Nothing Special   »   [go: up one dir, main page]

JP2024002279A - Defect inspection method of light permeable plate body - Google Patents

Defect inspection method of light permeable plate body Download PDF

Info

Publication number
JP2024002279A
JP2024002279A JP2022101376A JP2022101376A JP2024002279A JP 2024002279 A JP2024002279 A JP 2024002279A JP 2022101376 A JP2022101376 A JP 2022101376A JP 2022101376 A JP2022101376 A JP 2022101376A JP 2024002279 A JP2024002279 A JP 2024002279A
Authority
JP
Japan
Prior art keywords
light
front surface
transmitting plate
glass substrate
synthetic silica
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022101376A
Other languages
Japanese (ja)
Inventor
耕司 稲永
Koji Inenaga
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Coorstek KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Coorstek KK filed Critical Coorstek KK
Priority to JP2022101376A priority Critical patent/JP2024002279A/en
Publication of JP2024002279A publication Critical patent/JP2024002279A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

To provide a defect inspection method of a light permeable plate body for highly accurately detecting a defect.SOLUTION: An inspection preparation step includes the processes of changing a focal position of an imaging unit arranged so as to be opposed to a front surface of a light permeable plate body toward a rear surface from the front surface of the light permeable plate body for each light permeable plate body with different thicknesses, measuring luminance of scattered light, and obtaining a relational expression between a distance from the front surface at a specific position where the luminance of scattered light becomes a maximum value and the thickness of the light permeable plate body. An inspection step includes the processes of obtaining a distance to the specific position where the luminance of scattered light becomes the maximum value from the front surface of the light permeable plate body being the inspection object on the basis of the relational expression from the thickness of the light permeable plate body being the inspection object, and performing imaging by an imaging unit with the focal point of the imaging unit arranged so as to be opposed to the front surface of the light permeable plate body as the specific position to form a photographed image.SELECTED DRAWING: None

Description

本発明は、光透過性板状体の欠陥検査方法に関し、例えばフォトマスク用の合成シリカガラス基板のような光透過性板状体における欠陥を検出する、光透過性板状体の欠陥検査方法に関する。 The present invention relates to a defect inspection method for a light-transparent plate-like body, and for example, a method for detecting defects in a light-transparent plate-like body such as a synthetic silica glass substrate for a photomask. Regarding.

例えば、液晶表示装置やプラズマディスプレイ装置の製造工程においては、フォトリソグラフィ法により、光透過性板状体である合成シリカガラス基板上に各種パターンを形成し、フォトマスクを製造する。
前記製造工程において、フォトマスクに異物、傷、ボイド等の欠陥が存在すると、フォトマスクによって形成される画像が、欠陥が含まれた画像となり、その欠陥が含まれた画像が被処理基板に投影される。
その結果、被処理基板上に形成されたパターンに欠陥が生じ、製造の歩留まりが低下する。この歩留まり低下を防止するため、従来から合成シリカガラス基板の欠陥検査が行われているが、歩留まり向上のため、より高精度に検査を行う必要がある。
For example, in the manufacturing process of liquid crystal display devices and plasma display devices, various patterns are formed on a synthetic silica glass substrate, which is a light-transmitting plate, by photolithography to manufacture a photomask.
In the manufacturing process, if a defect such as a foreign object, scratch, or void exists on the photomask, the image formed by the photomask will include the defect, and the image containing the defect will be projected onto the substrate to be processed. be done.
As a result, defects occur in the pattern formed on the substrate to be processed, and the manufacturing yield decreases. In order to prevent this decrease in yield, synthetic silica glass substrates have been inspected for defects, but in order to improve yield, it is necessary to perform inspection with higher precision.

このようなガラス基板(光透過性板状体)の欠陥検査方法として、特許文献1(特開2000-74849号公報)に示された検査方法を、図9に基づいて説明する。
ガラス基板の欠陥検査は、図9に示すように、例えば、ガラス基板Wのおもて面W1側に配置された光源55(照明部)とCCDカメラ56(撮像部)を用いて行われる。
そして、ガラス基板Wのおもて面W1の検査を行う場合には、ガラス基板Wのおもて面W1側に配置された光源55によりガラス基板おもて面W1に対し照射する(実線部)とともに、ガラス基板おもて面W1側に配置されたCCDカメラ56の焦点を、ガラス基板おもて面W1に合わせる。前記CCDカメラ56は、ガラス基板おもて面W1からの反射光を受光し、コンピュータ(図示せず)により画像データを生成する。
As a defect inspection method for such a glass substrate (light-transmitting plate-like body), an inspection method disclosed in Patent Document 1 (Japanese Unexamined Patent Publication No. 2000-74849) will be described with reference to FIG.
As shown in FIG. 9, the glass substrate defect inspection is performed using, for example, a light source 55 (illumination section) and a CCD camera 56 (imaging section) arranged on the front surface W1 side of the glass substrate W.
When inspecting the front surface W1 of the glass substrate W, the light source 55 disposed on the front surface W1 side of the glass substrate W irradiates the front surface W1 of the glass substrate (solid line part ), the focus of the CCD camera 56 disposed on the glass substrate front surface W1 side is adjusted to the glass substrate front surface W1. The CCD camera 56 receives reflected light from the front surface W1 of the glass substrate, and generates image data using a computer (not shown).

一方、ガラス基板Wの裏面W2の検査を行う場合には、ガラス基板Wのおもて面W1の検査と同じ光源55によりガラス基板裏面W2に対し照射する(破線部)とともに、ガラス基板おもて面W1の検査と同じCCDカメラ56の焦点を、ガラス基板裏面W2に合わせる。前記CCDカメラ56は、ガラス基板裏面W2からの反射光を受光し、コンピュータ(図示せず)により画像データを生成する。 On the other hand, when inspecting the back surface W2 of the glass substrate W, the same light source 55 as used for inspecting the front surface W1 of the glass substrate W is used to irradiate the back surface W2 of the glass substrate (dotted line), and the The focus of the CCD camera 56, which is the same as that used for inspecting the front surface W1, is set on the back surface W2 of the glass substrate. The CCD camera 56 receives reflected light from the back surface W2 of the glass substrate, and generates image data using a computer (not shown).

