JP2024097173A - Method for separating and regenerating anion exchange resin and cation exchange resin in ion exchange resin mixture - Google Patents
Method for separating and regenerating anion exchange resin and cation exchange resin in ion exchange resin mixture Download PDFInfo
- Publication number
- JP2024097173A JP2024097173A JP2023000518A JP2023000518A JP2024097173A JP 2024097173 A JP2024097173 A JP 2024097173A JP 2023000518 A JP2023000518 A JP 2023000518A JP 2023000518 A JP2023000518 A JP 2023000518A JP 2024097173 A JP2024097173 A JP 2024097173A
- Authority
- JP
- Japan
- Prior art keywords
- exchange resin
- anion exchange
- aqueous solution
- naoh aqueous
- separation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000003957 anion exchange resin Substances 0.000 title claims abstract description 161
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 title claims abstract description 145
- 239000003729 cation exchange resin Substances 0.000 title claims abstract description 91
- 238000000034 method Methods 0.000 title claims abstract description 65
- 239000003456 ion exchange resin Substances 0.000 title claims abstract description 59
- 229920003303 ion-exchange polymer Polymers 0.000 title claims abstract description 59
- 230000001172 regenerating effect Effects 0.000 title claims abstract description 24
- 239000000203 mixture Substances 0.000 title abstract 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims abstract description 577
- 230000008929 regeneration Effects 0.000 claims abstract description 77
- 238000011069 regeneration method Methods 0.000 claims abstract description 77
- 238000000926 separation method Methods 0.000 claims description 140
- 239000007864 aqueous solution Substances 0.000 claims description 125
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 43
- 230000005484 gravity Effects 0.000 claims description 32
- 150000002500 ions Chemical class 0.000 claims description 14
- 238000000605 extraction Methods 0.000 claims description 10
- 238000002347 injection Methods 0.000 claims description 4
- 239000007924 injection Substances 0.000 claims description 4
- 238000007599 discharging Methods 0.000 claims 1
- 235000011121 sodium hydroxide Nutrition 0.000 description 169
- 239000000243 solution Substances 0.000 description 55
- 238000011084 recovery Methods 0.000 description 27
- 229910021642 ultra pure water Inorganic materials 0.000 description 22
- 239000012498 ultrapure water Substances 0.000 description 22
- 239000011347 resin Substances 0.000 description 19
- 229920005989 resin Polymers 0.000 description 19
- 239000002699 waste material Substances 0.000 description 15
- 239000007788 liquid Substances 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 238000005342 ion exchange Methods 0.000 description 6
- 150000001450 anions Chemical class 0.000 description 5
- 125000002091 cationic group Chemical group 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- 239000012535 impurity Substances 0.000 description 4
- 125000000129 anionic group Chemical group 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 239000012492 regenerant Substances 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- 241001061127 Thione Species 0.000 description 2
- 230000005587 bubbling Effects 0.000 description 2
- 238000011109 contamination Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 241000894006 Bacteria Species 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 238000011001 backwashing Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 229940023913 cation exchange resins Drugs 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 244000144985 peep Species 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J49/00—Regeneration or reactivation of ion-exchangers; Apparatus therefor
- B01J49/05—Regeneration or reactivation of ion-exchangers; Apparatus therefor of fixed beds
- B01J49/09—Regeneration or reactivation of ion-exchangers; Apparatus therefor of fixed beds of mixed beds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J49/00—Regeneration or reactivation of ion-exchangers; Apparatus therefor
- B01J49/70—Regeneration or reactivation of ion-exchangers; Apparatus therefor for large scale industrial processes or applications
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Treatment Of Water By Ion Exchange (AREA)
Abstract
Description
本発明は、純水製造装置などに用いられる非再生式イオン交換装置や混床式イオン交換装置などで使用したアニオン交換樹脂とカチオン交換樹脂の混合イオン交換樹脂を分離して再生する方法に関する。 The present invention relates to a method for separating and regenerating mixed ion exchange resins of anion exchange resins and cation exchange resins used in non-regenerative ion exchange devices and mixed bed ion exchange devices used in pure water production systems, etc.
純水製造装置では原水中の不純物を除去して水の清浄度を高めているが、イオン性の不純物、すなわちアニオン性の不純物とカチオン性の不純物を除去するためにアニオン交換樹脂とカチオン交換樹脂とを混合充填した混床式イオン交換装置が汎用的に用いられている。この混床式イオン交換装置では、イオン交換樹脂はイオン交換容量に相当する量のイオンを交換すると、それ以上のイオン性不純物は除去できずに破過する。そこで、破過する前にある程度の被処理水を処理したら、この混床式イオン交換装置からイオン交換樹脂をそれぞれ回収して、カチオン交換樹脂再生塔、アニオン交換樹脂再生塔でそれぞれ塩酸や苛性ソーダなどにより再生して再利用している。この際、アニオン交換樹脂とカチオン交換樹脂とは、上向流で通水してアニオン交換樹脂とカチオン交換樹脂の比重差による沈降速度の違いを利用して分離するのが一般的である。 In pure water production systems, impurities in raw water are removed to improve the purity of the water. In order to remove ionic impurities, i.e., anionic and cationic impurities, a mixed-bed ion exchange system in which anion exchange resin and cation exchange resin are mixed and packed is commonly used. In this mixed-bed ion exchange system, when the ion exchange resin exchanges an amount of ions equivalent to the ion exchange capacity, it cannot remove any more ionic impurities and breaks through. Therefore, after a certain amount of water to be treated is treated before breakthrough, the ion exchange resin is recovered from the mixed-bed ion exchange system and regenerated with hydrochloric acid or caustic soda in a cation exchange resin regeneration tower and an anion exchange resin regeneration tower, respectively, for reuse. In this case, the anion exchange resin and the cation exchange resin are generally separated by passing the water in an upward flow and utilizing the difference in sedimentation speed due to the difference in specific gravity between the anion exchange resin and the cation exchange resin.
