタックドMCP(Multi Chip Package)が普及しており、携帯電話、携帯オーディオ機器用のメモリ半導体パッケージ等として搭載されている。また、携帯電話等の多機能化に伴い、半導体パッケージの高速化、高密度化、高集積化等も推し進められている。これに伴い、半導体チップ回路の配線材料として銅を使用することによって高速化が図られている。また、複雑な搭載基板への接続信頼性の向上、半導体パッケージからの排熱促進の観点から、銅を素材としたリードフレーム等が使用されつつある。 2. Description of the Related Art In recent years, stacked MCPs (Multi Chip Packages) in which semiconductor elements (semiconductor chips) are stacked in multiple stages have become popular, and are installed as memory semiconductor packages for mobile phones, mobile audio devices, and the like. Furthermore, as mobile phones and the like become more multifunctional, semiconductor packages are becoming faster, more dense, more highly integrated, and so on. Along with this, speeding up has been achieved by using copper as a wiring material for semiconductor chip circuits. In addition, lead frames made of copper are being used from the viewpoint of improving the reliability of connections to complex mounting boards and promoting heat dissipation from semiconductor packages.

しかし、銅は腐食し易い特性をもち、また、低コスト化の観点から、回路面の絶縁性を確保するためのコート材も簡略化される傾向にあるため、半導体パッケージの電気的特性を確保し難くなる傾向にある。特に、半導体チップを多段積層する半導体パッケージでは、腐食により発生した銅イオンが接着剤内部を移動し、半導体チップ内又は半導体チップ/半導体チップ間での電気信号のロスが起こり易い傾向にある。 However, copper has the characteristic of being easily corroded, and from the perspective of cost reduction, the coating materials used to ensure the insulation of the circuit surface are also becoming simpler, so the electrical characteristics of the semiconductor package cannot be guaranteed. It tends to be difficult to do. In particular, in a semiconductor package in which semiconductor chips are stacked in multiple layers, copper ions generated due to corrosion move inside the adhesive, which tends to cause electrical signal loss within the semiconductor chip or between semiconductor chips.

また、高機能化という観点から、複雑な搭載基板へ半導体素子を接続することが多く、接続信頼性を向上するために銅を素材としたリードフレームが好まれる傾向にある。このような場合においても、リードフレームから発生する銅イオンによる電気信号のロスが問題となることがある。 In addition, from the viewpoint of high functionality, semiconductor elements are often connected to complex mounting boards, and lead frames made of copper tend to be preferred in order to improve connection reliability. Even in such a case, loss of electrical signals due to copper ions generated from the lead frame may pose a problem.

さらに、銅を素材とする部材を使用した半導体パッケージにおいては、その部材から銅イオンが発生し、電気的な不具合を起こす可能性が高く、充分な耐HAST性が得られないことがある。 Furthermore, in a semiconductor package using a member made of copper, there is a high possibility that copper ions are generated from the member, causing electrical problems, and sufficient HAST resistance may not be obtained.

電気信号のロス等を防ぐ観点から、半導体パッケージ内で発生する銅イオンを捕捉する接着剤の検討が行われている。例えば、特許文献1には、エポキシ基を有し、且つ、カルボキシル基を有さない熱可塑性樹脂と、3級の窒素原子を環原子に含む複素環化合物を有し、陽イオンと錯体を形成する有機系錯体形成化合物とを有する半導体装置製造用の接着シートが開示されている。 In order to prevent loss of electrical signals, adhesives that capture copper ions generated within semiconductor packages are being studied. For example, Patent Document 1 describes a thermoplastic resin having an epoxy group and no carboxyl group, and a heterocyclic compound containing a tertiary nitrogen atom in a ring atom, which forms a complex with a cation. An adhesive sheet for manufacturing semiconductor devices having an organic complex-forming compound is disclosed.

しかしながら、従来の接着剤では、接着剤内の銅イオン透過の抑制の点及び接着力の点において充分でなく、未だ改善の余地がある。 However, conventional adhesives are not sufficient in terms of suppression of copper ion permeation within the adhesive and adhesive strength, and there is still room for improvement.

特開2013-026566号公報JP2013-026566A

そこで、本発明は、接着剤内の銅イオン透過を充分に抑制しつつ、さらに接着力に優れるフィルム状接着剤を提供することを主な目的とする。 Therefore, the main object of the present invention is to provide a film adhesive which has excellent adhesive strength while sufficiently suppressing copper ion permeation within the adhesive.

本発明者らが鋭意検討したところ、フィルム状接着剤に無機フィラーの含有量を特定の範囲にすることによって、接着剤内の銅イオン透過を充分に抑制しつつ、さらに接着力に優れることを見出し、本発明を完成するに至った。 The inventors of the present invention have conducted extensive studies and found that by controlling the content of inorganic filler in a film adhesive within a specific range, it is possible to sufficiently suppress copper ion permeation within the adhesive while also achieving superior adhesive strength. This discovery led to the completion of the present invention.

本発明の一側面は、半導体素子と半導体素子を搭載する支持部材とを接着するためのフィルム状接着剤であって、フィルム状接着剤が、熱硬化性樹脂と、硬化剤と、アクリルゴムと、無機フィラーとを含有し、無機フィラーの含有量が、熱硬化性樹脂、硬化剤、アクリルゴム、及び無機フィラーの総質量100質量部に対して、0.5~10質量部であり、フィルム状接着剤の厚みが15μm以下である、フィルム状接着剤を提供する。 One aspect of the present invention is a film adhesive for bonding a semiconductor element and a support member on which the semiconductor element is mounted, the film adhesive comprising a thermosetting resin, a curing agent, and an acrylic rubber. , an inorganic filler, the content of the inorganic filler is 0.5 to 10 parts by mass with respect to 100 parts by mass of the total mass of the thermosetting resin, curing agent, acrylic rubber, and inorganic filler, and the film To provide a film-like adhesive having a thickness of 15 μm or less.

無機フィラーの含有量が、熱硬化性樹脂、硬化剤、アクリルゴム、及び無機フィラーの総質量100質量部に対して、0.5~10質量部である。無機フィラーの含有量が、0.5質量部以上であると、フィルム状接着剤の接着力、ウェハ密着力、弾性率、バルク強度といった点においても優れる傾向にある。無機フィラーの含有量が、10質量部以下であると、接着剤内の銅イオン透過を充分に抑制するとともに、塗工面の外観、埋込性といった点においても優れる傾向にある。 The content of the inorganic filler is 0.5 to 10 parts by mass based on 100 parts by mass of the total mass of the thermosetting resin, curing agent, acrylic rubber, and inorganic filler. When the content of the inorganic filler is 0.5 parts by mass or more, the film adhesive tends to be excellent in terms of adhesive strength, wafer adhesion, elastic modulus, and bulk strength. When the content of the inorganic filler is 10 parts by mass or less, permeation of copper ions within the adhesive is sufficiently suppressed, and the appearance of the coated surface and embeddability also tend to be excellent.

別の側面において、本発明は、基材と、基材の一方の面上に設けられた上述のフィルム状接着剤とを備える、接着シートを提供する。基材は、ダイシングテープであってよい。 In another aspect, the present invention provides an adhesive sheet comprising a base material and the above-described film adhesive provided on one surface of the base material. The base material may be a dicing tape.

別の側面において、本発明は、半導体素子と、半導体素子を搭載する支持部材と、半導体素子及び支持部材の間に設けられ、半導体素子及び支持部材を接着する接着部材とを備え、接着部材が、上述のフィルム状接着剤の硬化物である、半導体装置を提供する。支持部材は、銅を素材とする部材を含んでいてよい。 In another aspect, the present invention includes a semiconductor element, a support member on which the semiconductor element is mounted, and an adhesive member provided between the semiconductor element and the support member to adhere the semiconductor element and the support member, the adhesive member being , provides a semiconductor device which is a cured product of the above-mentioned film adhesive. The support member may include a member made of copper.

別の側面において、本発明は、上述のフィルム状接着剤を用いて、半導体素子と支持部材とを接着する工程を備える、半導体装置の製造方法を提供する。 In another aspect, the present invention provides a method for manufacturing a semiconductor device, which includes a step of bonding a semiconductor element and a support member using the above-described film adhesive.

別の側面において、本発明は、半導体ウェハに、上述の接着シートのフィルム状接着剤を貼り付ける工程と、フィルム状接着剤を貼り付けた半導体ウェハを切断することによって、複数の個片化されたフィルム状接着剤付き半導体素子を作製する工程と、フィルム状接着剤付き半導体素子を支持部材に接着する工程とを備える、半導体装置の製造方法を提供する。半導体装置の製造方法は、リフロー炉を用いて加熱する工程をさらに備えていてもよい。 In another aspect, the present invention provides a step of attaching a film adhesive of the above-described adhesive sheet to a semiconductor wafer, and cutting the semiconductor wafer to which the film adhesive is attached, thereby dividing the semiconductor wafer into a plurality of pieces. Provided is a method for manufacturing a semiconductor device, which includes a step of manufacturing a semiconductor element with a film-like adhesive attached thereto, and a step of adhering the semiconductor element with a film-like adhesive to a support member. The method for manufacturing a semiconductor device may further include a step of heating using a reflow oven.

本発明によれば、接着剤内の銅イオン透過を充分に抑制しつつ、さらに接着力に優れるフィルム状接着剤が提供される。また、本発明によれば、このようなフィルム状接着剤を用いた接着シート及び半導体装置が提供される。さらに、本発明によれば、フィルム状接着剤又は接着シートを用いた半導体装置の製造方法が提供される。 According to the present invention, a film adhesive is provided which sufficiently suppresses permeation of copper ions within the adhesive and has excellent adhesive strength. Further, according to the present invention, an adhesive sheet and a semiconductor device using such a film adhesive are provided. Further, according to the present invention, a method for manufacturing a semiconductor device using a film adhesive or an adhesive sheet is provided.

フィルム状接着剤の一実施形態を示す模式断面図である。FIG. 1 is a schematic cross-sectional view showing one embodiment of a film adhesive. 接着シートの一実施形態を示す模式断面図である。FIG. 1 is a schematic cross-sectional view showing one embodiment of an adhesive sheet. 接着シートの他の一実施形態を示す模式断面図である。FIG. 7 is a schematic cross-sectional view showing another embodiment of the adhesive sheet. 接着シートの他の一実施形態を示す模式断面図である。FIG. 7 is a schematic cross-sectional view showing another embodiment of the adhesive sheet. 接着シートの他の一実施形態を示す模式断面図である。FIG. 7 is a schematic cross-sectional view showing another embodiment of the adhesive sheet. 半導体装置の一実施形態を示す模式断面図である。FIG. 1 is a schematic cross-sectional view showing one embodiment of a semiconductor device. 半導体装置の他の一実施形態を示す模式断面図である。FIG. 3 is a schematic cross-sectional view showing another embodiment of a semiconductor device.

以下、図面を適宜参照しながら、本発明の実施形態について説明する。ただし、本発明は以下の実施形態に限定されるものではない。以下の実施形態において、その構成要素(ステップ等も含む)は、特に明示した場合を除き、必須ではない。各図における構成要素の大きさは概念的なものであり、構成要素間の大きさの相対的な関係は各図に示されたものに限定されない。 Embodiments of the present invention will be described below with appropriate reference to the drawings. However, the present invention is not limited to the following embodiments. In the following embodiments, the constituent elements (including steps, etc.) are not essential unless otherwise specified. The sizes of the components in each figure are conceptual, and the relative size relationships between the components are not limited to those shown in each figure.

本明細書における数値及びその範囲についても同様であり、本発明を制限するものではない。本明細書において「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。本明細書中に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本明細書中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。 The same applies to the numerical values and their ranges in this specification, and they do not limit the present invention. In this specification, a numerical range indicated using "-" indicates a range that includes the numerical values written before and after "-" as the minimum and maximum values, respectively. In the numerical ranges described step by step in this specification, the upper limit value or lower limit value described in one numerical range may be replaced with the upper limit value or lower limit value of another numerical range described step by step. good. Further, in the numerical ranges described in this specification, the upper limit or lower limit of the numerical range may be replaced with the value shown in the Examples.