そして、ガラス基板Wのおもて面W1の反射光を受光して得られた画像データと、ガラス基板Wの裏面W2の反射光を受光して得られた画像データを、コンピュータの画像処理部(図示せず)において2次元画像処理し、ガラス基板Wのおもて面W1と裏面W2における欠陥を検出する。 Then, the image data obtained by receiving the reflected light from the front surface W1 of the glass substrate W and the image data obtained by receiving the reflected light from the back surface W2 of the glass substrate W are processed by an image processing unit of the computer. (not shown) performs two-dimensional image processing to detect defects on the front surface W1 and the back surface W2 of the glass substrate W.

特開2000-74849号公報Japanese Patent Application Publication No. 2000-74849

ところで、図9に示したガラス基板(光透過性板状体)Wの欠陥検査方法において、ガラス基板Wの裏面W2を検査する場合、ガラス基板Wを通して、CCDカメラ56の焦点を裏面W2に合わせても、欠陥を高精度に検出することができないという課題があった。言い換えれば、ガラス基板Wの裏面W2を反転し、前記裏面W2をおもて面とし、そのおもて面にCCDカメラ56の焦点を合わせて、欠陥を検出した場合に比べて、検出精度が低いという課題があった。 By the way, in the defect inspection method for the glass substrate (light-transmitting plate-like body) W shown in FIG. 9, when inspecting the back surface W2 of the glass substrate W, the CCD camera 56 is focused on the back surface W2 through the glass substrate W. However, there was a problem in that defects could not be detected with high precision. In other words, the detection accuracy is higher than when defects are detected by inverting the back surface W2 of the glass substrate W, using the back surface W2 as the front surface, and focusing the CCD camera 56 on the front surface. The problem was that it was low.

一方、ガラス基板Wの裏面W2における欠陥の検出感度を高くするために、ガラス基板Wの裏面W2側にも別の一組の光源とCCDカメラを配置して、それらを用いておもて面W1の検査と同様に裏面W2の欠陥検出を行うことが考えられるが、2組の光源とCCDカメラとが必要になり、コストが高くなるという課題があった。 On the other hand, in order to increase the detection sensitivity of defects on the back surface W2 of the glass substrate W, another set of light sources and a CCD camera are placed on the back surface W2 side of the glass substrate W, and these are used to detect defects on the front surface W2. It is conceivable to perform defect detection on the back surface W2 in the same way as the inspection on W1, but this requires two sets of light sources and a CCD camera, resulting in an increase in cost.

本発明者は、図9に示したガラス基板Wの検査方法を前提に、欠陥を高精度に検出できる光透過性板状体の欠陥検査方法を鋭意、研究した。
その結果、CCDカメラの焦点を、光透過性板状体を通して光透過性板状体の裏面(裏面ひょうめん)に合わせるのではなく、光透過性板状体のおもて面から裏面に向かう途中の、裏面(裏面ひょうめん)の手前の位置に焦点を合わせてことによって、欠陥を高精度に検出できることを知見し、本発明を完成した。
The present inventor has diligently researched a defect inspection method for a light-transmitting plate-like body that can detect defects with high accuracy based on the inspection method for a glass substrate W shown in FIG.
As a result, the focus of the CCD camera is not focused on the back surface of the light-transmitting plate through the light-transmitting plate, but from the front surface of the light-transmitting plate to the back surface. The present invention was completed based on the finding that defects can be detected with high precision by focusing on a position in front of the back surface (back surface).

本発明は、上記した事情のもとになされたものであり、光透過性板状体のおもて面側に配置された光源と撮像部(CCDカメラ、CMOSカメラ等)を用いて、前記光源から前記光透過性板状体に光を照射し、前記撮像部の焦点を光透過性板状体の裏面の手前の位置として撮像することによって、前記欠陥を高精度に検出できる光透過性板状体の欠陥検査方法を提供することを目的とする。 The present invention has been made under the above circumstances, and uses a light source and an imaging unit (CCD camera, CMOS camera, etc.) disposed on the front surface side of a light-transmitting plate-like body. The light transmittance allows the defect to be detected with high precision by irradiating light from a light source to the light transmitting plate and capturing an image with the focal point of the imaging unit at a position in front of the back surface of the light transmitting plate. An object of the present invention is to provide a method for inspecting defects in a plate-shaped body.

前記課題を解決するためになされた本発明に係る光透過性板状体の欠陥検査方法は、光透過性板状体に光を照射し、欠陥からの散乱光を検出することによって、光透過性板状体の裏面の欠陥の有無を検査する光透過性板状体の欠陥検査方法であって、検査準備工程が、厚さの異なる、複数の光透過性板状体を用意する工程と、前記厚さの異なる光透過性板状体ごとに、光透過性板状体のおもて面に対向して配置された撮像部の焦点位置を、前記光透過性板状体のおもて面から裏面に向って変え、散乱光の輝度を測定する工程と、散乱光の輝度が最大値となる特定位置のおもて面からの距離を求める工程と、前記散乱光の輝度が最大値となる特定位置のおもて面からの距離と、光透過性板状体の厚さとの関係式を求める工程と、を備え、検査工程が、検査対象である光透過性板状体の厚さから前記関係式に基づいて、検査対象である光透過性板状体のおもて面から、散乱光の輝度が最大値となる特定位置までの距離を求める工程と、前記光透過性板状体のおもて面に対向して配置された撮像部の焦点を、前記特定位置として、前記撮像部によって撮像し、撮像画像を形成する工程と、を備えることを特徴とする。 A defect inspection method for a light-transmitting plate-like body according to the present invention, which has been made to solve the above-mentioned problems, involves irradiating the light-transmitting plate-like body with light and detecting scattered light from the defect. A defect inspection method for a light-transmitting plate-like body for inspecting the presence or absence of a defect on the back side of a transparent plate-like body, the inspection preparation step being a step of preparing a plurality of light-transparent plate-like bodies having different thicknesses. , for each of the light-transmissive plate-like bodies having different thicknesses, the focal position of the imaging unit disposed opposite to the front surface of the light-transmissive plate-like body is set to the center of the light-transmissive plate-like body. a step of measuring the brightness of the scattered light by changing it from the front side to the back side; a step of determining the distance from the front surface of a specific position where the brightness of the scattered light is the maximum; and a step of calculating a relational expression between the distance from the front surface of a specific position serving as a value and the thickness of the light-transmitting plate-like body, and the inspection process a step of determining the distance from the front surface of the light-transmitting plate-like object to be inspected to a specific position where the brightness of the scattered light has a maximum value based on the thickness and the above-mentioned relational expression; The present invention is characterized by comprising the step of capturing an image by the imaging unit with a focal point of an imaging unit disposed facing the front surface of the plate-shaped body as the specific position to form a captured image.