この混合イオン交換樹脂の分離塔(逆洗分離塔)の一例を図2に示す。図2において、混合イオン交換樹脂の分離塔21は、円筒形の分離塔本体21Aの底部に注排水口22が設けられているとともに、複数の吐出ノズル23Aを備えた吐水部としての給水管23が設けられていて、頂部には排水口24が形成されている。この分離塔本体21Aの吐出ノズル23Aの下側には集水板25が配置されている。そして、分離塔21内の上下方向の中間付近にはアニオン交換樹脂抜出部としてのアニオン交換樹脂抜出配管26が設けられているとともに、このアニオン交換樹脂抜出配管26の下側で給水管23よりわずかに上側にカチオン交換樹脂抜出配管27が設けられている。また、分離塔21の側面にはのぞき窓28が形成されている。なお、29は分離塔21の側面上側に設けられた使用済の混合イオン交換樹脂の投入口である。
An example of this mixed ion exchange resin separation tower (backwash separation tower) is shown in FIG. 2. In FIG. 2, the mixed ion exchange
このような混合イオン交換樹脂の分離塔21において、分離塔21内に使用済の混合イオン交換樹脂を投入し、続いて4重量%程度のNaOH水溶液を通液し、所定時間放置してイオン交換樹脂の型を調整して比重差を拡大したら、注排水口22から純水を注入して排水口24から分離塔内のNaOH水溶液を押し出し、洗浄を行う。そして、分離塔21内に所定量の分離用水(純水)が充填された状態とする。この際、分離用水の水面が混合イオン交換樹脂の上面より上位、特に500mm以下程度上位となるようにする。
In such a mixed ion exchange
次に注排水口24からエアを分離塔内に注入し、混合イオン交換樹脂をバブリングしコロイド状に絡みついた樹脂粒子をほぐした後バブリングングを停止し、混合イオン交換樹脂を集水板25上に沈降させる。この際、比重の大きいカチオン交換樹脂が先に沈降し、比重の小さいアニオン交換樹脂が遅れて沈降する。続いて、逆洗に備えて、分離塔21内が満水となるように注排水口22から純水(分離用水)を導入する。
Next, air is injected into the separation tower from the inlet/
この満水の状態で吐出ノズル23Aから純水を吐出して上向流にて通水して、分離界面がアニオン交換樹脂抜出配管26の吸込口の下端となるようにのぞき窓28から目視により確認しながら調整する。そして、アニオン交換樹脂抜出配管26から吸引してアニオン交換樹脂をアニオン交換樹脂・水混相流として流出させて取り出す。このアニオン交換樹脂・水混相流は、水切りをした後、アニオン交換樹脂再生塔に移送してアニオン交換樹脂の再生処理を行う。
In this full-water state, pure water is discharged from the
このようにしてアニオン交換樹脂を抜き出した後は、吐出ノズル23Aから純水の吐出を継続しながらカチオン交換樹脂抜出配管27から吸引し、カチオン交換樹脂・水混相流として流出させて取り出す。このカチオン交換樹脂・水混相流は、水切りをした後カオン交換樹脂再生分離塔)に移送してカチオン交換樹脂の再生処理を行う。このときカチオン交換樹脂は全部取り出さず、ある程度残存させることでアニオン交換樹脂の混入を防止する。
After the anion exchange resin has been extracted in this manner, pure water is continuously discharged from the
しかしながら、上述したようなアニオン交換樹脂とカチオン交換樹脂の分離方法では、両者の分離が不十分である、という問題点があった。特にカチオン交換樹脂は界面部を分離塔21内に残存させることで良好に分離することができるが、最初に抜き出すアニオン交換樹脂にカチオン交換樹脂が混入しやすい、という問題点があった。
However, the above-mentioned method for separating anion exchange resin and cation exchange resin has a problem in that the separation of the two is insufficient. In particular, the cation exchange resin can be separated well by leaving the interface portion in the
そこで、セプレックス法という高濃度のNaOH水溶液を用いてアニオン交換樹脂とカチオン交換樹脂を分離する方法が適用されている。このセプレックス法は、図3及び図4に示すようなシステム及びプロセスで処理を行う。 Therefore, a method known as the Seplex method is used, in which a highly concentrated NaOH aqueous solution is used to separate the anion exchange resin from the cation exchange resin. The Seplex method uses the system and process shown in Figures 3 and 4.