本明細書において、(メタ)アクリレートは、アクリレート又はそれに対応するメタクリレートを意味する。(メタ)アクリロイル基、(メタ)アクリル共重合体等の他の類似表現についても同様である。 As used herein, (meth)acrylate means acrylate or the corresponding methacrylate. The same applies to other similar expressions such as (meth)acryloyl group and (meth)acrylic copolymer.

一実施形態に係るフィルム状接着剤は、半導体素子と半導体素子を搭載する支持部材とを接着するためのフィルム状接着剤であって、フィルム状接着剤が、(A)熱硬化性樹脂と、(B)硬化剤と、(C)アクリルゴムと、(D)無機フィラーとを含有し、無機フィラーの含有量が、熱硬化性樹脂、硬化剤、アクリルゴム、及び無機フィラーの総質量100質量部に対して、0.5~10質量部であり、フィルム状接着剤の厚みが15μm以下である、フィルム状接着剤を提供する。 A film adhesive according to one embodiment is a film adhesive for bonding a semiconductor element and a support member on which the semiconductor element is mounted, and the film adhesive includes (A) a thermosetting resin; Contains (B) a curing agent, (C) acrylic rubber, and (D) an inorganic filler, and the content of the inorganic filler is 100 mass of the total mass of the thermosetting resin, the curing agent, the acrylic rubber, and the inorganic filler. 0.5 to 10 parts by mass, and the thickness of the film adhesive is 15 μm or less.

フィルム状接着剤は、(A)熱硬化性樹脂と、(B)硬化剤と、(C)アクリルゴムと、(D)無機フィラーとを含有する、接着剤組成物を、フィルム状に成形することによって得ることができる。フィルム状接着剤及び接着剤組成物は、半硬化(Bステージ)状態を経て、硬化処理後に完全硬化(Cステージ)状態となり得るものであってよい。 The film adhesive is produced by molding an adhesive composition containing (A) a thermosetting resin, (B) a curing agent, (C) an acrylic rubber, and (D) an inorganic filler into a film. You can get it by doing this. The film-like adhesive and the adhesive composition may be in a semi-cured (B stage) state and may be in a fully cured (C stage) state after curing treatment.

(A)成分:熱硬化性樹脂
(A)成分は、接着性の観点から、エポキシ樹脂であってよい。エポキシ樹脂は、分子内にエポキシ基を有するものであれば、特に制限なく用いることができる。エポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、ビスフェノールFノボラック型エポキシ樹脂、スチルベン型エポキシ樹脂、トリアジン骨格含有エポキシ樹脂、フルオレン骨格含有エポキシ樹脂、トリフェノールメタン型エポキシ樹脂、ビフェニル型エポキシ樹脂、キシリレン型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂、ナフタレン型エポキシ樹脂、多官能フェノール類、アントラセン等の多環芳香族類のジグリシジルエーテル化合物などが挙げられる。これらは、1種を単独で又は2種以上を組み合わせて用いてもよい。これらの中でも、(A)成分は、フィルムのタック性、柔軟性などの観点から、クレゾールノボラック型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、又はビスフェノールA型エポキシ樹脂であってもよい。
Component (A): Thermosetting resin Component (A) may be an epoxy resin from the viewpoint of adhesiveness. The epoxy resin can be used without any particular restriction as long as it has an epoxy group in its molecule. Examples of the epoxy resin include bisphenol A epoxy resin, bisphenol F epoxy resin, bisphenol S epoxy resin, phenol novolac epoxy resin, cresol novolac epoxy resin, bisphenol A novolac epoxy resin, and bisphenol F novolac epoxy resin. , stilbene type epoxy resin, triazine skeleton-containing epoxy resin, fluorene skeleton-containing epoxy resin, triphenolmethane type epoxy resin, biphenyl type epoxy resin, xylylene type epoxy resin, biphenylaralkyl type epoxy resin, naphthalene type epoxy resin, polyfunctional phenols and diglycidyl ether compounds of polycyclic aromatics such as anthracene. These may be used alone or in combination of two or more. Among these, the component (A) may be a cresol novolac type epoxy resin, a bisphenol F type epoxy resin, or a bisphenol A type epoxy resin from the viewpoint of film tackiness, flexibility, etc.

エポキシ樹脂のエポキシ当量は、特に制限されないが、90~300g/eq、110~290g/eq、又は110~290g/eqであってよい。エポキシ樹脂のエポキシ当量がこのような範囲にあると、フィルム状接着剤のバルク強度を維持しつつ、流動性を確保することができる傾向にある。 The epoxy equivalent of the epoxy resin is not particularly limited, but may be 90 to 300 g/eq, 110 to 290 g/eq, or 110 to 290 g/eq. When the epoxy equivalent of the epoxy resin is within such a range, it tends to be possible to ensure fluidity while maintaining the bulk strength of the film adhesive.

(B)成分:硬化剤
(B)成分は、エポキシ樹脂の硬化剤となり得るフェノール樹脂であってよい。フェノール樹脂は、分子内にフェノール性水酸基を有するものであれば特に制限なく用いることができる。フェノール樹脂としては、例えば、フェノール、クレゾール、レゾルシン、カテコール、ビスフェノールA、ビスフェノールF、フェニルフェノール、アミノフェノール等のフェノール類及び/又はα-ナフトール、β-ナフトール、ジヒドロキシナフタレン等のナフトール類とホルムアルデヒド等のアルデヒド基を有する化合物とを酸性触媒下で縮合又は共縮合させて得られるノボラック型フェノール樹脂、アリル化ビスフェノールA、アリル化ビスフェノールF、アリル化ナフタレンジオール、フェノールノボラック、フェノール等のフェノール類及び/又はナフトール類とジメトキシパラキシレン又はビス(メトキシメチル)ビフェニルから合成されるフェノールアラルキル樹脂、ナフトールアラルキル樹脂などが挙げられる。これらは、1種を単独で又は2種以上を組み合わせて用いてもよい。これらの中でも、フェノール樹脂は、フェノールアラルキル樹脂又はナフトールアラルキル樹脂であってもよい。
Component (B): Curing agent Component (B) may be a phenol resin that can serve as a curing agent for epoxy resins. The phenol resin can be used without particular limitation as long as it has a phenolic hydroxyl group in its molecule. Examples of phenolic resins include phenols such as phenol, cresol, resorcinol, catechol, bisphenol A, bisphenol F, phenylphenol, and aminophenol, and/or naphthols such as α-naphthol, β-naphthol, and dihydroxynaphthalene, and formaldehyde. Novolak type phenol resin obtained by condensation or co-condensation with a compound having an aldehyde group under an acidic catalyst, allylated bisphenol A, allylated bisphenol F, allylated naphthalene diol, phenol novolac, phenols such as phenol and/or Alternatively, examples include phenol aralkyl resins and naphthol aralkyl resins synthesized from naphthols and dimethoxyparaxylene or bis(methoxymethyl)biphenyl. These may be used alone or in combination of two or more. Among these, the phenol resin may be a phenol aralkyl resin or a naphthol aralkyl resin.

フェノール樹脂の水酸基当量は、70g/eq以上又は70~300g/eqであってよい。フェノール樹脂の水酸基当量が70g/eq以上であると、フィルムの貯蔵弾性率がより向上する傾向にあり、300g/eq以下であると、発泡、アウトガス等の発生による不具合を防ぐことが可能となる。 The hydroxyl equivalent of the phenol resin may be 70 g/eq or more or 70 to 300 g/eq. When the hydroxyl equivalent of the phenol resin is 70 g/eq or more, the storage modulus of the film tends to be further improved, and when it is 300 g/eq or less, it is possible to prevent problems caused by foaming, outgassing, etc. .

エポキシ樹脂のエポキシ当量とフェノール樹脂の水酸基当量との比(エポキシ樹脂のエポキシ当量/フェノール樹脂の水酸基当量)は、硬化性の観点から、0.30/0.70~0.70/0.30、0.35/0.65~0.65/0.35、0.40/0.60~0.60/0.40、又は0.45/0.55~0.55/0.45であってよい。当該当量比が0.30/0.70以上であると、より充分な硬化性が得られる傾向にある。当該当量比が0.70/0.30以下であると、粘度が高くなり過ぎることを防ぐことができ、より充分な流動性を得ることができる。 The ratio of the epoxy equivalent of the epoxy resin to the hydroxyl equivalent of the phenol resin (epoxy equivalent of the epoxy resin/hydroxyl equivalent of the phenol resin) is 0.30/0.70 to 0.70/0.30 from the viewpoint of curability. , 0.35/0.65 to 0.65/0.35, 0.40/0.60 to 0.60/0.40, or 0.45/0.55 to 0.55/0.45. It's good to be there. When the ratio is 0.30/0.70 or more, more sufficient curability tends to be obtained. When the ratio is 0.70/0.30 or less, the viscosity can be prevented from becoming too high, and more sufficient fluidity can be obtained.

(A)成分及び(B)成分の合計の含有量は、(A)成分、(B)成分、(C)成分、及び(D)成分の総質量100質量部に対して、5~50質量部、10~40質量部、又は15~30質量部であってよい。(A)成分及び(B)成分の合計の含有量が5質量部以上であると、架橋によって弾性率が向上する傾向にある。(A)成分及び(B)成分の合計の含有量が50質量部以下であると、フィルム取扱い性を維持できる傾向にある。 The total content of component (A) and component (B) is 5 to 50 parts by mass per 100 parts by mass of the total mass of component (A), component (B), component (C), and component (D). parts, 10 to 40 parts by weight, or 15 to 30 parts by weight. When the total content of component (A) and component (B) is 5 parts by mass or more, the elastic modulus tends to improve due to crosslinking. When the total content of component (A) and component (B) is 50 parts by mass or less, film handling properties tend to be maintained.

(C)成分:アクリルゴム
(C)成分は、(メタ)アクリル酸エステルに由来する構成単位を主成分として有するゴムである。(C)成分における(メタ)アクリル酸エステルに由来する構成単位の含有量は、構成単位全量を基準として、例えば、70質量%以上、80質量%以上、又は90質量%以上であってよい。(C)成分は、エポキシ基、アルコール性又はフェノール性水酸基、カルボキシル基等の架橋性官能基を有する(メタ)アクリル酸エステルに由来する構成単位を含むものであってよい。(C)成分は、後述の式(1)の条件を満たす範囲で、アクリルニトリルに由来する構成単位を含むものであってもよいが、接着剤内の銅イオン透過をよりに抑制することが可能であり、埋込性にもより優れることから、(C)成分は、アクリルニトリルに由来する構成単位を含まないものであってよい。
(C) Component: Acrylic Rubber (C) Component is a rubber having as a main component a structural unit derived from a (meth)acrylic acid ester. The content of the structural unit derived from the (meth)acrylic acid ester in component (C) may be, for example, 70% by mass or more, 80% by mass or more, or 90% by mass or more, based on the total amount of the structural units. Component (C) may contain a structural unit derived from a (meth)acrylic acid ester having a crosslinkable functional group such as an epoxy group, an alcoholic or phenolic hydroxyl group, or a carboxyl group. Component (C) may contain a structural unit derived from acrylonitrile within a range that satisfies the conditions of formula (1) described below, but it is possible to further suppress copper ion permeation within the adhesive. Component (C) may not contain a structural unit derived from acrylonitrile, since this is possible and provides better embedding properties.

(C)成分の赤外吸収スペクトルにおいて、カルボニル基の伸縮振動に由来する吸収ピークの高さをPCO、ニトリル基の伸縮振動に由来するピークの高さをPCNとしたとき、PCO及びPCNが下記式(1)の条件を満たしていてもよい。
CN/PCO<0.070 (1)
In the infrared absorption spectrum of component (C), when the height of the absorption peak derived from the stretching vibration of the carbonyl group is P CO and the height of the peak derived from the stretching vibration of the nitrile group is P CN , P CO and P CN may satisfy the condition of the following formula (1).
P CN /P CO <0.070 (1)

ここで、カルボニル基は主に構成単位である(メタ)アクリル酸エステルに由来するものであり、ニトリル基は主に構成単位であるアクリルニトリルに由来するものである。なお、カルボニル基の伸縮振動に由来する吸収ピークの高さ(PCO)及びニトリル基の伸縮振動に由来するピークの高さ(PCN)は、実施例で定義されるものを意味する。 Here, the carbonyl group is mainly derived from (meth)acrylic acid ester, which is a structural unit, and the nitrile group is mainly derived from acrylonitrile, which is a structural unit. The height of the absorption peak derived from the stretching vibration of the carbonyl group (P CO ) and the height of the peak derived from the stretching vibration of the nitrile group (P CN ) mean those defined in Examples.