このように、検査準備工程において、散乱光の輝度が最大値となる、おもて面から特定位置までの距離と、光透過性板状体の厚さとの関係式を求める。そして、検査対象である光透過性板状体の厚さから、この関係式に基づいて、検査対象である光透過性板状体の散乱光の輝度が最大値になる、おもて面から前記特定位置までの距離を求める。そして、この特定位置を、撮像部の焦点として撮像する。
その結果、光透過性板状体の裏面に焦点をあわせても検出できないような微小な傷や付着物などの欠陥を精度良く検出することができる。
In this way, in the inspection preparation process, a relational expression between the distance from the front surface to the specific position and the thickness of the light-transmitting plate-like body is determined, at which the brightness of the scattered light becomes the maximum value. Based on this relational expression, from the thickness of the light-transmitting plate to be inspected, the brightness of the scattered light of the light-transmitting plate to be inspected is the maximum value. Find the distance to the specific position. Then, this specific position is imaged as the focal point of the imaging unit.
As a result, it is possible to accurately detect defects such as minute scratches and deposits that cannot be detected even if the back surface of the light-transmitting plate is focused.

また、光透過性板状体が合成シリカガラス体であって、合成シリカガラス体の厚さをt(mm)、おもて面から前記特定位置までの距離をP(図2参照)とした場合、前記距離Pは、P=0.7844tと表される。
また、前記合成シリカガラス体のおもて面に対向して配置された撮像部の焦点を、P=0.7844tとした後、撮像部のオートフォーカス機能により誤差が修正され、前記撮像部によって撮像され、撮像画像が形成されても良い。
なお、合成シリカガラスは、通常、波長210nm~550nmの光に対し、1.45~1.50(25℃、1013hPa)の屈折率を有する。
Further, the light-transmitting plate-like body is a synthetic silica glass body, the thickness of the synthetic silica glass body is t (mm), and the distance from the front surface to the specific position is P (see FIG. 2). In this case, the distance P is expressed as P=0.7844t.
Further, after the focal point of the imaging unit disposed facing the front surface of the synthetic silica glass body is set to P=0.7844t, the error is corrected by the autofocus function of the imaging unit, and the imaging unit The image may be captured and a captured image may be formed.
Note that synthetic silica glass usually has a refractive index of 1.45 to 1.50 (25° C., 1013 hPa) for light with a wavelength of 210 nm to 550 nm.

本発明によれば、光透過性板状体のおもて面側に配置された光源と撮像部を用いて、前記光源から前記光透過性板状体の裏面に光を照射し、前記撮像部によって撮像することによって、前記欠陥を高精度に検出できる光透過性板状体の欠陥検査方法を得ることができる。 According to the present invention, using a light source and an imaging unit disposed on the front surface side of a light-transmitting plate-like body, light is irradiated from the light source to the back face of the light-transmitting plate-like body, and the image capturing unit By taking an image with a portion, it is possible to obtain a defect inspection method for a light-transmitting plate-like body that can detect the defect with high accuracy.

図1は、本発明の光透過性板状体の検査方法を実施する検査装置を模式的に示す概略図である。FIG. 1 is a schematic diagram schematically showing an inspection apparatus for implementing the inspection method for a light-transmitting plate-like body of the present invention. 図2は、図1の検査装置における照射部と撮像部と合成シリカガラス基板との位置関係を示す側面図である。FIG. 2 is a side view showing the positional relationship between the irradiation section, the imaging section, and the synthetic silica glass substrate in the inspection apparatus of FIG. 図3は、厚さ6mm光透過性板状体(合成シリカガラス基板)のおもて面から裏面に向う輝度の測定結果を示す図である。FIG. 3 is a diagram showing the results of measuring the brightness from the front surface to the back surface of a 6 mm thick light-transmitting plate-like body (synthetic silica glass substrate). 図4は、厚さ8mm光透過性板状体(合成シリカガラス基板)のおもて面から裏面に向う輝度の測定結果を示す図である。FIG. 4 is a diagram showing the results of measuring the brightness from the front surface to the back surface of a light-transmitting plate-like body (synthetic silica glass substrate) having a thickness of 8 mm. 図5は、厚さ10mm光透過性板状体(合成シリカガラス基板)のおもて面から裏面に向う輝度の測定結果を示す図である。FIG. 5 is a diagram showing the results of measuring the brightness from the front surface to the back surface of a 10 mm thick light-transmitting plate-like body (synthetic silica glass substrate). 図6は、光透過性板状体の厚さと、光透過性板状体のおもて面から輝度が最も高い特定位置(フォーカス位置)Pまでの距離との関係を示す図である。FIG. 6 is a diagram showing the relationship between the thickness of the light-transmissive plate-like body and the distance from the front surface of the light-transmissive plate-like body to a specific position (focus position) P with the highest brightness. 図7は、実施例1の結果を示す欠陥検出マップである。FIG. 7 is a defect detection map showing the results of Example 1. 図8は、比較例1の結果を示す欠陥検出マップである。FIG. 8 is a defect detection map showing the results of Comparative Example 1. 図9は、従来のガラス基板の表裏面の欠陥検出方法を説明するための側面図である。FIG. 9 is a side view for explaining a conventional method for detecting defects on the front and back surfaces of a glass substrate.

以下、本発明に係る光透過性板状体の欠陥検査方法について、更に実施形態に基づき説明する。
本発明に係る光透過性板状体の欠陥検査方法は、例えばフォトマスク等に使用する合成シリカガラス基板における異物、傷、ボイド等の欠陥を検出するためのものである。
以下の実施形態にあっては、光透過性板状体が合成シリカガラス基板である場合を例にとって説明する。
Hereinafter, the defect inspection method for a light-transmitting plate-like body according to the present invention will be further described based on embodiments.
The defect inspection method for a light-transmitting plate-like body according to the present invention is for detecting defects such as foreign matter, scratches, and voids in a synthetic silica glass substrate used for, for example, a photomask.
In the following embodiments, a case where the light-transmitting plate-like body is a synthetic silica glass substrate will be described as an example.