すなわち、混合イオン交換樹脂の分離再生システムは、図3に示すように逆洗分離塔とセプレックス塔とアニオン交換樹脂再生塔とカチオン交換樹脂再生塔との四塔構成からなる。まず、逆洗分離塔において、逆洗分離工程によりアニオン交換樹脂とカチオン交換樹脂とを比重差により分離し、アニオン交換樹脂を抜き出す。この際、混合イオン交換樹脂にNaOH水溶液を通液することで、カチオン交換樹脂をNa型に、アニオン交換樹脂をOH型にそれぞれイオン型を調製することにより、アニオン交換樹脂とカチオン交換樹脂の比重差を大きくして、逆洗分離後のアニオン交換樹脂とカチオン交換樹脂のそれぞれに対する混入率を低減する。 In other words, the mixed ion exchange resin separation and regeneration system is composed of four towers, a backwash separation tower, a Seplex tower, an anion exchange resin regeneration tower, and a cation exchange resin regeneration tower, as shown in Figure 3. First, in the backwash separation tower, the anion exchange resin and the cation exchange resin are separated by the backwash separation process based on the difference in specific gravity, and the anion exchange resin is extracted. At this time, by passing an aqueous NaOH solution through the mixed ion exchange resin, the cation exchange resin is converted to the Na type and the anion exchange resin to the OH type, respectively, thereby increasing the difference in specific gravity between the anion exchange resin and the cation exchange resin, and reducing the contamination rate of the anion exchange resin and the cation exchange resin after backwash separation.
この逆洗分離工程では分離したアニオン交換樹脂にはカチオン交換樹脂が微量混入しているが、カチオン交換樹脂をアニオン交換樹脂高度分離塔としてのセプレックス分離塔に移送する。そして、このセプレックス分離塔にアニオン交換樹脂の比重とカチオン交換樹脂の比重の中間の比重のNaOH水溶液を注入した状態でバブリングにより樹脂をほぐして静置することで、混入したカチオン交換樹脂を下側に沈降させる。このカチオン交換樹脂をセプレックス分離塔の下部より抜き出して除去する。そして、塔内に純水を供給して、NaOH水溶液を押出洗浄した後、残ったアニオン交換樹脂を抜き出す(セプレックス分離工程)。 In this backwash separation process, the separated anion exchange resin contains a small amount of cation exchange resin, but the cation exchange resin is transferred to a Seplex separation tower, which acts as an anion exchange resin high-speed separation tower. Then, an aqueous NaOH solution with a specific gravity intermediate between the specific gravity of the anion exchange resin and the specific gravity of the cation exchange resin is injected into this Seplex separation tower, and the resin is loosened by bubbling and left to stand, causing the mixed cation exchange resin to settle to the bottom. This cation exchange resin is extracted and removed from the bottom of the Seplex separation tower. Pure water is then supplied into the tower to extrude and wash out the NaOH aqueous solution, and the remaining anion exchange resin is then extracted (Seplex separation process).
この抜き出したアニオン交換樹脂は、アニオン交換樹脂再生塔に移送してさらにNaOH水溶液によりアニオン交換樹脂の再生洗浄を行う(アニオン交換樹脂再生工程)。一方、逆洗分離工程で分離したカチオン交換樹脂はカチオン交換樹脂再生塔に移送して定法によりカチオン交換樹脂の再生洗浄を行う(カチオン交換樹脂の再生工程)。 The extracted anion exchange resin is transferred to an anion exchange resin regeneration tower, where the anion exchange resin is regenerated and washed with an aqueous NaOH solution (anion exchange resin regeneration process). On the other hand, the cation exchange resin separated in the backwash separation process is transferred to a cation exchange resin regeneration tower, where the cation exchange resin is regenerated and washed by a standard method (cation exchange resin regeneration process).
上述したようなセプレックス法により、アニオン交換樹脂とチオン交換樹脂とを他方の混入を極めて少なくして分離することができる。しかしながら、セプレックス法は、図4に示すような機構及び手順でNaOH溶液の供給及び回収を行う。すなわち、セプレックス法におけるNaOH溶液の供給及び回収機構30は、逆洗分離塔31、セプレックス塔32及びアニオン交換樹脂再生塔33に超純水供給源34から超純水供給管35を経由して、超純水Wを供給するとともに未使用の濃厚NaOH水溶液Nを濃厚NaOH水溶液タンク36から供給し、それぞれ所定の濃度のNaOH水溶液を供給可能となっている。そして、使用済のNaOH水溶液は、廃NaOH水溶液排出支管37A、37B、37Cが合流した廃NaOH水溶液排出管37から廃液タンク38に貯留し、廃棄する。39A,39B、39Cは、所定の濃度のNaOH水溶液を供給するために超純水Wと濃厚NaOH水溶液SHとの混合比を調製するための比重計である。なお、図4はNaOH溶液の供給及び回収についての説明図であるので、アニオン交換樹脂再生塔については記載していない。
The Seplex method described above allows anion exchange resin and thione exchange resin to be separated with minimal mixing of the other. However, the Seplex method supplies and recovers NaOH solution using the mechanism and procedure shown in Figure 4. That is, the NaOH solution supply and
このように従来は、逆洗分離工程、セプレックス分離工程及びアニオン交換樹脂の再生工程でそれぞれ未使用のNaOH溶液を使用し、使用した後のNaOH溶液は廃棄していた。このため、NaOH水溶液を多量に使用する、という問題点があった。 In this way, in the past, unused NaOH solution was used in the backwash separation process, the Sephrex separation process, and the anion exchange resin regeneration process, and the NaOH solution after use was discarded. This resulted in the problem of using a large amount of NaOH aqueous solution.