CN/PCOが小さいことは、(C)成分において、アクリルニトリルに由来する構成単位が少ないことを意味する。そのため、アクリルニトリルに由来する構成単位を含まない(C)成分は、理論上、式(1)の条件を満たし得る。 A small P CN /P CO means that there are few structural units derived from acrylonitrile in the component (C). Therefore, the component (C) that does not contain a structural unit derived from acrylonitrile can theoretically satisfy the condition of formula (1).

CN/PCOは、0.070未満であり、0.065以下、0.060以下、0.055以下、0.050以下、0.040以下、0.030以下、0.020以下、又は0.010以下であってよい。PCN/PCOが0.070未満であると、接着剤内の銅イオン透過を充分に抑制することが可能となり得る。また、PCN/PCOの値が小さくなるにつれて、接着剤内の銅イオン透過をより充分に抑制することができる。また、PCN/PCOの値が小さくなるにつれて、(C)成分の凝集力が低下するため、さらに埋込性もより優れる傾向にある。 P CN /P CO is less than 0.070, 0.065 or less, 0.060 or less, 0.055 or less, 0.050 or less, 0.040 or less, 0.030 or less, 0.020 or less, or It may be 0.010 or less. When P CN /P CO is less than 0.070, it may be possible to sufficiently suppress copper ion permeation within the adhesive. Furthermore, as the value of P CN /P CO decreases, copper ion permeation within the adhesive can be more effectively suppressed. Further, as the value of P CN /P CO decreases, the cohesive force of the component (C) decreases, and therefore the embeddability also tends to be better.

(C)成分のガラス転移温度(Tg)は、-50~50℃又は-30~30℃であってよい。(C)成分のTgが-50℃以上であると、接着剤の柔軟性が高くなり過ぎることを防ぐことができる傾向にある。これにより、ウェハダイシング時にフィルム状接着剤を切断し易くなり、バリの発生を防ぐことが可能となる。(C)成分のTgが50℃以下であると、接着剤の柔軟性の低下を抑制できる傾向にある。これによって、フィルム状接着剤をウェハに貼り付ける際に、ボイドを充分に埋め込み易くなる傾向にある。また、ウェハの密着性の低下によるダイシング時のチッピングを防ぐことが可能となる。ここで、ガラス転移温度(Tg)は、DSC(熱示差走査熱量計)(例えば、株式会社リガク製、Thermo Plus 2)を用いて測定した値を意味する。 The glass transition temperature (Tg) of component (C) may be -50 to 50°C or -30 to 30°C. When the Tg of component (C) is -50°C or higher, it tends to be possible to prevent the adhesive from becoming too flexible. This makes it easier to cut the film adhesive during wafer dicing, making it possible to prevent the occurrence of burrs. When the Tg of the component (C) is 50° C. or lower, it tends to suppress a decrease in the flexibility of the adhesive. This tends to make it easier to fill in voids sufficiently when attaching the film adhesive to the wafer. Furthermore, it is possible to prevent chipping during dicing due to decreased adhesion of the wafer. Here, the glass transition temperature (Tg) means a value measured using a DSC (thermal differential scanning calorimeter) (for example, Thermo Plus 2, manufactured by Rigaku Co., Ltd.).

(C)成分の重量平均分子量(Mw)は、10万~300万又は20万~200万であってよい。(C)成分のMwがこのような範囲にあると、フィルム形成性、フィルム状における強度、可撓性、タック性等を適切に制御することができるとともに、リフロー性に優れ、埋め込み性を向上することができる。ここで、Mwは、ゲルパーミエーションクロマトグラフィー(GPC)で測定し、標準ポリスチレンによる検量線を用いて換算した値を意味する。 The weight average molecular weight (Mw) of component (C) may be from 100,000 to 3,000,000 or from 200,000 to 2,000,000. When the Mw of component (C) is within such a range, film formability, strength in film form, flexibility, tackiness, etc. can be appropriately controlled, as well as excellent reflow properties and improved embeddability. can do. Here, Mw means a value measured by gel permeation chromatography (GPC) and converted using a standard polystyrene calibration curve.

(C)成分の市販品としては、例えば、SG-70L、SG-P3、SG-708-6、WS-023 EK30、SG-280 EK23(いずれもナガセケムテックス株式会社製)等が挙げられる。また、アクリルニトリルに由来する構成単位を含まない(C)成分の市販品としては、例えば、KH-CT-865(日立化成株式会社製)等が挙げられる。 Commercially available products of component (C) include, for example, SG-70L, SG-P3, SG-708-6, WS-023 EK30, and SG-280 EK23 (all manufactured by Nagase ChemteX Corporation). Further, as a commercially available product of component (C) that does not contain a structural unit derived from acrylonitrile, for example, KH-CT-865 (manufactured by Hitachi Chemical Co., Ltd.) may be mentioned.

(C)成分の含有量は、(A)成分、(B)成分、(C)成分、及び(D)成分の総質量100質量部に対して、50~95質量部、55~90質量部、又は60~85質量部であってよい。(C)成分の含有量がこのような範囲にあると、接着剤内の銅イオン透過をより充分に抑制できる傾向にある。 The content of component (C) is 50 to 95 parts by mass, 55 to 90 parts by mass based on 100 parts by mass of the total mass of component (A), component (B), component (C), and component (D). , or 60 to 85 parts by mass. When the content of component (C) is within this range, copper ion permeation within the adhesive tends to be more effectively suppressed.

(D)成分:無機フィラー
(D)成分としては、例えば、例えば、水酸化アルミニウム、水酸化マグネシウム、炭酸カルシウム、炭酸マグネシウム、ケイ酸カルシウム、ケイ酸マグネシウム、酸化カルシウム、酸化マグネシウム、酸化アルミニウム、窒化アルミニウム、ホウ酸アルミウィスカ、窒化ホウ素、シリカ等が挙げられる。これらは、1種を単独で又は2種以上を組み合わせて用いてもよい。これらの中でも、(D)成分は、溶融粘度の調整の観点から、シリカであってもよい。
(D) Component: Inorganic filler (D) Component includes, for example, aluminum hydroxide, magnesium hydroxide, calcium carbonate, magnesium carbonate, calcium silicate, magnesium silicate, calcium oxide, magnesium oxide, aluminum oxide, nitride Examples include aluminum, aluminum borate whiskers, boron nitride, and silica. These may be used alone or in combination of two or more. Among these, the component (D) may be silica from the viewpoint of adjusting the melt viscosity.

(D)成分の平均粒径は、流動性の観点から、0.01~1μm、0.01~0.8μm、又は0.03~0.5μmであってよい。ここで、平均粒径は、BET比表面積から換算することによって求められる値を意味する。(D)成分の平均粒径が小さくなるにつれて、塗工面の外観がより改善され、薄膜塗工性がより向上する傾向にある。 The average particle size of component (D) may be 0.01 to 1 μm, 0.01 to 0.8 μm, or 0.03 to 0.5 μm from the viewpoint of fluidity. Here, the average particle size means a value calculated from the BET specific surface area. As the average particle size of component (D) becomes smaller, the appearance of the coated surface tends to be further improved and the thin film coating properties tend to be further improved.

(D)成分の形状は、特に制限されないが、球状であってよい。 The shape of component (D) is not particularly limited, but may be spherical.

(D)成分の含有量が、(A)成分、(B)成分、(C)成分、及び(D)成分の総質量100質量部に対して、0.5~10質量部である。(D)成分の含有量が、0.5質量部以上であると、フィルム状接着剤の接着力、ウェハ密着力、弾性率、バルク強度といった点においても優れる傾向にある。(D)成分の含有量が、10質量部以下であると、接着剤内の銅イオン透過を充分に抑制するとともに、塗工面の外観、埋込性といった点においても優れる傾向にある。(D)成分の含有量は、1質量部以上、3質量部以上、又は5質量部以上であってもよく、10質量部以下、9質量部以下、8.5質量部以下、又は8質量部以下であってもよい。 The content of component (D) is 0.5 to 10 parts by mass based on 100 parts by mass of the total mass of component (A), component (B), component (C), and component (D). When the content of component (D) is 0.5 parts by mass or more, the film adhesive tends to be excellent in adhesive strength, wafer adhesion strength, elastic modulus, and bulk strength. When the content of component (D) is 10 parts by mass or less, copper ion permeation within the adhesive is sufficiently suppressed, and the appearance of the coated surface and embeddability also tend to be excellent. The content of component (D) may be 1 part by mass or more, 3 parts by mass or more, or 5 parts by mass or more, and 10 parts by mass or less, 9 parts by mass or less, 8.5 parts by mass or less, or 8 parts by mass. or less.

フィルム状接着剤(接着剤組成物)は、(E)カップリング剤、(F)硬化促進剤等をさらに含有していてもよい。 The film adhesive (adhesive composition) may further contain (E) a coupling agent, (F) a curing accelerator, and the like.

(E)成分:カップリング剤
(E)成分は、シランカップリング剤であってよい。シランカップリング剤としては、例えば、γ-ウレイドプロピルトリエトキシシラン、γ-メルカプトプロピルトリメトキシシラン、3-フェニルアミノプロピルトリメトキシシラン、3-(2-アミノエチル)アミノプロピルトリメトキシシラン等が挙げられる。これらは、1種を単独で又は2種以上を組み合わせて用いてもよい。
Component (E): Coupling agent Component (E) may be a silane coupling agent. Examples of the silane coupling agent include γ-ureidopropyltriethoxysilane, γ-mercaptopropyltrimethoxysilane, 3-phenylaminopropyltrimethoxysilane, and 3-(2-aminoethyl)aminopropyltrimethoxysilane. It will be done. These may be used alone or in combination of two or more.

(F)成分:硬化促進剤
(F)成分は、特に限定されず、一般に使用されるものを用いることができる。(F)成分としては、例えば、イミダゾール類及びその誘導体、有機リン系化合物、第二級アミン類、第三級アミン類、第四級アンモニウム塩等が挙げられる。これらは、1種を単独で又は2種以上を組み合わせて用いてもよい。これらの中でも、反応性の観点から(F)成分はイミダゾール類及びその誘導体であってもよい。
Component (F): Curing accelerator Component (F) is not particularly limited, and commonly used components can be used. Examples of the component (F) include imidazoles and derivatives thereof, organic phosphorus compounds, secondary amines, tertiary amines, and quaternary ammonium salts. These may be used alone or in combination of two or more. Among these, from the viewpoint of reactivity, the component (F) may be imidazoles and derivatives thereof.

イミダゾール類としては、例えば、2-メチルイミダゾール、1-ベンジル-2-メチルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、1-シアノエチル-2-メチルイミダゾール等が挙げられる。これらは、1種を単独で又は2種以上を組み合わせて用いてもよい。 Examples of imidazoles include 2-methylimidazole, 1-benzyl-2-methylimidazole, 1-cyanoethyl-2-phenylimidazole, and 1-cyanoethyl-2-methylimidazole. These may be used alone or in combination of two or more.

フィルム状接着剤(接着剤組成物)は、その他の成分をさらに含有していてもよい。その他の成分としては、例えば、顔料、イオン補捉剤、酸化防止剤等が挙げられる。 The film adhesive (adhesive composition) may further contain other components. Examples of other components include pigments, ion scavengers, antioxidants, and the like.

(E)成分、(F)成分、及びその他の成分の含有量は、(A)成分、(B)成分、(C)成分、及び(D)成分の総質量100質量部に対して、0~30質量部であってよい。 The content of component (E), component (F), and other components is 0 parts by mass based on 100 parts by mass of the total mass of component (A), component (B), component (C), and component (D). It may be 30 parts by weight.