(検査装置の概要)
まず、本発明に係る光透過性板状体の欠陥検査方法を実施するための検査装置についてその概要を、図1に基づいて説明する。尚、図1に示す検査装置は一例であって、本発明に係る光透過性板状体の欠陥検査方法を実施する装置は、欠陥検査方法を実施することができれば、他の装置であっても良い。
(Overview of inspection equipment)
First, an outline of an inspection apparatus for carrying out the defect inspection method for a light-transmitting plate-like body according to the present invention will be explained based on FIG. 1. The inspection apparatus shown in FIG. 1 is an example, and the apparatus for carrying out the defect inspection method for a light-transmitting plate-like body according to the present invention may be any other apparatus as long as it is capable of carrying out the defect inspection method. Also good.

図1に示す検査装置100は、被検査基板である合成シリカガラス基板Wのおもて面W1側に、該合成シリカガラス基板Wに対向して配置されるCCDカメラ(撮像部)1と、前記CCDカメラ1の周囲に配置された照明部2と、を備える。
また、検査装置100は、合成シリカガラス基板WをX方向、Y方向に移動させ、またCCDカメラ1をZ方向に移動させる移動駆動機構5を備える。
The inspection apparatus 100 shown in FIG. 1 includes a CCD camera (imaging section) 1 disposed on the front surface W1 side of a synthetic silica glass substrate W, which is a substrate to be inspected, facing the synthetic silica glass substrate W; An illumination section 2 arranged around the CCD camera 1 is provided.
The inspection apparatus 100 also includes a movement drive mechanism 5 that moves the synthetic silica glass substrate W in the X direction and the Y direction, and moves the CCD camera 1 in the Z direction.

このCCDカメラ1による撮像視野の範囲は、合成シリカガラス基板Wのおもて面W1の面積に対し小さな面積であり、合成シリカガラス基板Wが面方向(縦、横方向:X方向、Y方向)に移動することによって、CCDカメラ1は、合成シリカガラス基板Wのおもて面W1の全体の撮像画面データを得ることができる。
また、CCDカメラ1を合成シリカガラス基板Wの厚さ方向(Z方向)に沿って移動することによって、CCDカメラ1(撮像部)の焦点位置(フォーカス位置)を変えることができる。CCDカメラ1(撮像部)の焦点位置(フォーカス位置)を変えることにより、例えば、CCDカメラ1(撮像部)の焦点位置(フォーカス位置)を、合成シリカガラス基板の裏面より手前の特定位置(合成シリカガラス基板のおもて面からの距離P(mm))に設定することができる。
The range of the imaging field of view by this CCD camera 1 is a small area compared to the area of the front surface W1 of the synthetic silica glass substrate W, and the synthetic silica glass substrate W is ), the CCD camera 1 can obtain imaged screen data of the entire front surface W1 of the synthetic silica glass substrate W.
Further, by moving the CCD camera 1 along the thickness direction (Z direction) of the synthetic silica glass substrate W, the focal position (focus position) of the CCD camera 1 (imaging section) can be changed. By changing the focal position (focus position) of the CCD camera 1 (imaging unit), for example, the focal position (focus position) of the CCD camera 1 (imaging unit) can be set to a specific position (synthesis) in front of the back surface of the synthetic silica glass substrate. The distance P (mm) from the front surface of the silica glass substrate can be set.

より具体的に説明すると、CCDカメラ1を移動駆動機構5によりZ軸方向に移動させて、CCDカメラ1(撮像部)の焦点位置(フォーカス位置)で停止させる。その後、前記移動駆動機構5によって、CCDカメラ1は、図1に一部示すように合成シリカガラス基板Wのおもて面W1を仮想的にn個にメッシュ分割した各領域Ar(Ar1、Ar2~Arn)の正面に対向するように、相対的にX方向、Y方向に移動する。
その後、領域Ar(Ar1、Ar2~Arn)毎に、CCDカメラ1によって、合成シリカガラス基板Wの撮像を行い、欠陥を検出する。
More specifically, the CCD camera 1 is moved in the Z-axis direction by the moving drive mechanism 5 and stopped at the focal position of the CCD camera 1 (imaging section). Thereafter, the moving drive mechanism 5 moves the CCD camera 1 to each area Ar (Ar1, Ar2 ~Arn), move relatively in the X direction and Y direction so as to face the front of.
Thereafter, the synthetic silica glass substrate W is imaged by the CCD camera 1 for each region Ar (Ar1, Ar2 to Arn) to detect defects.

また、検査装置100は、CCDカメラ1から入力される画像を処理するコンピュータ10と、処理された画像を表示するモニタ11と、コンピュータ10に合成シリカガラス基板Wの厚さ等を入力する入力装置12と、を備えている。
前記コンピュータ10は、散乱光の輝度が最大値になる位置の合成シリカガラス基板Wのおもて面からの距離と、合成シリカガラス基板の厚さとの関係式が記憶されるメモリ13と、演算を行うCPU14と、CCDカメラ1が撮像した画像データを一時記憶するためのメモリ15と、メモリ15に一時記憶された画像データに対し2次元画像処理を行うための画像処理装置16と、前記画像処理装置16により処理された画像の前記モニタ11への出力制御を行う表示制御部17とを有する。
The inspection apparatus 100 also includes a computer 10 that processes images input from the CCD camera 1, a monitor 11 that displays the processed images, and an input device that inputs the thickness of the synthetic silica glass substrate W, etc. to the computer 10. It is equipped with 12.
The computer 10 includes a memory 13 that stores a relational expression between the distance from the front surface of the synthetic silica glass substrate W of the position where the brightness of the scattered light becomes the maximum value and the thickness of the synthetic silica glass substrate, and a calculation a memory 15 for temporarily storing image data captured by the CCD camera 1; an image processing device 16 for performing two-dimensional image processing on the image data temporarily stored in the memory 15; It has a display control section 17 that controls output of the image processed by the processing device 16 to the monitor 11.

図1に示すようにコンピュータ10は、前記CCDカメラ1と、前記移動駆動機構5と、照明部2を、CCDカメラ1を中心に回転させる回転駆動部6と、前記モニタ11とに接続されている。
そして、合成シリカガラス基板を検査する際には、検査対象である合成シリカガラス基板の厚さが入力装置12から入力されると、メモリ13に記憶されている関係式から輝度が最大となる特定位置が求められる。そして、前記移動駆動機構5により、CCDカメラ1は、CCDカメラ1の焦点が前記特定位置(フォーカス位置)になるように移動する。
As shown in FIG. 1, the computer 10 is connected to the CCD camera 1, the moving drive mechanism 5, a rotation drive unit 6 that rotates the illumination unit 2 around the CCD camera 1, and the monitor 11. There is.
When inspecting a synthetic silica glass substrate, when the thickness of the synthetic silica glass substrate to be inspected is inputted from the input device 12, the thickness of the synthetic silica glass substrate to be inspected is input, and then a specification is made from the relational expression stored in the memory 13 that gives the maximum brightness. location is required. Then, the CCD camera 1 is moved by the movement drive mechanism 5 so that the focal point of the CCD camera 1 is at the specific position (focus position).