本発明は上記課題に鑑みてなされたものであり、セプレックス法を利用して混合イオン交換樹脂のアニオン交換樹脂とカチオン交換樹脂とを分離する際のNaOH溶液の使用量を削減することの可能な混合イオン交換樹脂におけるアニオン交換樹脂とカチオン交換樹脂との分離再生方法を提供することを目的とする。 The present invention has been made in consideration of the above problems, and aims to provide a method for separating and regenerating anion exchange resin and cation exchange resin in a mixed ion exchange resin, which can reduce the amount of NaOH solution used when separating the anion exchange resin and cation exchange resin of the mixed ion exchange resin using the Seplex method.
上記目的に鑑み本発明は、アニオン交換樹脂とカチオン交換樹脂の混合イオン交換樹脂からアニオン交換樹脂とカチオン交換樹脂とを分離再生する方法であって、混合イオン交換樹脂の投入部と、上下方向の途中に設けられたアニオン交換樹脂抜出部と、該アニオン交換樹脂抜出部よりも下方に設けられたカチオン交換樹脂抜出部と、底部に設けられたエア及び分離用水の注入部とを有する略筒状の混合イオン交換樹脂の逆洗分離塔に混合イオン交換樹脂投入し、前記分離塔内にエア及び分離用水の注入部から分離用水を上向流で通水して前記混合イオン交換樹脂を比重差を利用して分離する逆洗分離工程と、前記アニオン交換樹脂とカチオン交換樹脂の分離界面より上側のアニオン交換樹脂を前記アニオン交換樹脂抜出部から抜き出してアニオン交換樹脂高度分離塔に移送するとともに、残余のカチオン交換樹脂をカチオン交換樹脂抜出部から抜き出してカチオン交換樹脂再生塔に移送する移送工程と、前記アニオン交換樹脂高度分離塔に5重量%以上30重量%以下の第一のNaOH水溶液に浸漬して、アニオン交換樹脂中に混入しているカチオン交換樹脂を分離し、該カチオン交換樹脂を排出するアニオン交換樹脂分離工程と、前記アニオン交換樹脂高度分離塔に残存したアニオン交換樹脂を第二のNaOH水溶液で再生するアニオン交換樹脂再生工程と、前記カチオン交換樹脂再生塔内のカチオン交換樹脂を再生するカチオン交換樹脂再生工程と、を有する混合イオン交換樹脂におけるアニオン交換樹脂とカチオン交換樹脂との分離再生方法において、前記第二のNaOH水溶液として未使用の高濃度NaOH水溶液を使用するとともに、前記第一のNaOH水溶液として、前記アニオン交換樹脂再生工程で使用済の第二のNaOH水溶液、又は前記アニオン交換樹脂再生工程で使用済の第二のNaOH水溶液及び前記アニオン交換樹脂分離工程で使用済の第一のNaOH水溶液を回収したNaOH水溶液を用いる、混合イオン交換樹脂におけるアニオン交換樹脂とカチオン交換樹脂との分離再生方法を提供する(発明1)。 In view of the above object, the present invention provides a method for separating and regenerating anion exchange resin and cation exchange resin from a mixed ion exchange resin of anion exchange resin and cation exchange resin, comprising a backwash separation step in which the mixed ion exchange resin is introduced into a substantially cylindrical mixed ion exchange resin backwash separation tower having a mixed ion exchange resin introduction section, an anion exchange resin extraction section provided midway in the vertical direction, a cation exchange resin extraction section provided below the anion exchange resin extraction section, and an air and separation water injection section provided at the bottom, and separation water is passed through the air and separation water injection section in an upward flow into the separation tower to separate the mixed ion exchange resin by utilizing the difference in specific gravity; a transfer step in which the anion exchange resin above the separation interface between the anion exchange resin and the cation exchange resin is extracted from the anion exchange resin extraction section and transferred to an anion exchange resin advanced separation tower, and the remaining cation exchange resin is extracted from the cation exchange resin extraction section and transferred to a cation exchange resin regeneration tower; and a transfer step in which 5% by weight to 30% by weight of the anion exchange resin is introduced into the anion exchange resin advanced separation tower. The method for separating and regenerating anion exchange resin and cation exchange resin in a mixed ion exchange resin includes an anion exchange resin separation step in which the anion exchange resin is immersed in a first NaOH aqueous solution below to separate the cation exchange resin mixed in the anion exchange resin and discharge the cation exchange resin, an anion exchange resin regeneration step in which the anion exchange resin remaining in the anion exchange resin high-speed separation tower is regenerated with a second NaOH aqueous solution, and a cation exchange resin regeneration step in which the cation exchange resin in the cation exchange resin regeneration tower is regenerated. The method for separating and regenerating anion exchange resin and cation exchange resin in a mixed ion exchange resin includes an unused high-concentration NaOH aqueous solution as the second NaOH aqueous solution, and an NaOH aqueous solution recovered from the second NaOH aqueous solution used in the anion exchange resin regeneration step and the first NaOH aqueous solution used in the anion exchange resin separation step is used as the first NaOH aqueous solution (Invention 1).