図1は、フィルム状接着剤の一実施形態を示す模式断面図である。図1に示すフィルム状接着剤1(接着フィルム)は、接着剤組成物をフィルム状に成形したものである。フィルム状接着剤1は、半硬化(Bステージ)状態であってよい。このようなフィルム状接着剤1は、接着剤組成物を支持フィルムに塗布することによって形成することができる。接着剤組成物のワニス(接着剤ワニス)を用いる場合は、(A)成分、(B)成分、(C)成分、(D)成分、並びに必要に応じて添加される他の成分を溶剤中で混合し、混合液を混合又は混練して接着剤ワニスを調製し、接着剤ワニスを支持フィルムに塗布し、溶剤を加熱乾燥して除去することによってフィルム状接着剤1を形成することができる。 FIG. 1 is a schematic cross-sectional view showing one embodiment of a film adhesive. A film adhesive 1 (adhesive film) shown in FIG. 1 is an adhesive composition formed into a film. The film adhesive 1 may be in a semi-cured (B stage) state. Such a film adhesive 1 can be formed by applying an adhesive composition to a support film. When using an adhesive composition varnish (adhesive varnish), components (A), (B), (C), and (D), as well as other components added as necessary, are mixed in a solvent. The adhesive varnish is prepared by mixing or kneading the mixed solution, the adhesive varnish is applied to a support film, and the solvent is removed by heating and drying, thereby forming the film adhesive 1. .

支持フィルムは、上記の加熱乾燥に耐えるものであれば特に限定されないが、例えば、ポリエステルフィルム、ポリプロピレンフィルム、ポリエチレンテレフタレートフィルム、ポリイミドフィルム、ポリエーテルイミドフィルム、ポリエーテルナフタレートフィルム、ポリメチルペンテンフィルム等であってよい。支持フィルムは、2種以上を組み合わせた多層フィルムであってもよく、表面がシリコーン系、シリカ系等の離型剤などで処理されたものであってもよい。支持フィルムの厚みは、例えば、10~200μm又は20~170μmであってよい。 The support film is not particularly limited as long as it can withstand the above heat drying, but examples include polyester film, polypropylene film, polyethylene terephthalate film, polyimide film, polyetherimide film, polyether naphthalate film, polymethylpentene film, etc. It may be. The support film may be a multilayer film made of a combination of two or more types, or the surface may be treated with a silicone-based, silica-based, or the like release agent. The thickness of the support film may be, for example, 10-200 μm or 20-170 μm.

混合又は混練は、通常の撹拌機、らいかい機、三本ロール、ボールミル等の分散機を用い、これらを適宜組み合わせて行うことができる。 Mixing or kneading can be carried out using a dispersing machine such as an ordinary stirrer, a sieve machine, a three-roll mill, a ball mill, etc., or by appropriately combining these dispersing machines.

接着剤ワニスの調製に用いられる溶剤は、各成分を均一に溶解、混練または分散できるものであれば制限はなく、従来公知のものを使用することができる。このような溶剤としては、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン系溶媒、ジメチルホルムアミド、ジメチルアセトアミド、Nメチルピロリドン、トルエン、キシレン等が挙げられる。溶剤は、乾燥速度及び価格の点でメチルエチルケトン、シクロヘキサノン等であってよい。 The solvent used for preparing the adhesive varnish is not limited as long as it can uniformly dissolve, knead, or disperse each component, and conventionally known solvents can be used. Examples of such solvents include ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone, dimethyl formamide, dimethyl acetamide, N-methyl pyrrolidone, toluene, and xylene. The solvent may be methyl ethyl ketone, cyclohexanone, etc. in terms of drying speed and cost.

接着剤ワニスを支持フィルムに塗布する方法としては、公知の方法を用いることができ、例えば、ナイフコート法、ロールコート法、スプレーコート法、グラビアコート法、バーコート法、カーテンコート法等が挙げられる。加熱乾燥の条件は、使用した溶剤が充分に揮散する条件であれば特に制限はないが、50~150℃で、1~30分間加熱して行うことができる。 As a method for applying the adhesive varnish to the support film, a known method can be used, such as a knife coating method, a roll coating method, a spray coating method, a gravure coating method, a bar coating method, a curtain coating method, etc. It will be done. The conditions for heat drying are not particularly limited as long as the solvent used is sufficiently volatilized, but drying can be carried out by heating at 50 to 150° C. for 1 to 30 minutes.

フィルム状接着剤の厚みが15μm以下であると、半導体素子と半導体素子を搭載する支持部材との距離が近くなるため、銅イオンによる不具合が発生し易くなる傾向にある。本実施形態に係るフィルム状接着剤は、接着剤内の銅イオン透過を充分に抑制することが可能であることから、その厚みを15μm以下とすることが可能となる。フィルム状接着剤1の厚みは、12μm以下又は10μm以下であってもよい。フィルム状接着剤1の厚みの下限は、特に制限されないが、例えば、1μm以上とすることができる。 If the thickness of the film-like adhesive is 15 μm or less, the distance between the semiconductor element and the support member on which the semiconductor element is mounted becomes short, so that problems due to copper ions tend to occur more easily. Since the film-like adhesive according to this embodiment can sufficiently suppress permeation of copper ions within the adhesive, it is possible to reduce the thickness to 15 μm or less. The thickness of the film adhesive 1 may be 12 μm or less or 10 μm or less. The lower limit of the thickness of the film adhesive 1 is not particularly limited, but may be, for example, 1 μm or more.

半硬化(Bステージ)状態におけるフィルム状接着剤1の銅イオン透過時間は、一実施形態において、260分超であってよく、270分以上、280分以上、290分以上、又は300分以上であってもよい。また、半硬化(Bステージ)状態におけるフィルム状接着剤1の銅イオン透過時間は、他の実施形態において、70分超であってよく、75分以上又は80分以上であってもよい。銅イオン透過時間がこのような範囲であることによって、半導体装置作製時に硬化不足等の不良が発生した場合であっても、銅イオンに起因する不具合はより発生し難いことが予測される。 In one embodiment, the copper ion permeation time of the film adhesive 1 in the semi-cured (B stage) state may be more than 260 minutes, 270 minutes or more, 280 minutes or more, 290 minutes or more, or 300 minutes or more. There may be. In other embodiments, the copper ion permeation time of the film adhesive 1 in the semi-cured (B stage) state may be more than 70 minutes, 75 minutes or more, or 80 minutes or more. When the copper ion permeation time is within this range, it is predicted that even if a defect such as insufficient curing occurs during the manufacture of a semiconductor device, defects due to copper ions will be less likely to occur.

Cステージ状態におけるフィルム状接着剤1(すなわち、フィルム状接着剤の硬化物)の接着力(ダイシェア強度)は、一実施形態において、0.5MPa超であってよく、0.8MPa以上又は1.0MPa以上であってもよい。また、Cステージ状態におけるフィルム状接着剤の接着力(ダイシェア強度)は、他の実施形態において、1.5MPa超であってよく、1.6MPa以上、1.7MPa以上、又は1.8MPa以上であってもよい。接着力がこのような範囲であると、半導体製造装置作製時に剥離に起因する不具合が発生し難く、また接着力が高くなるほど、剥離に起因する不具合の発生確率は低下することが予測される。 In one embodiment, the adhesive force (die shear strength) of the film adhesive 1 (that is, the cured product of the film adhesive) in the C-stage state may be more than 0.5 MPa, and may be 0.8 MPa or more, or 1.5 MPa or more. It may be 0 MPa or more. In other embodiments, the adhesive strength (die shear strength) of the film adhesive in the C-stage state may be more than 1.5 MPa, 1.6 MPa or more, 1.7 MPa or more, or 1.8 MPa or more. There may be. When the adhesive strength is within this range, it is difficult to cause defects due to peeling during the production of semiconductor manufacturing equipment, and it is predicted that the higher the adhesive strength, the lower the probability of occurrence of defects due to peeling.

図2は、接着シートの一実施形態を示す模式断面図である。図2に示す接着シート100は、基材2と、基材2上に設けられたフィルム状接着剤1とを備える。図3は、接着シートの他の一実施形態を示す模式断面図である。図3に示す接着シート110は、基材2と、基材2上に設けられたフィルム状接着剤1と、フィルム状接着剤1の基材2とは反対側の面に設けられたカバーフィルム3とを備える。 FIG. 2 is a schematic cross-sectional view showing one embodiment of an adhesive sheet. The adhesive sheet 100 shown in FIG. 2 includes a base material 2 and a film adhesive 1 provided on the base material 2. FIG. 3 is a schematic cross-sectional view showing another embodiment of the adhesive sheet. The adhesive sheet 110 shown in FIG. 3 includes a base material 2, a film adhesive 1 provided on the base material 2, and a cover film provided on the surface of the film adhesive 1 opposite to the base material 2. 3.

基材2は、特に制限されないが、基材フィルムであってよい。基材フィルムは、上述の支持フィルムと同様のものであってよい。 Although the base material 2 is not particularly limited, it may be a base film. The base film may be similar to the support film described above.

カバーフィルム3は、フィルム状接着剤の損傷又は汚染を防ぐために用いられ、例えば、ポリエチレンフィルム、ポリプロピレンフィルム、表面はく離剤処理フィルム等であってよい。カバーフィルム3の厚みは、例えば、15~200μm又は70~170μmであってよい。 The cover film 3 is used to prevent damage or contamination of the film adhesive, and may be, for example, a polyethylene film, a polypropylene film, a film treated with a surface release agent, or the like. The thickness of the cover film 3 may be, for example, 15 to 200 μm or 70 to 170 μm.

接着シート100、110は、上述のフィルム状接着剤を形成する方法と同様に、接着剤組成物を基材フィルムに塗布することによって形成することができる。接着剤組成物を基材2に塗布する方法は、上述の接着剤組成物を支持フィルムに塗布する方法と同様であってよい。 The adhesive sheets 100 and 110 can be formed by applying an adhesive composition to a base film in the same manner as the method for forming the film adhesive described above. The method of applying the adhesive composition to the substrate 2 may be the same as the method of applying the adhesive composition to the support film described above.

接着シート110は、さらにフィルム状接着剤1にカバーフィルム3を積層させることによって得ることができる。 The adhesive sheet 110 can be obtained by further laminating the cover film 3 on the film adhesive 1.

接着シート100、110は、予め作製したフィルム状接着剤を用いて形成してもよい。この場合、接着シート100は、ロールラミネーター、真空ラミネーター等を用いて所定条件(例えば、室温(20℃)又は加熱状態)でラミネートすることによって形成することができる。接着シート100は、連続的に製造ができ、効率に優れることから、加熱状態でロールラミネーターを用いて形成してもよい。 The adhesive sheets 100 and 110 may be formed using a film adhesive prepared in advance. In this case, the adhesive sheet 100 can be formed by laminating under predetermined conditions (for example, room temperature (20° C.) or heated state) using a roll laminator, a vacuum laminator, or the like. Since the adhesive sheet 100 can be manufactured continuously and has excellent efficiency, it may be formed using a roll laminator in a heated state.

接着シートの他の実施形態は、基材2がダイシングテープであるダイシング・ダイボンディング一体型接着シートである。ダイシング・ダイボンディング一体型接着シートを用いると、半導体ウェハへのラミネート工程が1回となることから、作業の効率化が可能である。 Another embodiment of the adhesive sheet is a dicing/die bonding integrated adhesive sheet in which the base material 2 is a dicing tape. When a dicing/die bonding integrated adhesive sheet is used, the process of laminating the semiconductor wafer is performed only once, making it possible to improve work efficiency.

ダイシングテープとしては、例えば、ポリテトラフルオロエチレンフィルム、ポリエチレンテレフタレートフィルム、ポリエチレンフィルム、ポリプロピレンフィルム、ポリメチルペンテンフィルム、ポリイミドフィルム等のプラスチックフィルムなどが挙げられる。また、ダイシングテープは、必要に応じて、プライマー塗布、UV処理、コロナ放電処理、研磨処理、エッチング処理等の表面処理が行われていてもよい。ダイシングテープは、粘着性を有するものであってもよい。このようなダイシングテープは、上述のプラスチックフィルムに粘着性を付与したものであってよく、上述のプラスチックフィルムの片面に粘着剤層を設けたものであってよい。粘着剤層は、感圧型又は放射線硬化型のいずれであってもよく、ダイシング時には半導体素子が飛散しない充分な粘着力を有し、その後の半導体素子のピックアップ工程においては半導体素子を傷つけない程度の低い粘着力を有するものであれば特に制限されず、従来公知のものを使用することができる。 Examples of the dicing tape include plastic films such as polytetrafluoroethylene film, polyethylene terephthalate film, polyethylene film, polypropylene film, polymethylpentene film, and polyimide film. Further, the dicing tape may be subjected to surface treatments such as primer coating, UV treatment, corona discharge treatment, polishing treatment, etching treatment, etc., as necessary. The dicing tape may be adhesive. Such a dicing tape may be made of the above-mentioned plastic film with adhesive properties, or may be made of the above-mentioned plastic film with an adhesive layer provided on one side. The adhesive layer may be either a pressure-sensitive type or a radiation-curable type, and has sufficient adhesive strength to prevent the semiconductor elements from scattering during dicing, and has sufficient adhesive strength to prevent the semiconductor elements from being damaged during the subsequent pick-up process of the semiconductor elements. There are no particular restrictions on the material as long as it has low adhesive strength, and conventionally known materials can be used.