前記照明部2は、例えばメタルハライドランプを好適に用いることができる。図2に示すように、各照明部2の照射方向は、CCDカメラ1の撮像の光軸方向(レンズの光軸方向)とガラス基板Wの裏面W2との交差点(照射位置Fとする)に向けて設けられている。このときのCCDカメラ1の光軸方向と照明部2の照射方向とのなす角度θ1は、好ましくは40°~50°である。 For example, a metal halide lamp can be suitably used for the illumination section 2. As shown in FIG. 2, the irradiation direction of each illumination unit 2 is at the intersection of the imaging optical axis direction of the CCD camera 1 (optical axis direction of the lens) and the back surface W2 of the glass substrate W (referred to as the irradiation position F). It is set towards. At this time, the angle θ1 between the optical axis direction of the CCD camera 1 and the irradiation direction of the illumination unit 2 is preferably 40° to 50°.

前記画像処理部16は、CCDカメラ1が検出した画像データから、表面欠陥や付着物を輝点として検出する。それら輝点は、XY方向の位置データと輝度データ、及び検出画素数に対応する面積データを有する。 The image processing unit 16 detects surface defects and deposits as bright spots from the image data detected by the CCD camera 1. These bright spots have position data and brightness data in the X and Y directions, and area data corresponding to the number of detected pixels.

尚、以降に説明する欠陥検査準備において行われる輝度測定は、CCDカメラ1が検出した画像データから画像処理部16によって処理することにより、行われる。
そして、CPU14により最大輝度、最大輝度となる特定位置が求められ、メモリ13に、合成シリカガラス基板Wのおもて面からの距離と合成シリカガラス基板の厚さとの関係式が記憶される。
Note that the brightness measurement performed in the defect inspection preparation described below is performed by processing the image data detected by the CCD camera 1 by the image processing section 16.
Then, the CPU 14 determines the maximum brightness and the specific position where the brightness is the highest, and stores in the memory 13 a relational expression between the distance from the front surface of the synthetic silica glass substrate W and the thickness of the synthetic silica glass substrate.

(欠陥検査方法)
次に、本発明に係る光透過性板状体の欠陥検査方法の実施形態について説明する。
本発明の欠陥検査方法は、厚さの異なる、複数の合成シリカガラス基板を用意し、散乱光の輝度が最大値になる位置のおもて面から距離と、合成シリカガラス基板の厚さとの関係式を求める検査準備工程を備えている。
更に、本発明の欠陥検査方法は、その検査準備工程の後、検査対象である合成シリカガラス基板の厚さから、前記関係式に基づいて、検査対象である合成シリカガラス基板における散乱光の輝度が最大値になる位置のおもて面からの距離を求め、撮像部の焦点を、前記位置として、検査対象である合成シリカガラス基板を撮像する検査工程を備えている。
(Defect inspection method)
Next, an embodiment of the defect inspection method for a light-transmitting plate-like body according to the present invention will be described.
In the defect inspection method of the present invention, a plurality of synthetic silica glass substrates with different thicknesses are prepared, and the distance from the front surface of the position where the brightness of scattered light is the maximum value is determined by the thickness of the synthetic silica glass substrate. It is equipped with an inspection preparation process that calculates relational expressions.
Further, in the defect inspection method of the present invention, after the inspection preparation step, the brightness of scattered light in the synthetic silica glass substrate to be inspected is calculated from the thickness of the synthetic silica glass substrate to be inspected based on the above relational expression. The present invention includes an inspection step of determining the distance from the front surface to the position where the maximum value of , and setting the focal point of the imaging unit at the position to take an image of the synthetic silica glass substrate to be inspected.

(検査準備工程)
検査準備工程では、厚さの異なる、複数の合成シリカガラス基板を用意する。例えば、厚さ6mm、厚さ8mm、厚さ10mmの合成シリカガラス基板を用意する。
そして、図1に示した検査装置を用いて、各合成シリカガラス基板について、散乱光の輝度が最大値になる位置のおもて面からの距離を求める。
(Inspection preparation process)
In the inspection preparation process, a plurality of synthetic silica glass substrates with different thicknesses are prepared. For example, synthetic silica glass substrates with a thickness of 6 mm, 8 mm, and 10 mm are prepared.
Then, using the inspection apparatus shown in FIG. 1, for each synthetic silica glass substrate, the distance from the front surface of the position where the brightness of the scattered light becomes the maximum value is determined.

具体的には、前記厚さの異なる合成シリカガガラス基板ごとに、合成シリカガラス基板のおもて面に対向して配置された撮像部の焦点を、撮像部の光軸に沿って、前記合成シリカガラス基板のおもて面から裏面に向う位置(深さ方向の位置)をずらして、その位置毎に散乱光の輝度を測定する。そして、散乱光の輝度が最大値になる、おもて面から特定の位置までの距離を求める。 Specifically, for each of the synthetic silica glass substrates having different thicknesses, the focal point of an imaging section disposed facing the front surface of the synthetic silica glass substrate is set along the optical axis of the imaging section. The position from the front surface to the back surface of the glass substrate (position in the depth direction) is shifted, and the brightness of the scattered light is measured for each position. Then, the distance from the front surface to a specific position where the brightness of the scattered light reaches its maximum value is determined.

一例を示すと、図3に厚さ6mm合成シリカガラス基板のおもて面から裏面に向う位置毎の輝度の測定結果を示す。同様に、図4に厚さ8mmガラス基板(合成石英ガラス基板)の合成シリカガラス基板のおもて面から裏面に向う位置毎の輝度の測定結果を示す。更に、図5に厚さ10mm合成シリカガラス基板のおもて面から裏面に向う位置毎の輝度の測定結果を示す。 As an example, FIG. 3 shows the results of measuring the brightness at each position from the front surface to the back surface of a 6 mm thick synthetic silica glass substrate. Similarly, FIG. 4 shows the measurement results of the luminance at each position from the front surface to the back surface of a synthetic silica glass substrate (synthetic silica glass substrate) having a thickness of 8 mm. Further, FIG. 5 shows the results of measuring the brightness at each position from the front surface to the back surface of a 10 mm thick synthetic silica glass substrate.