かかる発明(発明1)によれば、最終段階のアニオン交換樹脂の再生に第二のNaOH水溶液として未使用の高濃度NaOH水溶液を使用し、アニオン交換樹脂高度分離塔でカチオン交換樹脂を分離する第一のNaOH水溶液として、使用済の第二のNaOH水溶液を回収して再利用することで、NaOH水溶液の使用量を削減しつつアニオン交換樹脂の再生を高精度で行うことができる。 According to this invention (Invention 1), unused high-concentration NaOH aqueous solution is used as the second NaOH aqueous solution to regenerate the anion exchange resin in the final stage, and the used second NaOH aqueous solution is recovered and reused as the first NaOH aqueous solution to separate the cation exchange resin in the anion exchange resin advanced separation tower, making it possible to regenerate the anion exchange resin with high accuracy while reducing the amount of NaOH aqueous solution used.
上記発明(発明1)においては、前記第一のNaOH水溶液に未使用の高濃度NaOH水溶液を添加することが好ましい(発明2)。 In the above invention (Invention 1), it is preferable to add unused high-concentration NaOH aqueous solution to the first NaOH aqueous solution (Invention 2).
かかる発明(発明2)によれば、アニオン交換樹脂高度分離塔では、アニオン交換樹脂再生工程よりも高濃度のNaOH水溶液を使用するので、使用済の第二のNaOH水溶液を回収して再利用しただけではNaOH水溶液の濃度が不足するので、未使用の高濃度NaOH水溶液を添加してアニオン交換樹脂分離工程に適したNaOH水溶液濃度とすることで、使用済の第二のNaOH水溶液を回収して再利用するとともにアニオン交換樹脂分離工程に好適なNaOH水溶液濃度とすることができる。 According to this invention (Invention 2), the anion exchange resin advanced separation tower uses a higher concentration of NaOH aqueous solution than in the anion exchange resin regeneration process, so the concentration of the NaOH aqueous solution is insufficient if the used second NaOH aqueous solution is simply recovered and reused. Therefore, by adding unused high-concentration NaOH aqueous solution to achieve a NaOH aqueous solution concentration suitable for the anion exchange resin separation process, it is possible to recover and reuse the used second NaOH aqueous solution and to achieve a NaOH aqueous solution concentration suitable for the anion exchange resin separation process.
上記発明(発明2)においては、前記第二のNaOH水溶液及び/又は第一のNaOH水溶液の濃度を純水により調整することが好ましい(発明3)。 In the above invention (Invention 2), it is preferable to adjust the concentration of the second NaOH aqueous solution and/or the first NaOH aqueous solution with pure water (Invention 3).
かかる発明(発明3)によれば、NaOH水溶液の濃度を純水で調整することで、アニオン交換樹脂再生工程、アニオン交換樹脂分離工程をそれぞれ好適に行うことができる。 According to this invention (Invention 3), the concentration of the NaOH aqueous solution can be adjusted with pure water, so that the anion exchange resin regeneration process and the anion exchange resin separation process can each be carried out appropriately.
上記発明(発明1)においては、前記分離用水を上向流で通水して前記混合イオン交換樹脂を比重差を利用して分離する逆洗分離工程において、混合イオン交換樹脂に第三のNaOH水溶液を通液するイオン型調整を行い、該第三のNaOH水溶液として、前記アニオン交換樹脂再生工程で使用済の第二のNaOH水溶液及び前記アニオン交換樹脂分離工程で使用済の第一のNaOH水溶液を回収したNaOH水溶液を用いることが好ましい(発明4)。 In the above invention (Invention 1), in the backwash separation process in which the separation water is passed in an upward flow to separate the mixed ion exchange resin by utilizing the difference in specific gravity, it is preferable to pass a third NaOH aqueous solution through the mixed ion exchange resin to adjust the ion type, and to use, as the third NaOH aqueous solution, an NaOH aqueous solution recovered from the second NaOH aqueous solution used in the anion exchange resin regeneration process and the first NaOH aqueous solution used in the anion exchange resin separation process (Invention 4).