ダイシングテープの厚みは、経済性及びフィルムの取扱い性の観点から、60~150μm又は70~130μmであってよい。 The thickness of the dicing tape may be 60 to 150 μm or 70 to 130 μm from the viewpoint of economy and film handling.

このようなダイシング・ダイボンディング一体型接着シートとしては、例えば、図4に示される構成を有するもの、図5に示される構成を有するもの等が挙げられる。図4は、接着シートの他の一実施形態を示す模式断面図である。図5は、接着シートの他の一実施形態を示す模式断面図である。図4に示す接着シート120は、ダイシングテープ7、粘着剤層6、及びフィルム状接着剤1をこの順に備える。図5に示す接着シート130は、ダイシングテープ7と、ダイシングテープ7上に設けられたフィルム状接着剤1とを備える。 Examples of such a dicing/die bonding integrated adhesive sheet include one having the configuration shown in FIG. 4 and one having the configuration shown in FIG. 5. FIG. 4 is a schematic cross-sectional view showing another embodiment of the adhesive sheet. FIG. 5 is a schematic cross-sectional view showing another embodiment of the adhesive sheet. The adhesive sheet 120 shown in FIG. 4 includes a dicing tape 7, an adhesive layer 6, and a film adhesive 1 in this order. The adhesive sheet 130 shown in FIG. 5 includes a dicing tape 7 and a film adhesive 1 provided on the dicing tape 7.

接着シート120は、例えば、ダイシングテープ7上に粘着剤層6を設け、さらに粘着剤層6上にフィルム状接着剤1を積層させることによって得ることができる。接着シート130は、例えば、ダイシングテープ7とフィルム状接着剤1とを貼り合わせることによって得ることができる。 The adhesive sheet 120 can be obtained, for example, by providing the adhesive layer 6 on the dicing tape 7 and further laminating the film adhesive 1 on the adhesive layer 6. The adhesive sheet 130 can be obtained, for example, by bonding the dicing tape 7 and the film adhesive 1 together.

フィルム状接着剤及び接着シートは、半導体装置の製造に用いられるものであってよく、半導体ウェハ又はすでに小片化されている半導体素子(半導体チップ)に、フィルム状接着剤及びダイシングテープを0℃~90℃で貼り合わせた後、回転刃、レーザー又は伸張による分断でフィルム状接着剤付き半導体素子を得た後、当該フィルム状接着剤付き半導体素子を、有機基板、リードフレーム、又は他の半導体素子上に接着する工程を含む半導体装置の製造に用いられるものであってよい。 The film adhesive and adhesive sheet may be used in the manufacture of semiconductor devices, and the film adhesive and dicing tape may be applied to a semiconductor wafer or a semiconductor element (semiconductor chip) that has already been cut into small pieces at 0°C or higher. After bonding at 90°C, a semiconductor element with a film-like adhesive is obtained by cutting with a rotary blade, a laser, or by stretching, and then the semiconductor element with a film-like adhesive is used as an organic substrate, a lead frame, or another semiconductor element. It may be used in manufacturing a semiconductor device including a step of adhering it thereon.

半導体ウェハとしては、例えば、単結晶シリコン、多結晶シリコン、各種セラミック、ガリウムヒ素等の化合物半導体などが挙げられる。 Examples of semiconductor wafers include single crystal silicon, polycrystalline silicon, various ceramics, and compound semiconductors such as gallium arsenide.

フィルム状接着剤及び接着シートは、IC、LSI等の半導体素子と、42アロイリードフレーム、銅リードフレーム等のリードフレーム;ポリイミド樹脂、エポキシ樹脂等のプラスチックフィルム;ガラス不織布等基材にポリイミド樹脂、エポキシ樹脂等のプラスチックを含浸、硬化させたもの;アルミナ等のセラミックス等の半導体搭載用支持部材などとを貼り合せるためのダイボンディング用接着剤として用いることができる。 Film adhesives and adhesive sheets are used for semiconductor devices such as ICs and LSIs; lead frames such as 42 alloy lead frames and copper lead frames; plastic films such as polyimide resin and epoxy resin; polyimide resin on base materials such as glass nonwoven fabric, It can be used as a die bonding adhesive for bonding materials impregnated and hardened with plastics such as epoxy resin; supporting members for mounting semiconductors such as ceramics such as alumina.

フィルム状接着剤及び接着シートは、複数の半導体素子を積み重ねた構造のStacked-PKGにおいて、半導体素子と半導体素子とを接着するための接着剤としても好適に用いられる。この場合、一方の半導体素子が、半導体素子を搭載する支持部材となる。 Film adhesives and adhesive sheets are also suitably used as adhesives for bonding semiconductor elements together in a Stacked-PKG structure in which a plurality of semiconductor elements are stacked. In this case, one semiconductor element serves as a support member on which the semiconductor element is mounted.

フィルム状接着剤及び接着シートは、例えば、フリップチップ型半導体装置の半導体素子の裏面を保護する保護シート、フリップチップ型半導体装置の半導体素子の表面と被着体との間を封止するための封止シート等としても用いることできる。 Film adhesives and adhesive sheets are, for example, protective sheets for protecting the back side of semiconductor elements of flip-chip semiconductor devices, and sealing sheets between the surface of semiconductor elements of flip-chip semiconductor devices and adherends. It can also be used as a sealing sheet, etc.

フィルム状接着剤を用いて製造された半導体装置について、図面を用いて具体的に説明する。なお、近年は様々な構造の半導体装置が提案されており、本実施形態に係るフィルム状接着剤の用途は、以下に説明する構造の半導体装置に限定されるものではない。 A semiconductor device manufactured using a film adhesive will be specifically described using drawings. Note that semiconductor devices with various structures have been proposed in recent years, and the application of the film adhesive according to this embodiment is not limited to semiconductor devices with the structure described below.

図6は、半導体装置の一実施形態を示す模式断面図である。図6に示す半導体装置200は、半導体素子9と、半導体素子9を搭載する支持部材10と、半導体素子9及び支持部材10の間に設けられ、半導体素子9及び支持部材10を接着する接着部材(フィルム状接着剤の硬化物1c)とを備える。半導体素子9の接続端子(図示せず)はワイヤ11を介して外部接続端子(図示せず)と電気的に接続され、封止材12によって封止されている。 FIG. 6 is a schematic cross-sectional view showing one embodiment of a semiconductor device. A semiconductor device 200 shown in FIG. 6 includes a semiconductor element 9, a support member 10 on which the semiconductor element 9 is mounted, and an adhesive member provided between the semiconductor element 9 and the support member 10 to adhere the semiconductor element 9 and the support member 10. (Cured product 1c of film adhesive). Connection terminals (not shown) of the semiconductor element 9 are electrically connected to external connection terminals (not shown) via wires 11 and sealed with a sealing material 12 .

図7は、半導体装置の他の一実施形態を示す模式断面図である。図7に示す半導体装置210において、一段目の半導体素子9aは、接着部材(フィルム状接着剤の硬化物1c)によって、端子13が形成された支持部材10に接着され、一段目の半導体素子9a上にさらに接着部材(フィルム状接着剤の硬化物1c)によって二段目の半導体素子9bが接着されている。一段目の半導体素子9a及び二段目の半導体素子9bの接続端子(図示せず)は、ワイヤ11を介して外部接続端子と電気的に接続され、封止材12によって封止されている。このように、本実施形態に係るフィルム状接着剤は、半導体素子を複数重ねる構造の半導体装置にも好適に使用できる。 FIG. 7 is a schematic cross-sectional view showing another embodiment of the semiconductor device. In the semiconductor device 210 shown in FIG. 7, the first-stage semiconductor element 9a is adhered to the support member 10 on which the terminal 13 is formed by an adhesive member (cured film-like adhesive 1c), and the first-stage semiconductor element 9a A second-stage semiconductor element 9b is further bonded thereon by an adhesive member (cured film adhesive 1c). Connection terminals (not shown) of the first-stage semiconductor element 9 a and the second-stage semiconductor element 9 b are electrically connected to external connection terminals via wires 11 and sealed with a sealing material 12 . In this way, the film adhesive according to this embodiment can also be suitably used for a semiconductor device having a structure in which a plurality of semiconductor elements are stacked.

図6及び図7に示す半導体装置(半導体パッケージ)は、例えば、半導体素子と支持部材との間又は半導体素子と半導体素子との間にフィルム状接着剤を介在させ、これらを加熱圧着して両者を接着させ、その後、必要に応じてワイヤーボンディング工程、封止材による封止工程、はんだによるリフローを含む加熱溶融工程等を経ることによって得られる。加熱圧着工程における加熱温度は、通常、20~250℃、荷重は、通常、0.1~200Nであり、加熱時間は、通常、0.1~300秒間である。 The semiconductor device (semiconductor package) shown in FIGS. 6 and 7 is manufactured by, for example, interposing a film adhesive between a semiconductor element and a supporting member or between two semiconductor elements, and bonding them by heat and pressure. are bonded together, and then, if necessary, undergoes a wire bonding process, a sealing process with a sealing material, a heating melting process including reflow with solder, etc. The heating temperature in the thermocompression bonding process is usually 20 to 250°C, the load is usually 0.1 to 200N, and the heating time is usually 0.1 to 300 seconds.

半導体素子と支持部材との間又は半導体素子と半導体素子との間にフィルム状接着剤を介在させる方法としては、上述したように、予めフィルム状接着剤付半導体素子を作製した後、支持部材又は半導体素子に貼り付ける方法であってよい。 As a method of interposing a film adhesive between a semiconductor element and a supporting member or between a semiconductor element and a semiconductor element, as described above, after preparing a semiconductor element with a film adhesive in advance, the supporting member or It may be a method of attaching it to a semiconductor element.

支持部材は、銅を素材とする部材を含むものであってよい。本実施形態に係る半導体装置は、フィルム状接着剤の硬化物1cによって半導体素子と支持部材とが接着されているため、半導体装置の構成部材として銅を素材とする部材を用いている場合であっても、当該部材から発生する銅イオンの影響を低減することができ、銅イオンに起因する電気的な不具合の発生を充分に抑制することができる。 The support member may include a member made of copper. In the semiconductor device according to the present embodiment, since the semiconductor element and the support member are bonded together by the cured film adhesive 1c, there is no need to use a member made of copper as a component of the semiconductor device. However, the influence of copper ions generated from the member can be reduced, and the occurrence of electrical problems caused by copper ions can be sufficiently suppressed.

ここで、銅を素材とする部材としては、例えば、リードフレーム、配線、ワイヤ、放熱材等が挙げられるが、いずれの部材に銅を用いた場合でも、銅イオンの影響を低減することが可能である。 Here, examples of components made of copper include lead frames, wiring, wires, heat dissipation materials, etc., but the influence of copper ions can be reduced no matter which component is made of copper. It is.

次に、図4に示すダイシング・ダイボンディング一体型接着シートを用いた場合における半導体装置の製造方法の一実施形態について説明する。なお、ダイシング・ダイボンディング一体型接着シートによる半導体装置の製造方法は以下に説明する半導体装置の製造方法に限定されるものではない。 Next, an embodiment of a method for manufacturing a semiconductor device using the dicing/die bonding integrated adhesive sheet shown in FIG. 4 will be described. Note that the method for manufacturing a semiconductor device using the integrated dicing and die bonding adhesive sheet is not limited to the method for manufacturing a semiconductor device described below.

まず、接着シート120(ダイシング・ダイボンディング一体型接着シート)におけるフィルム状接着剤1に半導体ウェハを圧着し、これを接着保持させて固定する(マウント工程)。本工程は、圧着ロール等の押圧手段によって押圧しながら行ってもよい。 First, a semiconductor wafer is pressure-bonded to the film adhesive 1 of the adhesive sheet 120 (dicing/die bonding integrated adhesive sheet), and is adhesively held and fixed (mounting step). This step may be performed while being pressed by a pressing means such as a pressure roll.