各図における横軸のCCDカメラ座標は、CCDカメラのZ方向の基準位置からの移動距離である。また縦軸は、CCDカメラが検出した画像データから抽出された輝度データ(255階調)であり、図中、実線は近似二次曲線を示している。この近似二次曲線のピーク値をベストフォーカス位置とすることで、必要最低限のサンプル数でピント位置を求めることができる。
また、図中の「裏面表面ピント」の表示は、CCDカメラの焦点が合成シリカガラス基板の裏面の表面に合っている、CCDカメラ位置であることを示している。
更に、図中の「ベストフォーカス」の表示は、最も輝度が高い、CCDカメラ焦点位置であることを示している。
The CCD camera coordinate on the horizontal axis in each figure is the moving distance of the CCD camera from the reference position in the Z direction. The vertical axis is luminance data (255 gradations) extracted from the image data detected by the CCD camera, and the solid line in the figure indicates an approximate quadratic curve. By setting the peak value of this approximate quadratic curve as the best focus position, the focus position can be determined using the minimum number of samples required.
Further, the display "back surface focus" in the figure indicates that the CCD camera is at a position where the focus of the CCD camera is on the back surface of the synthetic silica glass substrate.
Furthermore, the display of "best focus" in the figure indicates the CCD camera focal position where the brightness is highest.

これら図3~5からわかるように、最も輝度が高いCCDカメラ焦点位置は、合成シリカガラス基板の裏面よりも、手前(合成シリカガラス基板のおもて面側)に位置している。
各ガラス基板の厚さに対する輝度が最も高い位置は、図3に示す場合には、合成シリカガラス基板のおもて面から4.6mm、図4に示す場合には、合成シリカガラス基板のおもて面から6.4mm、図5に示す場合には、合成シリカガラス基板のおもて面から7.6mmである。
As can be seen from these FIGS. 3 to 5, the CCD camera focal position with the highest brightness is located in front of the back surface of the synthetic silica glass substrate (on the front surface side of the synthetic silica glass substrate).
The position where the brightness is highest relative to the thickness of each glass substrate is 4.6 mm from the front surface of the synthetic silica glass substrate in the case shown in FIG. It is 6.4 mm from the front surface, and in the case shown in FIG. 5, it is 7.6 mm from the front surface of the synthetic silica glass substrate.

そして、前記散乱光の輝度が最大値になる位置のおもて面から距離と、合成シリカガラス基板の厚さとの関係式を求める。
具体的に一例を示すと、図6に示すように、横軸に合成シリカガラス基板の厚さt(mm)、縦軸に輝度が最も高い位置(フォーカス位置)P(mm)をとり、散乱光の輝度が最大値になる位置のおもて面から距離と、合成シリカガラス基板の厚さとの関係式を求める。
この図6のグラフから、P=0.7844t+0.0522が得られる。
尚、ここで、+0.0522は誤差の範囲と考えられる。また、この式における係数0.7844は、合成シリカガラス基板において成立するものであり、材料が変われば、再度この準備工程を実施し、関係式を求める必要がある。また、関係式は検査装置のコンピュータ10によって求められ、メモリ13に記憶され、次の検査工程の処理に用いられる。
Then, a relational expression between the distance from the front surface of the position where the brightness of the scattered light becomes the maximum value and the thickness of the synthetic silica glass substrate is determined.
To give a specific example, as shown in FIG. 6, the horizontal axis is the thickness t (mm) of the synthetic silica glass substrate, the vertical axis is the highest brightness position (focus position) P (mm), and the scattering A relational expression between the distance from the front surface at the position where the luminance of light reaches its maximum value and the thickness of the synthetic silica glass substrate is determined.
From the graph of FIG. 6, P=0.7844t+0.0522 is obtained.
Note that +0.0522 is considered to be the error range here. Further, the coefficient 0.7844 in this equation holds true for synthetic silica glass substrates, and if the material changes, it is necessary to perform this preparatory step again to find the relational equation. Further, the relational expression is determined by the computer 10 of the inspection apparatus, stored in the memory 13, and used for processing in the next inspection process.

(検査工程)
前記検査準備工程に続く、検査工程では、検査対象である合成シリカガラス基板の厚さから、前記関係式P=0.7844t+0.0522に基づいて、検査対象である合成シリカガラス基板における散乱光の輝度が最大値になる位置(特定位置)のおもて面からの距離を求める。
即ち、検査対象である合成シリカガラス基板の厚さを求め、その厚さから、輝度が最も高い特定位置(フォーカス位置)Pまでのおもて面からの距離を求める。
(Inspection process)
In the inspection step following the inspection preparation step, the scattered light on the synthetic silica glass substrate to be inspected is determined based on the relational expression P=0.7844t+0.0522 from the thickness of the synthetic silica glass substrate to be inspected. Find the distance from the front surface of the position (specific position) where the brightness is at its maximum value.
That is, the thickness of the synthetic silica glass substrate to be inspected is determined, and from that thickness, the distance from the front surface to a specific position (focus position) P where the brightness is highest is determined.

この際、P=0.7844t+0.0522における0.0522は誤差と判断し、P=0.7844tに基づいて、CCDカメラの焦点を、P=0.7844tに設定する。そして、前記CCDカメラによって撮像し、撮像画像を形成する。
尚、前記合成シリカガラス基板のおもて面に対向して配置されたCCDカメラの初期の焦点を、P=0.7844tとした後、オートフォーカス機能、あるいは手動調整し、焦点位置を修正しても良い。
At this time, 0.0522 in P=0.7844t+0.0522 is determined to be an error, and the focus of the CCD camera is set to P=0.7844t based on P=0.7844t. Then, an image is captured by the CCD camera to form a captured image.
The initial focus of the CCD camera placed opposite the front surface of the synthetic silica glass substrate was set to P = 0.7844t, and then the focus position was corrected using the autofocus function or manual adjustment. It's okay.