かかる発明(発明4)によれば、分離用水を上向流で通水する逆洗分離工程において混合イオン交換樹脂に第三のNaOH水溶液を通液するイオン型調整に用いる第三のNaOH溶液として、前記アニオン交換樹脂再生工程で使用済の第二のNaOH水溶液及び前記アニオン交換樹脂分離工程で使用済の第一のNaOH水溶液を回収したNaOH水溶液を用いることで、NaOH水溶液の使用量を削減しつつ、イオン型調整、すなわちアニオン交換樹脂高度分離塔でのチオン交換樹脂を分離及びアニオン交換樹脂の再生を高精度で行うことができる。 According to this invention (Invention 4), the third NaOH solution used for ion type adjustment in which a third NaOH aqueous solution is passed through the mixed ion exchange resin in the backwash separation process in which separation water is passed in an upward flow is the second NaOH aqueous solution used in the anion exchange resin regeneration process and the NaOH aqueous solution recovered from the first NaOH aqueous solution used in the anion exchange resin separation process. This makes it possible to reduce the amount of NaOH aqueous solution used while performing ion type adjustment, i.e., separation of the thione exchange resin in the anion exchange resin high-speed separation tower and regeneration of the anion exchange resin, with high accuracy.
上記発明(発明1~4)においては、前記アニオン交換樹脂とカチオン交換樹脂が、ポーラス型イオン交換樹脂であることが好ましい(発明5)。
In the above inventions (
かかる発明(発明5)によれば、5重量%以上30重量%以下のNaOH水溶液の比重は、ポーラス型アニオン交換樹脂の比重とポーラス型イオン交換樹脂の比重との両者の間とすることができるので、アニオン交換樹脂分離工程において比重差を利用してアニオン交換樹脂中に混入しているカチオン交換樹脂を好適に分離することができる。 According to this invention (Invention 5), the specific gravity of the 5% by weight to 30% by weight NaOH aqueous solution can be set between the specific gravity of the porous anion exchange resin and the specific gravity of the porous ion exchange resin, so that the difference in specific gravity can be utilized in the anion exchange resin separation process to effectively separate the cation exchange resin mixed in the anion exchange resin.
本発明の混合イオン交換樹脂におけるアニオン交換樹脂とカチオン交換樹脂との分離再生方法によれば、アニオン交換樹脂高度分離塔でアニオン交換樹脂中に混入しているカチオン交換樹脂を分離する第一のNaOH水溶液として、使用済の第二のNaOH水溶液を回収して用いることで、NaOH水溶液の使用量を削減しつつアニオン交換樹脂の再生を高精度で行うことができる。 According to the method for separating and regenerating anion exchange resin and cation exchange resin in a mixed ion exchange resin of the present invention, the second aqueous NaOH solution that has been used is recovered and used as the first aqueous NaOH solution for separating the cation exchange resin mixed in the anion exchange resin in the anion exchange resin high-speed separation tower, so that the anion exchange resin can be regenerated with high accuracy while reducing the amount of aqueous NaOH solution used.
以下、本発明の混合イオン交換樹脂におけるアニオン交換樹脂とカチオン交換樹脂との分離再生方法について、添付図面を参照にして詳細に説明する。 The method for separating and regenerating the anion exchange resin and the cation exchange resin in the mixed ion exchange resin of the present invention will be described in detail below with reference to the attached drawings.
〔混合イオン交換樹脂の分離再生システム〕
本実施形態の混合イオン交換樹脂におけるアニオン交換樹脂とカチオン交換樹脂との分離再生システムは、前述した図3に示す分離再生システムと同じであるので、その詳細な説明を省略する。
[Mixed ion exchange resin separation and regeneration system]
The separation and regeneration system for the anion exchange resin and the cation exchange resin in the mixed ion exchange resin of this embodiment is the same as the separation and regeneration system shown in FIG. 3 described above, and therefore a detailed description thereof will be omitted.
(NaOH溶液の供給及び回収機構)
本実施形態においては、図1に示すような構成のセプレックス法におけるNaOH溶液の供給及び回収機構1により、各構成エレメントにNaOH水溶液の供給及び回収を行う。すなわち、NaOH溶液の供給及び回収機構1は、逆洗分離塔2、アニオン交換樹脂高度分離塔としてのセプレックス塔3及びアニオン交換樹脂の再生塔4を備え、超純水供給源5から超純水供給管6を経由して超純水Wを供給するとともに、濃厚NaOH水溶液タンク7からNaOH水溶液供給管10を経由して未使用の濃厚NaOH水溶液Nを再生塔4に所定の濃度で供給可能となっている。また、8はNaOH水溶液の回収・供給タンクであり、アニオン交換樹脂の再生塔4及びセプレックス塔3を通過したNaOH水溶液を回収管11,12,13をそれぞれ経由して回収した後、逆洗分離塔2及びセプレックス塔3にNaOH水溶液供給管14,14A,14Bを経由して再利用NaOH水溶液Rとして供給可能となっている。さらに、9は廃液タンクであり、逆洗分離塔2を通過したNaOH水溶液を廃棄管15を経由して回収可能となっている。なお、12A及び13Aは予備廃棄管であり、16A,16B,16C,16Dは、所定の濃度のNaOH水溶液を供給するために超純水Wと濃厚NaOH水溶液SHとの混合比を調製するための比重計である。なお、図1はNaOH溶液の供給及び回収についての説明図であるので、アニオン交換樹脂再生塔については記載していない。
(NaOH solution supply and recovery mechanism)
In this embodiment, the NaOH solution is supplied to and recovered from each component by a NaOH solution supply and
〔混合イオン交換樹脂の分離再生方法〕
本実施形態の混合イオン交換樹脂におけるアニオン交換樹脂とカチオン交換樹脂との分離再生方法は、前述した図3に示す分離再生システムにおける逆洗分離工程、アニオン交換樹脂分離工程(以下、セプレックス分離工程という)、アニオン交換樹脂の再生工程及びカチオン交換樹脂の再生工程と同じであるので、その詳細な説明を省略する。
[Method for separating and regenerating mixed ion exchange resins]
The method for separating and regenerating the anion exchange resin and the cation exchange resin in the mixed ion exchange resin of this embodiment is the same as the backwash separation step, the anion exchange resin separation step (hereinafter referred to as the Seplex separation step), the anion exchange resin regeneration step, and the cation exchange resin regeneration step in the separation and regeneration system shown in FIG. 3 described above, and therefore detailed description thereof will be omitted.