次に、半導体ウェハのダイシングを行う。これにより、半導体ウェハを所定のサイズに切断して、複数の個片化されたフィルム状接着剤付き半導体素子(半導体チップ)を製造する。ダイシングは、例えば、半導体ウェハの回路面側から常法に従って行うことができる。また、本工程では、例えば、ダイシングテープまで切込みを行なうフルカットと呼ばれる切断方式、半導体ウェハに半分切込みを入れて冷却化引っ張ることにより分断する方式、レーザーによる切断方式等を採用できる。本工程で用いるダイシング装置としては、特に限定されず、従来公知のものを用いることができる。 Next, the semiconductor wafer is diced. Thereby, the semiconductor wafer is cut into a predetermined size, and a plurality of individual film-like adhesive-attached semiconductor elements (semiconductor chips) are manufactured. Dicing can be performed, for example, from the circuit side of the semiconductor wafer according to a conventional method. In addition, in this step, for example, a cutting method called a full cut in which cuts are made to the dicing tape, a method in which half cuts are made in the semiconductor wafer and the semiconductor wafer is divided by cooling and pulling, a cutting method using a laser, etc. can be adopted. The dicing device used in this step is not particularly limited, and any conventionally known device can be used.

ダイシング・ダイボンディング一体型接着シートに接着固定された半導体素子を剥離するために、半導体素子のピックアップを行う。ピックアップの方法としては特に限定されず、従来公知の種々の方法を採用できる。例えば、個々の半導体素子をダイシング・ダイボンディング一体型接着シート側からニードルによって突き上げ、突き上げられた半導体素子をピックアップ装置によってピックアップする方法等が挙げられる。 In order to peel off the semiconductor element adhesively fixed to the dicing/die bonding integrated adhesive sheet, the semiconductor element is picked up. The pickup method is not particularly limited, and various conventionally known methods can be employed. For example, there is a method in which each semiconductor element is pushed up from the dicing/die bonding integrated adhesive sheet side using a needle, and the pushed up semiconductor element is picked up by a pickup device.

ここでピックアップは、粘着剤層が放射線(例えば、紫外線)硬化型の場合、該粘着剤層に放射線を照射した後に行う。これにより、粘着剤層のフィルム状接着剤に対する粘着力が低下し、半導体素子の剥離が容易になる。その結果、半導体素子を損傷させることなく、ピックアップが可能となる。 If the adhesive layer is of a radiation (for example, ultraviolet) curing type, the pickup is performed after the adhesive layer is irradiated with radiation. This reduces the adhesive strength of the adhesive layer to the film adhesive, making it easier to peel off the semiconductor element. As a result, it becomes possible to pick up the semiconductor element without damaging it.

次に、ダイシングによって形成されたフィルム状接着剤付き半導体素子を、フィルム状接着剤を介して半導体素子を搭載するための支持部材に接着する。接着は圧着によって行われてよい。ダイボンドの条件としては、特に限定されず、適宜必要に応じて設定することができる。具体的には、例えば、ダイボンド温度80~160℃、ボンディング荷重5~15N、ボンディング時間1~10秒の範囲内で行うことができる。 Next, the film-like adhesive-attached semiconductor element formed by dicing is adhered to a support member for mounting the semiconductor element via the film-like adhesive. Adhesion may be performed by crimping. The conditions for die bonding are not particularly limited and can be set as appropriate and necessary. Specifically, for example, die bonding can be carried out at a die bonding temperature of 80 to 160° C., a bonding load of 5 to 15 N, and a bonding time of 1 to 10 seconds.

必要に応じて、フィルム状接着剤を熱硬化させる工程を設けてもよい。上記接着工程によって支持部材と半導体素子とを接着しているフィルム状接着剤を熱硬化させることによって、より強固に接着固定が可能となる。熱硬化を行う場合、圧力を同時に加えて硬化させてもよい。本工程における加熱温度は、フィルム状接着剤に構成成分によって適宜変更することができる。加熱温度は、例えば、60~200℃であってよい。なお、温度又は圧力は、段階的に変更しながら行ってもよい。 If necessary, a step of thermally curing the film adhesive may be provided. By thermally curing the film adhesive bonding the supporting member and the semiconductor element in the above bonding step, it becomes possible to more firmly bond and fix the support member and the semiconductor element. When thermal curing is performed, pressure may be applied simultaneously for curing. The heating temperature in this step can be changed as appropriate depending on the constituent components of the film adhesive. The heating temperature may be, for example, 60 to 200°C. Note that the temperature or pressure may be changed in stages.

次に、支持部材の端子部(インナーリード)の先端と半導体素子上の電極パッドとをボンディングワイヤーで電気的に接続するワイヤーボンディング工程を行う。ボンディングワイヤーとしては、例えば、金線、アルミニウム線、銅線等が用いられる。ワイヤーボンディングを行う際の温度は、80~250℃又は80~220℃の範囲内であってよい。加熱時間は数秒~数分間であってよい。結線は、上記温度範囲内で加熱された状態で、超音波による振動エネルギーと印加加圧とによる圧着エネルギーの併用によって行われてもよい。 Next, a wire bonding step is performed in which the tips of the terminal portions (inner leads) of the support member are electrically connected to electrode pads on the semiconductor element using bonding wires. As the bonding wire, for example, a gold wire, an aluminum wire, a copper wire, etc. are used. The temperature during wire bonding may be in the range of 80 to 250°C or 80 to 220°C. The heating time may be from a few seconds to a few minutes. The wire connection may be performed in a heated state within the above-mentioned temperature range by using a combination of vibration energy generated by ultrasonic waves and compression energy generated by applied pressure.

次に、封止樹脂によって半導体素子を封止する封止工程を行う。本工程は、支持部材に搭載された半導体素子又はボンディングワイヤーを保護するために行われる。本工程は、封止用の樹脂を金型で成型することにより行う。封止樹脂としては、例えばエポキシ系の樹脂であってよい。封止時の熱及び圧力によって基板及び残渣が埋め込まれ、接着界面での気泡による剥離を防止することができる。 Next, a sealing step is performed to seal the semiconductor element with a sealing resin. This step is performed to protect the semiconductor element or bonding wire mounted on the support member. This step is performed by molding the sealing resin with a mold. The sealing resin may be, for example, an epoxy resin. The heat and pressure during sealing embeds the substrate and the residue, making it possible to prevent separation due to air bubbles at the adhesive interface.

次に、後硬化工程において、封止工程で硬化不足の封止樹脂を完全に硬化させる。封止工程において、フィルム状接着剤が熱硬化されない場合でも、本工程において、封止樹脂の硬化とともにフィルム状接着剤を熱硬化させて接着固定が可能になる。本工程における加熱温度は、封止樹脂の種類よって適宜設定することができ、例えば、165~185℃の範囲内であってよく、加熱時間は0.5~8時間程度であってよい。 Next, in a post-curing process, the sealing resin that was insufficiently cured in the sealing process is completely cured. Even if the film adhesive is not thermally cured in the sealing process, adhesive fixation is possible by thermally curing the film adhesive at the same time as the sealing resin is cured in this process. The heating temperature in this step can be appropriately set depending on the type of sealing resin, and may be in the range of 165 to 185° C., for example, and the heating time may be about 0.5 to 8 hours.

次に、支持部材に接着されたフィルム状接着剤付き半導体素子に対して、リフロー炉を用いて加熱する。本工程では支持部材上に、樹脂封止した半導体装置を表面実装してもよい。表面実装の方法としては、例えば、プリント配線板上に予めはんだを供給した後、温風等によって加熱溶融し、はんだ付けを行うリフローはんだ付けなどが挙げられる。加熱方法としては、例えば、熱風リフロー、赤外線リフロー等が挙げられる。また、加熱方法は、全体を加熱するものであってもよく、局部を加熱するものであってもよい。加熱温度は、例えば、240~280℃の範囲内であってよい。 Next, the semiconductor element with the film adhesive bonded to the support member is heated using a reflow oven. In this step, a resin-sealed semiconductor device may be surface-mounted on the support member. Examples of surface mounting methods include reflow soldering, in which solder is supplied onto a printed wiring board in advance, and then heated and melted with hot air or the like to perform soldering. Examples of the heating method include hot air reflow, infrared reflow, and the like. Moreover, the heating method may be a method of heating the whole body or a method of heating a local part. The heating temperature may be, for example, in the range of 240 to 280°C.

半導体素子を多層に積層する場合には、ワイヤーボンディング工程等の熱履歴が多くなり、フィルム状接着剤と半導体素子との界面に存在する気泡による剥離への影響は大きなものとなり得る。しかしながら、本実施形態に係るフィルム状接着剤は、特定のアクリルゴムを用いることによって、凝集力が低下し、埋込性が向上する傾向にある。そのため、半導体装置内に気泡を巻き込み難く、封止工程における気泡を容易に拡散させることができ、接着界面での気泡による剥離を防止することができる。 When semiconductor elements are laminated in multiple layers, thermal history such as wire bonding process increases, and bubbles present at the interface between the film adhesive and the semiconductor element can have a large effect on peeling. However, the use of a specific acrylic rubber in the film adhesive according to this embodiment tends to reduce cohesive force and improve embeddability. Therefore, it is difficult for air bubbles to be drawn into the semiconductor device, the air bubbles can be easily diffused in the sealing process, and separation due to air bubbles at the adhesive interface can be prevented.

以下に、本発明を実施例に基づいて具体的に説明するが、本発明はこれらに限定されるものではない。 The present invention will be specifically described below based on Examples, but the present invention is not limited thereto.

[フィルム状接着剤の作製]
(実施例及び比較例)
<接着剤ワニスの調製>
表1及び表2に示す品名及び組成比(単位:質量部)で、(A)熱硬化性樹脂としてのエポキシ樹脂、(B)硬化剤としてのフェノール樹脂、及び(D)無機フィラーからなる組成物にシクロヘキサノンを加え、撹拌混合した。これに、表1及び表2に示す(C)アクリルゴムを加えて撹拌し、さらに表1及び表2に示す(E)カップリング剤及び(F)硬化促進剤を加えて、各成分が均一になるまで撹拌して、接着剤ワニスを調製した。なお、表1及び表2に示す(C)成分及び(D)成分の数値は、固形分の質量部を意味する。
[Preparation of film adhesive]
(Example and comparative example)
<Preparation of adhesive varnish>
A composition consisting of (A) an epoxy resin as a thermosetting resin, (B) a phenol resin as a curing agent, and (D) an inorganic filler with the product name and composition ratio (unit: parts by mass) shown in Tables 1 and 2. Cyclohexanone was added to the mixture and mixed with stirring. To this, add (C) acrylic rubber shown in Tables 1 and 2 and stir, and then add (E) coupling agent and (F) curing accelerator shown in Tables 1 and 2 to ensure that each component is uniform. An adhesive varnish was prepared by stirring until . Note that the numerical values of component (C) and component (D) shown in Tables 1 and 2 mean parts by mass of solid content.