具体的には、合成シリカガラス基板WをX-Yテーブルに搭載する。この合成シリカガラス基板Wのおもて面W1側にCCDカメラ1を対向して配置し、CCDカメラ1の焦点を、P=0.7844tとする。
そして、移動駆動機構5によって、合成シリカガラス基板Wの面全体を走査するようにXY方向に撮像位置を順に移動させ、各撮像領域Arに対しCCDカメラ1により撮像を行う。
Specifically, the synthetic silica glass substrate W is mounted on an XY table. A CCD camera 1 is placed facing the front surface W1 of the synthetic silica glass substrate W, and the focal point of the CCD camera 1 is set to P=0.7844t.
Then, the moving drive mechanism 5 sequentially moves the imaging position in the XY directions so as to scan the entire surface of the synthetic silica glass substrate W, and the CCD camera 1 images each imaging area Ar.

以上のように本発明に係る実施の形態によれば、合成シリカガラス基板Wの裏面における欠陥を検出する際、合成シリカガラス基板Wのおもて面W1に対向するCCDカメラ1の焦点位置を、合成シリカガラス基板Wの裏面W2よりも手前の位置、言い換えれば、合成シリカガラス基板Wのおもて面W1から裏面W2に向かってP=0.7844tの位置とする。
その結果、従来、合成シリカガラス基板Wの裏面W2に焦点をあわせても検出できないような微小な傷や付着物などの欠陥を精度良く検出することができる。また、同じ材質(材料)からなる合成シリカガラス(透光性板状体)であれば、前記関係式に基づき、直ちに適切なおもて面から前記特定位置までの距離Pを導くことができる。
As described above, according to the embodiment of the present invention, when detecting defects on the back surface of the synthetic silica glass substrate W, the focal position of the CCD camera 1 facing the front surface W1 of the synthetic silica glass substrate W is , a position in front of the back surface W2 of the synthetic silica glass substrate W, in other words, a position of P=0.7844t from the front surface W1 of the synthetic silica glass substrate W toward the back surface W2.
As a result, it is possible to accurately detect defects such as minute scratches and deposits that conventionally cannot be detected even when focusing on the back surface W2 of the synthetic silica glass substrate W. Furthermore, if the synthetic silica glass (light-transmitting plate-like body) is made of the same material, an appropriate distance P from the front surface to the specific position can be immediately derived based on the above relational expression.

尚、本実施の形態においては、合成シリカガラス基板Wの裏面W2における欠陥検査について説明したが、当然ながら図1の構成により合成シリカガラス基板Wのおもて面W1における欠陥検査も行うことができる。
また、本実施の形態においては、合成シリカガラス基板Wを例にとって説明したが、本発明に係る光透過性板状体の欠陥検査方法は、これに限定されることなく、透明セラミックス、透明樹脂等の光透過性板状体に適用することができる。
更に、本実施の形態においては、CCDカメラを用いて検査を行ったが、これに限定されることなく、CMOS等の撮像装置を用いても良い。
In this embodiment, defect inspection on the back surface W2 of the synthetic silica glass substrate W has been described, but it goes without saying that defect inspection on the front surface W1 of the synthetic silica glass substrate W can also be performed with the configuration shown in FIG. can.
Further, in this embodiment, the synthetic silica glass substrate W has been described as an example, but the method for inspecting defects of a light-transmitting plate according to the present invention is not limited to this, and can be applied to transparent ceramics, transparent resins, etc. It can be applied to light-transmitting plate-like bodies such as.
Further, in this embodiment, the inspection is performed using a CCD camera, but the present invention is not limited to this, and an imaging device such as a CMOS may be used.

本発明に係る合成シリカガラス基板の検査方法について、実施例に基づき、更に説明する。
[実験1]
実験1では、厚さ8mmのガラス基板の裏面に、粒子径0.5μm、1.0μm、2.0μmの粒子を付着させ、被検査基板とした。この合成シリカガラス基板に対し欠陥検査を実施した。ここでは、任意に選択した標準粒子について、それぞれの最大輝度(反射光強さ)及び欠陥面積(任意の閾値以上の輝度を示す画素数)を調べた。
The method for inspecting a synthetic silica glass substrate according to the present invention will be further explained based on Examples.
[Experiment 1]
In Experiment 1, particles with particle diameters of 0.5 μm, 1.0 μm, and 2.0 μm were attached to the back surface of a glass substrate with a thickness of 8 mm, which was used as a substrate to be inspected. Defect inspection was performed on this synthetic silica glass substrate. Here, the maximum brightness (reflected light intensity) and defect area (number of pixels exhibiting brightness equal to or higher than an arbitrary threshold value) of arbitrarily selected standard particles were investigated.

(実施例1)
実施例1では、図1に示した装置構成において、合成シリカガラス基板全面に対し走査して撮像し、欠陥検出を行った。CCDカメラのフォーカス位置は、上記検査工程で求めた通り、合成シリカガラス基板おもて面から裏面に向かってP=0.7844tの位置とした。
(Example 1)
In Example 1, in the apparatus configuration shown in FIG. 1, the entire surface of the synthetic silica glass substrate was scanned and imaged to detect defects. The focus position of the CCD camera was set at P=0.7844t from the front surface of the synthetic silica glass substrate to the back surface, as determined in the above inspection process.

(比較例1)
比較例1では、図1に示した装置構成において、CCDカメラのフォーカス位置を合成シリカガラス基板の裏面位置に合わせ、欠陥検出を行った。
(Comparative example 1)
In Comparative Example 1, in the apparatus configuration shown in FIG. 1, the focus position of the CCD camera was adjusted to the position of the back surface of the synthetic silica glass substrate, and defect detection was performed.

実施例1の結果を表1、及び図7に示し、比較例1の結果を表2、及び図8にそれぞれ示す。 The results of Example 1 are shown in Table 1 and FIG. 7, and the results of Comparative Example 1 are shown in Table 2 and FIG. 8, respectively.

表1、表2に示すように、実施例1では、特に1.0μm以下の小さな粒子径の付着物検出において、比較例1よりも検出輝度、及び欠陥面積ともに大きくなることを確認した。
また、表1、表2、及び図7、図8に示すように欠陥検出数は、実施例1では比較例1よりも大きく増加し、検出感度が高くなることを確認した。
As shown in Tables 1 and 2, it was confirmed that in Example 1, both the detection brightness and defect area were larger than in Comparative Example 1, especially in detecting deposits with small particle diameters of 1.0 μm or less.
Further, as shown in Tables 1 and 2, and FIGS. 7 and 8, the number of detected defects increased significantly in Example 1 compared to Comparative Example 1, confirming that the detection sensitivity was increased.