(NaOH水溶液の供給及び回収方法)
次に前述したような構成を有するNaOH溶液の供給及び回収機構1による本実施形態のNaOH溶液の供給及び回収方法について図1に基づいて説明する。なお、NaOH水溶液のNaOH水溶液を供給及び回収方法は、時系列的には、逆洗分離工程、アニオン交換樹脂分離工程、アニオン交換樹脂の再生工程の順に進行するが、本実施形態においては説明の便宜上、アニオン交換樹脂の再生工程、セプレックス分離工程、逆洗分離工程の順に説明する。
(Method of Supplying and Recovering NaOH Aqueous Solution)
Next, the method for supplying and recovering the NaOH solution according to the present embodiment using the NaOH solution supply and
(初期段階)
初期状態においては、それぞれ好適な濃度のNaOH水溶液で逆洗分離工程、アニオン交換樹脂分離工程、アニオン交換樹脂の再生工程を実施するなどして、廃液タンク9に使用済のNaOH水溶液を貯留した状態とすることが好ましい。また、濃厚NaOH水溶液タンク7には、未使用の濃厚NaOH水溶液Nを貯留しておく、この濃厚NaOH水溶液Nの濃度は、後述するセプレックス分離工程におけるNaOH水溶液の濃度より高濃度であればよく、例えば25~48重量%の範囲内でセプレックス分離工程におけるNaOH水溶液の濃度に応じて適宜設定すればよい。
(Early stage)
In the initial state, it is preferable to carry out the backwash separation step, the anion exchange resin separation step, and the anion exchange resin regeneration step using aqueous NaOH solutions of suitable concentrations, and store used aqueous NaOH solution in the
(アニオン交換樹脂の再生工程)
アニオン交換樹脂の再生工程では、超純水供給管6から超純水Wを供給するとともに、濃厚NaOH水溶液タンク7からNaOH水溶液供給管10を経由して未使用の濃厚NaOH水溶液Nをアニオン交換樹脂の再生塔4に供給する。このとき、比重計16Cで再生塔4に供給される溶液の比重に基づきNaOHの濃度を確認し、必要に応じて超純水W及び/または濃厚NaOH水溶液Nの流量を調整することで、所望とする濃度(例えば4重量%程度)のNaOH水溶液を調製する。この清浄なNaOH水溶液により、最終段階としてのアニオン交換樹脂の再生を行う。そして、このアニオン交換樹脂の再生に使用した使用済のNaOH水溶液を回収管12から回収管11を経由してNaOH水溶液の回収・供給タンク8に回収する。また、NaOH水溶液の回収・供給タンク8には、後述するようにセプレックス分離工程で使用されたNaOH水溶液(再生工程よりも濃い)も回収され、合流する。したがって、NaOH水溶液の回収・供給タンク8内のNaOH水溶液は、セプレックス分離工程で使用されたNaOH水溶液よりも薄いNaOH水溶液が貯留されることになる。
(Anion exchange resin regeneration process)
In the regeneration process of the anion exchange resin, ultrapure water W is supplied from the ultrapure
なお、本実施形態においは、濃厚NaOH水溶液Nの希釈及びNaOH水溶液の濃度調整用に純水、特に超純水Wを用いる。ここで、超純水Wとしては、例えば、抵抗率:18.1MΩ・cm以上、微粒子:粒径50nm以上で1000個/L以下、生菌:1個/L以下、TOC(Total Organic Carbon):1μg/L以下、全シリコン:0.1μg/L以下、金属類:1ng/L以下、イオン類:10ng/L以下、過酸化水素;30μg/L以下、水温:25±2℃のものが好適である。 In this embodiment, pure water, particularly ultrapure water W, is used to dilute the concentrated NaOH aqueous solution N and adjust the concentration of the NaOH aqueous solution. Here, the ultrapure water W preferably has resistivity of 18.1 MΩ·cm or more, particles with a particle size of 50 nm or more and 1000 particles/L or less, live bacteria of 1 particle/L or less, TOC (Total Organic Carbon) of 1 μg/L or less, total silicon of 0.1 μg/L or less, metals of 1 ng/L or less, ions of 10 ng/L or less, hydrogen peroxide of 30 μg/L or less, and a water temperature of 25±2°C.