(A)熱硬化性樹脂
(A1)YDCN-700-10(商品名、新日鉄住金化学株式会社製、o-クレゾールノボラック型エポキシ樹脂、エポキシ当量:209g/eq)
(A) Thermosetting resin (A1) YDCN-700-10 (trade name, manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., o-cresol novolac type epoxy resin, epoxy equivalent: 209 g/eq)

(B)硬化剤
(B1)HE-100C-30(商品名、エア・ウォーター株式会社製、フェニルアラルキル型フェノール樹脂、水酸基当量:174g/eq、軟化点77℃)
(B) Curing agent (B1) HE-100C-30 (trade name, manufactured by Air Water Co., Ltd., phenylaralkyl phenol resin, hydroxyl equivalent: 174 g/eq, softening point 77°C)

(C)アクリルゴム
(C1)SG-P3改良品(SG-P3(商品名、ナガセケムテックス株式会社製)のアクリルゴムにおいて、アクリルニトリルに由来する構成単位を除いたもの、アクリルゴムの重量平均分子量:60万、アクリルゴムの理論Tg:12℃、PCN/PCO=0.001)
(C2)SG-P3溶剤変更品(SG-P3(商品名、ナガセケムテックス株式会社製、アクリルゴムのメチルエチルケトン溶液)の溶剤を変更したもの、アクリルゴムの重量平均分子量:80万、アクリルゴムの理論Tg:12℃、PCN/PCO=0.070)
(C) Acrylic rubber (C1) SG-P3 improved product (SG-P3 (trade name, manufactured by Nagase ChemteX Co., Ltd.) acrylic rubber, excluding structural units derived from acrylonitrile, weight average of acrylic rubber Molecular weight: 600,000, theoretical Tg of acrylic rubber: 12°C, P CN /P CO =0.001)
(C2) SG-P3 solvent-changed product (SG-P3 (trade name, manufactured by Nagase ChemteX Co., Ltd., methyl ethyl ketone solution of acrylic rubber) with a changed solvent, weight average molecular weight of acrylic rubber: 800,000, acrylic rubber Theoretical Tg: 12°C, P CN /P CO =0.070)

(IRスペクトルの測定)
(C1)及び(C2)のPCN/PCOは以下の方法によって算出した。まず、(C1)及び(C2)から溶剤を除去したものをKBr錠剤法によって、透過IRスペクトルを測定し、縦軸を吸光度、横軸を波数(cm-1)で表示した。IRスペクトルの測定には、FT-IR6300(日本分光株式会社製、光源:高輝度セラミック光源、検出器:DLATGS)を使用した。
(Measurement of IR spectrum)
P CN /P CO of (C1) and (C2) was calculated by the following method. First, the transmitted IR spectra of (C1) and (C2) from which the solvent had been removed were measured by the KBr tablet method, and the vertical axis is the absorbance and the horizontal axis is the wave number (cm -1 ). For the measurement of the IR spectrum, FT-IR6300 (manufactured by JASCO Corporation, light source: high-intensity ceramic light source, detector: DLATGS) was used.

(カルボニル基の伸縮振動に由来する吸収ピークの高さPCO
1670cm-1と1860cm-1との2点の間で最も吸光度の高いピークをピーク点とした。1670cm-1と1860cm-1との2点間の直線をベースラインとし、このベースライン上でピーク点と同波数である点をベースライン点とし、ベースライン点とピーク点との吸光度の差をカルボニル基の伸縮振動に由来する吸収ピークの高さ(PCO)とした。
(Height of absorption peak derived from stretching vibration of carbonyl group P CO )
The peak with the highest absorbance between 1670 cm -1 and 1860 cm -1 was defined as the peak point. The straight line between the two points 1670 cm -1 and 1860 cm -1 is taken as the baseline, and the point on this baseline that has the same wave number as the peak point is taken as the baseline point, and the difference in absorbance between the baseline point and the peak point is It was defined as the height of the absorption peak (P CO ) derived from the stretching vibration of the carbonyl group.

(ニトリル基の伸縮振動に由来するピークの高さPCN
COを求めたものと同一のIRスペクトルにおいて、2270cm-1と2220cm-1との2点の間で最も吸光度の高いピークをピーク点とした。2270cm-1と2220cm-1との2点間の直線をベースラインとし、このベースライン上でピーク点と同波数である点をベースライン点とし、ベースライン点とピーク点との吸光度の差をニトリル基の伸縮振動に由来するピークの高さ(PCN)とした。
(Height of peak derived from stretching vibration of nitrile group P CN )
In the same IR spectrum as that used to determine P CO , the peak with the highest absorbance between 2270 cm −1 and 2220 cm −1 was taken as the peak point. The straight line between the two points 2270 cm -1 and 2220 cm -1 is taken as the baseline, and the point on this baseline that has the same wave number as the peak point is taken as the baseline point, and the difference in absorbance between the baseline point and the peak point is It was defined as the peak height (P CN ) derived from the stretching vibration of the nitrile group.

(D)無機フィラー
(D1)SC2050-HLG(商品名、アドマテックス株式会社製、シリカフィラー分散液、平均粒径0.50μm)
(D) Inorganic filler (D1) SC2050-HLG (trade name, manufactured by Admatex Co., Ltd., silica filler dispersion, average particle size 0.50 μm)

(E)カップリング剤
(E1)A-189(商品名、日本ユニカー株式会社製、γ-メルカプトプロピルトリメトキシシラン)
(E2)A-1160(商品名、日本ユニカー株式会社製、γ-ウレイドプロピルトリエトキシシラン)
(E) Coupling agent (E1) A-189 (trade name, manufactured by Nippon Unicar Co., Ltd., γ-mercaptopropyltrimethoxysilane)
(E2) A-1160 (trade name, manufactured by Nippon Unicar Co., Ltd., γ-ureidopropyltriethoxysilane)

(F)硬化促進剤
(F1)2PZ-CN(商品名、四国化成工業株式会社製、1-シアノエチル-2-フェニルイミダゾール)
(F) Curing accelerator (F1) 2PZ-CN (trade name, manufactured by Shikoku Kasei Kogyo Co., Ltd., 1-cyanoethyl-2-phenylimidazole)

<フィルム状接着剤の作製>
作製した接着剤ワニスを100メッシュのフィルターでろ過し、真空脱泡した。基材フィルムとして、厚み38μmの離型処理を施したポリエチレンテレフタレート(PET)フィルムを用意し、真空脱泡後の接着剤ワニスをPETフィルム上に塗布した。塗布した接着剤ワニスを、90℃で5分間、続いて130℃で5分間の2段階で加熱乾燥し、Bステージ状態にある実施例1-1、1-2及び比較例1-1、1-2並びに実施例2-1、2-2及び比較例2-1、2-2のフィルム状接着剤を得た。フィルム状接着剤においては、接着剤ワニスの塗布量によって、厚み10μmになるように調整した。
<Preparation of film adhesive>
The produced adhesive varnish was filtered through a 100 mesh filter and degassed under vacuum. A release-treated polyethylene terephthalate (PET) film having a thickness of 38 μm was prepared as a base film, and an adhesive varnish after vacuum defoaming was applied onto the PET film. The applied adhesive varnish was heated and dried in two steps, first at 90°C for 5 minutes and then at 130°C for 5 minutes, to obtain Examples 1-1 and 1-2 and Comparative Examples 1-1 and 1 in the B stage state. -2, Examples 2-1 and 2-2, and Comparative Examples 2-1 and 2-2 film adhesives were obtained. The film adhesive was adjusted to have a thickness of 10 μm depending on the amount of adhesive varnish applied.

Figure 2024010048000002
Figure 2024010048000002

Figure 2024010048000003
Figure 2024010048000003

[銅イオン透過時間の測定]
<A液の調製>
無水硫酸銅(II)2.0gを蒸留水1020gに溶解させ、完全に硫酸銅が溶解するまで撹拌し、銅イオン濃度がCu元素換算で濃度500mg/kgである硫酸銅水溶液を調製した。得られた硫酸銅水溶液をA液とした。
[Measurement of copper ion permeation time]
<Preparation of liquid A>
2.0 g of anhydrous copper (II) sulfate was dissolved in 1020 g of distilled water and stirred until the copper sulfate was completely dissolved to prepare a copper sulfate aqueous solution having a copper ion concentration of 500 mg/kg in terms of Cu element. The obtained copper sulfate aqueous solution was designated as A solution.

<B液の調製>
無水硫酸ナトリウム1.0gを蒸留水1000gに溶解させ、完全に硫酸ナトリウムが溶解するまで撹拌した。これにさらにN-メチル-2-ピロリドン(NMP)を1000g加え、撹拌した。その後、室温になるまで空冷して硫酸ナトリウム水溶液を得た。得られた溶液をB液とした。
<Preparation of B solution>
1.0 g of anhydrous sodium sulfate was dissolved in 1000 g of distilled water and stirred until the sodium sulfate was completely dissolved. Further, 1000 g of N-methyl-2-pyrrolidone (NMP) was added to this and stirred. Thereafter, the mixture was air-cooled to room temperature to obtain an aqueous sodium sulfate solution. The obtained solution was designated as B solution.

<銅イオン透過時間の測定>
上記で作製した実施例1-1、1-2及び比較例1-2並びに実施例2-1、2-2及び比較例2-2のフィルム状接着剤(厚み:10μm)を、それぞれ直径約3cmの円状に切り抜いた。次に、厚み1.5mm、外径約3cm、内径1.8cmのシリコンパッキンシートを2枚用意した。円状に切り抜いたフィルム状接着剤を2枚のシリコンパッキンシートで挟み、これを容積50mLの2つのガラス製セルのフランジ部で挟み、ゴムバンドで固定した。
<Measurement of copper ion permeation time>
The film adhesives (thickness: 10 μm) of Examples 1-1, 1-2 and Comparative Example 1-2 and Examples 2-1, 2-2 and Comparative Example 2-2 prepared above were each coated with a diameter of approximately Cut out a 3cm circle. Next, two silicone packing sheets having a thickness of 1.5 mm, an outer diameter of about 3 cm, and an inner diameter of 1.8 cm were prepared. A film adhesive cut out in a circular shape was sandwiched between two silicone packing sheets, and this was sandwiched between the flanges of two glass cells each having a volume of 50 mL, and fixed with a rubber band.

次に、一方のガラス製セルにA液を50g注入した後、他方のガラス製セルにB液を50g注入した。各セルにカーボン電極として、Mars Carbon(ステッドラー有限合資会社製、φ2mm/130mm)を挿入した。A液側を陽極、B液側を陰極として、陽極と直流電源(株式会社エーアンドディ製、直流電源装置AD-9723D)とを接続した。また、陰極と直流電源とを、電流計(三和電気計器株式会社製、Degital multimeter PC-720M)を介して直列に接続した。室温下、印加電圧24.0Vにて電圧を印加し、印加した後から電流値の計測を開始した。測定は電流値が15μAを超えるまで行い、電流値が10μAとなった時間を銅イオン透過時間とした。結果を表3及び表4に示す。本評価では、透過時間が長いほど、銅イオン透過が抑制されているといえる。 Next, 50 g of liquid A was injected into one glass cell, and then 50 g of liquid B was injected into the other glass cell. Mars Carbon (manufactured by Staedtler LLC, φ2 mm/130 mm) was inserted into each cell as a carbon electrode. The A liquid side was used as an anode and the B liquid side was used as a cathode, and the anode and a DC power source (manufactured by A&D Co., Ltd., DC power supply device AD-9723D) were connected. Further, the cathode and the DC power source were connected in series through an ammeter (Digital multimeter PC-720M, manufactured by Sanwa Denki Keiki Co., Ltd.). A voltage was applied at an applied voltage of 24.0 V at room temperature, and measurement of the current value was started after the voltage was applied. The measurement was carried out until the current value exceeded 15 μA, and the time when the current value reached 10 μA was defined as the copper ion permeation time. The results are shown in Tables 3 and 4. In this evaluation, it can be said that the longer the permeation time, the more the copper ion permeation is suppressed.

[塗工面の外観評価]
実施例1-1、1-2及び比較例1-2並びに実施例2-1、2-2及び比較例2-2のフィルム状接着剤について、塗工面の外観評価を行い、異物、ヌケ、スジ等の存在を目視で確認した。異物、ヌケ、スジ等が確認されなかったものを「A」、異物、ヌケ、スジ等が確認されたものを「B」、異物、ヌケ、スジ等が大量に確認されたものを「C」と評価した。結果を表3及び表4に示す。
[Appearance evaluation of coated surface]
For the film adhesives of Examples 1-1, 1-2 and Comparative Example 1-2, Examples 2-1, 2-2, and Comparative Example 2-2, the appearance of the coated surface was evaluated, and foreign matter, missing particles, The presence of streaks etc. was visually confirmed. "A" indicates that no foreign matter, missing spots, streaks, etc. were confirmed; "B" indicates that foreign matter, missing spots, streaks, etc. were confirmed; "C" indicates that a large amount of foreign matter, missing spots, streaks, etc. were confirmed. rated it as. The results are shown in Tables 3 and 4.