1 CCDカメラ(撮像部)
2 照明部
5 移動駆動機構
10 コンピュータ
W 合成シリカガラス基板
W1 おもて面
W2 裏面
1 CCD camera (imaging section)
2 Lighting section 5 Movement drive mechanism 10 Computer W Synthetic silica glass substrate W1 Front surface W2 Back surface

Claims (3)

光透過性板状体に光を照射し、欠陥からの散乱光を検出することによって、光透過性板状体の裏面の欠陥の有無を検査する光透過性板状体の欠陥検査方法であって、
検査準備工程が、
厚さの異なる、複数の光透過性板状体を用意する工程と、
前記厚さの異なる光透過性板状体ごとに、光透過性板状体のおもて面に対向して配置された撮像部の焦点位置を、前記光透過性板状体のおもて面から裏面に向って変え、散乱光の輝度を測定する工程と、
散乱光の輝度が最大値となる特定位置のおもて面からの距離を求める工程と、
前記散乱光の輝度が最大値となる特定位置のおもて面からの距離と、光透過性板状体の厚さとの関係式を求める工程と、を備え、
検査工程が、
検査対象である光透過性板状体の厚さから前記関係式に基づいて、検査対象である光透過性板状体のおもて面から、散乱光の輝度が最大値となる特定位置までの距離を求める工程と、
前記光透過性板状体のおもて面に対向して配置された撮像部の焦点を、前記特定位置として、前記撮像部によって撮像し、撮像画像を形成する工程と、
を備えることを特徴とする光透過性板状体の欠陥検査方法。
A defect inspection method for a light-transmitting plate-like body, which inspects the presence or absence of defects on the back side of the light-transparent plate-like body by irradiating the light-transparent plate-like body with light and detecting scattered light from defects. hand,
The inspection preparation process
a step of preparing a plurality of light-transmitting plate-like bodies having different thicknesses;
For each of the light-transmitting plate-like bodies having different thicknesses, the focal position of the imaging unit disposed opposite to the front surface of the light-transmitting plate-like body is adjusted to changing from the front side to the back side and measuring the brightness of the scattered light;
a step of determining the distance from the front surface of a specific position where the brightness of the scattered light is at its maximum value;
the step of determining a relational expression between the distance from the front surface of a specific position at which the luminance of the scattered light has a maximum value and the thickness of the light-transmitting plate-like body;
The inspection process is
Based on the thickness of the light-transmitting plate-like body to be inspected and the above relational expression, from the front surface of the light-transmitting plate-like body to be inspected to the specific position where the brightness of the scattered light is the maximum value. a step of finding the distance of
forming a captured image by capturing an image with the focus of the imaging unit disposed facing the front surface of the light-transmitting plate-like body as the specific position;
A method for inspecting defects in a light-transmitting plate-like body, comprising:
光透過性板状体が合成シリカガラスであって、
当該光透過性板状体の厚さをt(mm)、おもて面から前記特定位置までの距離をPとした場合、
前記距離Pは、P=0.7844tであることを特徴とする請求項1記載の光透過性板状体の欠陥検査方法。
The light-transmitting plate-like body is synthetic silica glass,
When the thickness of the light-transmitting plate is t (mm), and the distance from the front surface to the specific position is P,
2. The defect inspection method for a light-transmitting plate-like body according to claim 1, wherein the distance P is P=0.7844t.
前記光透過性板状体のおもて面に対向して配置された撮像部の焦点を、P=0.7844tとした後、
撮像部のオートフォーカス機能により誤差が修正され、前記撮像部によって撮像され、撮像画像が形成されることを特徴とする請求項2記載の光透過性板状体の欠陥検査方法。
After setting the focal point of the imaging section facing the front surface of the light-transmitting plate-like body to P=0.7844t,
3. The defect inspection method for a light-transmitting plate-shaped body according to claim 2, wherein an error is corrected by an autofocus function of an imaging section, and an image is captured by the imaging section to form a captured image.
JP2022101376A 2022-06-23 2022-06-23 Defect inspection method of light permeable plate body Pending JP2024002279A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022101376A JP2024002279A (en) 2022-06-23 2022-06-23 Defect inspection method of light permeable plate body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022101376A JP2024002279A (en) 2022-06-23 2022-06-23 Defect inspection method of light permeable plate body

Publications (1)

Publication Number Publication Date
JP2024002279A true JP2024002279A (en) 2024-01-11

Family

ID=89472759

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022101376A Pending JP2024002279A (en) 2022-06-23 2022-06-23 Defect inspection method of light permeable plate body

Country Status (1)

Country Link
JP (1) JP2024002279A (en)

Similar Documents

Publication Publication Date Title
CN108717062A (en) A kind of the details in a play not acted out on stage, but told through dialogues defect detecting device and its measurement method of heavy caliber ultra-precision surface
JP2016105052A (en) Substrate inspection device
TW201741620A (en) Three-dimensional measuring device
US7654007B2 (en) Method for improving the reproducibility of a coordinate measuring apparatus and its accuracy
CN109827974B (en) Resin optical filter film crack detection device and detection method
JPH08334319A (en) Method for measuring bending rate of bent plate glass
WO2015174114A1 (en) Substrate inspection device
TWI817991B (en) Optical system, illumination module and automated optical inspection system
TW202020418A (en) An automatic optical inspection system
JP2024002279A (en) Defect inspection method of light permeable plate body
TW201727219A (en) Film inspection apparatus and film inspection method capable of inspecting shallow deformed small unevenness with parallel light
JP2004170400A (en) Method and system for measuring dimensions
JP3078784B2 (en) Defect inspection equipment
TWI715662B (en) Check device
JPH0972722A (en) Board external appearance inspecting apparatus
KR20090107335A (en) Measurement error correcting method for the thick of glass panel
JP2011069676A (en) Inspection system, and inspection method
KR20090007172A (en) Thickness measuring instrument for a plate glass
JP2007107960A5 (en)
JP2024093341A (en) Defect inspection method of light transmissive plate-like body
JP7531233B2 (en) Color optical inspection device and system including the same
JPH085573A (en) Method and apparatus for inspecting work surface
JP2019219295A (en) Wafer inspection device and wafer inspection method
CN118603508B (en) Lens detection pretreatment method and detection system
TWI813173B (en) Automatic focusing and imaging system and method、microscope

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20241008