Figure 2024010048000004
Figure 2024010048000004

Figure 2024010048000005
Figure 2024010048000005

[接着力の評価]
<半導体装置の作製>
ダイシングテープ(日立化成株式会社製、厚み110μm)を用意し、作製した実施例1-1、1-2及び比較例1-1並びに実施例2-1、2-2及び比較例2-1のフィルム状接着剤(厚み10μm)を貼り付けて、ダイシングテープ及びフィルム状接着剤を備えるダイシング-ダイボンディング一体型接着シートを作製した。ダイシング-ダイボンディング一体型接着シートのフィルム状接着剤側に400μm厚の半導体ウェハを、ステージ温度70℃でラミネートし、ダイシングサンプルを作製した。
[Evaluation of adhesive strength]
<Production of semiconductor device>
A dicing tape (manufactured by Hitachi Chemical Co., Ltd., thickness 110 μm) was prepared and prepared in Examples 1-1, 1-2 and Comparative Example 1-1, Examples 2-1, 2-2 and Comparative Example 2-1. A film adhesive (thickness: 10 μm) was attached to produce a dicing-die bonding integrated adhesive sheet comprising a dicing tape and a film adhesive. A 400 μm thick semiconductor wafer was laminated on the film adhesive side of a dicing-die bonding integrated adhesive sheet at a stage temperature of 70° C. to prepare a dicing sample.

フルオートダイサーDFD-6361(株式会社ディスコ製)を用いて、得られたダイシングサンプルを切断した。切断には、2枚のブレードを用いるステップカット方式で行い、ダイシングブレードZH05-SD3500-N1-xx-DD、及びZH05-SD4000-N1-xx-BB(いずれも株式会社ディスコ製)を用いた。切断条件は、ブレード回転数4000rpm、切断速度50mm/sec、チップサイズ7.5mm×7.5mmとした。切断は、半導体ウェハが30μm程度残るように1段階目の切断を行い、次いで、ダイシングテープに20μm程度の切り込みが入るように2段階目の切断を行った。 The obtained dicing sample was cut using a fully automatic dicer DFD-6361 (manufactured by DISCO Co., Ltd.). The cutting was performed by a step cut method using two blades, and dicing blades ZH05-SD3500-N1-xx-DD and ZH05-SD4000-N1-xx-BB (both manufactured by DISCO Co., Ltd.) were used. The cutting conditions were a blade rotation speed of 4000 rpm, a cutting speed of 50 mm/sec, and a chip size of 7.5 mm x 7.5 mm. The first step of cutting was performed so that about 30 μm of the semiconductor wafer remained, and then the second step of cutting was performed so that a cut of about 20 μm was made in the dicing tape.

続いて、切断により得られた半導体チップをソルダーレジスト(太陽ホールディングス株式会社、商品名:AUS-308)上に熱圧着した。圧着条件は、温度120℃、時間1秒、圧力0.1MPaとした。続いて、圧着により得られたサンプルを乾燥機に入れ、170℃、1時間硬化させた。ソルダーレジストに圧着した半導体チップを硬化させ、万能ボンドテスター(ノードソン・アドバンス・テクノロジー株式会社製、商品名:シリーズ4000)によって半導体チップを引っ掛けながら引っ張ることによって、半導体チップとソルダーレジストとの硬化後ダイシェア強度を測定し、接着力として評価した。測定条件はステージ温度を250℃とした。結果を表5及び表6に示す。 Subsequently, the semiconductor chip obtained by cutting was thermocompression bonded onto a solder resist (Taiyo Holdings Co., Ltd., trade name: AUS-308). The pressure bonding conditions were a temperature of 120° C., a time of 1 second, and a pressure of 0.1 MPa. Subsequently, the sample obtained by pressure bonding was placed in a dryer and cured at 170° C. for 1 hour. The semiconductor chip crimped to the solder resist is cured, and the semiconductor chip is hooked and pulled using a universal bond tester (manufactured by Nordson Advanced Technology Co., Ltd., product name: Series 4000) to perform die sharing after curing between the semiconductor chip and the solder resist. The strength was measured and evaluated as adhesive strength. The measurement conditions were a stage temperature of 250°C. The results are shown in Tables 5 and 6.

Figure 2024010048000006
Figure 2024010048000006

Figure 2024010048000007
Figure 2024010048000007

表5及び表6に示すとおり、無機フィラーの含有量が、熱硬化性樹脂、硬化剤、アクリルゴム、及び無機フィラーの総質量100質量部に対して、0.5~10質量部であるフィルム状接着剤は、この要件を満たさないフィルム状接着剤に比べて、銅イオン透過時間が長く、接着力に優れていた。 As shown in Tables 5 and 6, the film has an inorganic filler content of 0.5 to 10 parts by mass based on 100 parts by mass of the total mass of the thermosetting resin, curing agent, acrylic rubber, and inorganic filler. Compared to film adhesives that do not meet this requirement, the copper ion permeation time of the adhesive was longer and the adhesive strength was superior.

以上のとおり、本発明のフィルム状接着剤が、接着剤内の銅イオン透過を充分に抑制しつつ、さらに接着力に優れることが確認された。 As described above, it was confirmed that the film adhesive of the present invention sufficiently suppresses copper ion permeation within the adhesive and has excellent adhesive strength.

1…フィルム状接着剤、2…基材、3…カバーフィルム、6…粘着剤層、7…ダイシングテープ、9,9a,9b…半導体素子、10…支持部材、11…ワイヤ、12…封止材、13…端子、100,110,120,130…接着シート、200,210…半導体装置。 DESCRIPTION OF SYMBOLS 1... Film adhesive, 2... Base material, 3... Cover film, 6... Adhesive layer, 7... Dicing tape, 9, 9a, 9b... Semiconductor element, 10... Supporting member, 11... Wire, 12... Sealing Material, 13... Terminal, 100, 110, 120, 130... Adhesive sheet, 200, 210... Semiconductor device.

Claims (2)

支持部材と、
第1の接着部材によって前記支持部材上に接着された第1の半導体素子と、
第2の接着部材によって前記第1の半導体素子上に接着された第2の半導体素子と、
を備える、半導体素子を積層する構造の半導体装置であって、
前記第1の接着部材及び前記第2の接着部材が、フィルム状接着剤の硬化物であり、
前記フィルム状接着剤が、熱硬化性樹脂と、硬化剤と、アクリルゴムと、無機フィラーとを含有し、
前記無機フィラーの含有量が、前記熱硬化性樹脂、前記硬化剤、前記アクリルゴム、及び前記無機フィラーの総質量100質量部に対して、0.5~10質量部であり、
前記フィルム状接着剤の厚みが15μm以下である、半導体装置。
a support member;
a first semiconductor element adhered onto the support member by a first adhesive member;
a second semiconductor element adhered onto the first semiconductor element by a second adhesive member;
A semiconductor device having a structure in which semiconductor elements are stacked, comprising:
The first adhesive member and the second adhesive member are cured film adhesives,
The film adhesive contains a thermosetting resin, a curing agent, an acrylic rubber, and an inorganic filler,
The content of the inorganic filler is 0.5 to 10 parts by mass with respect to 100 parts by mass of the total mass of the thermosetting resin, the curing agent, the acrylic rubber, and the inorganic filler,
A semiconductor device, wherein the film adhesive has a thickness of 15 μm or less.
前記支持部材が、銅を素材とする部材を含む、請求項1に記載の半導体装置。 The semiconductor device according to claim 1, wherein the support member includes a member made of copper.
JP2023181011A 2018-09-26 2023-10-20 Semiconductor device Pending JP2024010048A (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018180325 2018-09-26
JP2018180325 2018-09-26
PCT/JP2019/037351 WO2020067054A1 (en) 2018-09-26 2019-09-24 Film-shaped adhesive, adhesive sheet, semiconductor device, and production method for semiconductor device
JP2020549236A JP7375764B2 (en) 2018-09-26 2019-09-24 Film adhesive, adhesive sheet, semiconductor device and manufacturing method thereof

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2020549236A Division JP7375764B2 (en) 2018-09-26 2019-09-24 Film adhesive, adhesive sheet, semiconductor device and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2024010048A true JP2024010048A (en) 2024-01-23

Family

ID=69949598

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2020549236A Active JP7375764B2 (en) 2018-09-26 2019-09-24 Film adhesive, adhesive sheet, semiconductor device and manufacturing method thereof
JP2023181011A Pending JP2024010048A (en) 2018-09-26 2023-10-20 Semiconductor device

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2020549236A Active JP7375764B2 (en) 2018-09-26 2019-09-24 Film adhesive, adhesive sheet, semiconductor device and manufacturing method thereof

Country Status (6)

Country Link
JP (2) JP7375764B2 (en)
KR (1) KR102629865B1 (en)
CN (1) CN112740381B (en)
SG (1) SG11202103066SA (en)
TW (1) TWI812784B (en)
WO (1) WO2020067054A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023157195A1 (en) * 2022-02-17 2023-08-24 株式会社レゾナック Dicing die-bonding film, and method for manufacturing semiconductor device

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007284670A (en) 2006-03-22 2007-11-01 Hitachi Chem Co Ltd Adhesive film and semiconductor device by using the same
JP2008103700A (en) 2006-09-19 2008-05-01 Hitachi Chem Co Ltd Multi-layered die bond sheet, semiconductor device with semiconductor adhesive film, semiconductor device, and method of manufacturing semiconductor device
EP2254147A1 (en) * 2008-03-14 2010-11-24 Sumitomo Bakelite Co., Ltd. Resin varnish for semiconductor element bonding film formation, semiconductor element bonding film, and semiconductor device
JP5544779B2 (en) 2008-08-07 2014-07-09 日立化成株式会社 Die bonding film and semiconductor device using the same
CN102687256A (en) * 2009-11-13 2012-09-19 日立化成工业株式会社 Method for manufacturing film-like adhesive, adhesive sheet, semiconductor device, and method for manufacturing semiconductor device
JP5804820B2 (en) 2011-07-25 2015-11-04 日東電工株式会社 Adhesive sheet for manufacturing semiconductor device, semiconductor device having adhesive sheet for manufacturing semiconductor device, and method for manufacturing semiconductor device
JP5834662B2 (en) * 2011-09-13 2015-12-24 日立化成株式会社 Film adhesive, adhesive sheet, semiconductor device and manufacturing method thereof
JP2016190964A (en) * 2015-03-31 2016-11-10 日立化成株式会社 Adhesive film
JP6877982B2 (en) * 2016-12-08 2021-05-26 日東電工株式会社 Adhesive film, dicing / die bond film, semiconductor device manufacturing method and semiconductor device

Also Published As

Publication number Publication date
JPWO2020067054A1 (en) 2021-09-16
JP7375764B2 (en) 2023-11-08
CN112740381A (en) 2021-04-30
CN112740381B (en) 2024-10-29
TWI812784B (en) 2023-08-21
KR102629865B1 (en) 2024-01-26
WO2020067054A1 (en) 2020-04-02
TW202024269A (en) 2020-07-01
SG11202103066SA (en) 2021-04-29
KR20210065122A (en) 2021-06-03

Similar Documents

Publication Publication Date Title
JP2024010048A (en) Semiconductor device
WO2019220540A1 (en) Semiconductor device, thermosetting resin composition used for production thereof, and dicing die bonding integrated tape
WO2023152837A1 (en) Film-form adhesive, dicing and die-bonding two-in-one film, semiconductor device, and method for manufacturing same
WO2020158490A1 (en) Filmy adhesive, adhesive sheet, semiconductor device, and method for manufacturing same
WO2020129996A1 (en) Film-form adhesive, adhesive sheet, and semiconductor device and manufacturing method thereof
JP7255146B2 (en) FILM ADHESIVE, ADHESIVE SHEET, SEMICONDUCTOR DEVICE AND MANUFACTURING METHOD THEREOF
WO2020065783A1 (en) Film-shaped adhesive, adhesive sheet, semiconductor device, and production method for semiconductor device
KR20230129992A (en) Film-like adhesive, integrated dicing/die bonding film, and semiconductor device and method of manufacturing the same
JP7435458B2 (en) Film adhesive, adhesive sheet, semiconductor device and manufacturing method thereof
WO2020162412A1 (en) Film-like adhesive, adhesive sheet and semiconductor device
WO2023047594A1 (en) Film adhesive, two-in-one dicing and die-bonding film, semiconductor device, and manufacturing method for same
US20230395420A1 (en) Film adhesive and method for making same; dicing/die bonding integrated film and method for making same; and semiconductor device and method for making same
WO2024190884A1 (en) Film adhesive, dicing/die bonding integrated film, and semiconductor device and method for producing same
JP2022044991A (en) Die bonding film, adhesive sheet, semiconductor device and method for manufacturing the same
CN116670240A (en) Film-like adhesive, adhesive sheet, and semiconductor device and method for manufacturing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20241008