(セプレックス分離工程)
セプレックス分離工程では、超純水供給管6から超純水Wを供給するとともに、NaOH水溶液の回収・供給タンク8からNaOH水溶液供給管14,14Aを経由して使用済のNaOH水溶液SHをセプレックス塔3に供給する。ここで、セプレックス分離工程で用いるNaOH水溶液の濃度は、例えば9~25重量%程度と濃厚であることから、NaOH水溶液の回収・供給タンク8に貯留された回収NaOH水溶液Rでは濃度が不足する。そこで、比重計16Bにより算出されるNaOH水溶液の濃度から不足分を概算し、濃厚NaOH水溶液タンク7からNaOH水溶液供給管10を経由して濃厚NaOH水溶液Nをセプレックス塔3に供給する。この使用済のNaOH水溶液Rと濃厚NaOH水溶液Nを併用してセプレックス法による分離を行う(セプレックス分離工程)。そして、このセプレックス分離工程に使用したNaOH水溶液を回収管13から回収管11を経由してNaOH水溶液の回収・供給タンク8に回収する。なお、NaOH水溶液の回収・供給タンク8にも比重計16Dを設けて、回収・供給タンク8に貯留中のNaOH濃度を確認しておくことが好ましい。
(Seplex separation process)
In the Seplex separation step, ultrapure water W is supplied from the ultrapure
(逆洗分離工程)
逆洗分離工程では、超純水供給管6から超純水Wを供給するとともに、NaOH水溶液の回収・供給タンク8からNaOH水溶液供給管14,14Bを経由して使用済のNaOH水溶液Rを逆洗分離塔2に供給する。このとき、比重計16Aで逆洗分離塔2に供給される溶液の比重に基づきNaOHの濃度を確認し、必要に応じ超純水W及び/または回収NaOH水溶液Rの流量を調整することで、所望とする濃度(例えば4重量%程度)のNaOH水溶液を調製する。この使用済のNaOH水溶液Rを用いて逆洗分離工程でイオン型の調整を行う。そして、このイオン型の調整に使用したNaOH水溶液は、廃棄管15から廃液タンク9に回収して、所定の処理を施した後廃棄すればよい。
(Backwash separation process)
In the backwash separation step, ultrapure water W is supplied from the ultrapure
なお、セプレックス分離工程、再生工程後のNaOH水溶液が水質的に再利用できないときには、予備廃棄管12A,13Aから廃液タンク9に回収して、所定の処理を施した後廃棄すればよい。
If the aqueous NaOH solution after the Sephrex separation process and regeneration process cannot be reused due to its water quality, it can be collected from the
以上本発明について、前記実施形態に基づいて説明してきたが、本発明は前記実施形態に限定されず種々の変形実施が可能である。例えば、セプレックス法の実施装置としては種々の構成に適用可能であり、例えば、セプレックス分離工程とアニオン交換樹脂の再生工程とをセプレックス塔内で両方を行う構成としてもよい。 The present invention has been described above based on the above embodiment, but the present invention is not limited to the above embodiment and can be modified in various ways. For example, the apparatus for implementing the Sephrex method can be configured in various ways, for example, in such a way that both the Sephrex separation process and the anion exchange resin regeneration process are performed within the Sephrex tower.
以下の具体的実施例により本発明をさらに詳細に説明する。 The present invention will be described in more detail with reference to the following specific examples.
[実施例1]
混合イオン交換樹脂の逆洗分離塔、カチオン交換樹脂再生塔、セプレックス分離塔及びアニオン交換樹脂再生塔により混合イオン交換樹脂のアニオン交換樹脂とカチオン交換樹脂との分離再生装置を構成し、図3に示すプロセスでアニオン交換樹脂とカチオン交換樹脂の分離精製とアニオン交換樹脂の再生を行った。この際、図1に示す方法でNaOH水溶液の供給及び回収を行った。
[Example 1]
The anion exchange resin and cation exchange resin separation and regeneration device of the mixed ion exchange resin was composed of the mixed ion exchange resin backwash separation tower, the cation exchange resin regeneration tower, the Seplex separation tower, and the anion exchange resin regeneration tower, and the anion exchange resin was separated and purified and the anion exchange resin was regenerated by the process shown in Figure 3. At this time, the NaOH aqueous solution was supplied and recovered by the method shown in Figure 1.
分離する混合樹脂は600Lで、カチオン樹脂:アニオン樹脂=1:1とし、アニオン交換樹脂としては比重1.05g/mL(湿潤時)のポーラス型アニオン交換樹脂を、カチオン交換樹脂としては比重1.28g/mL(湿潤時)のポーラス型カチオン交換樹脂をそれぞれ用いた。 The mixed resin to be separated was 600 L, with a cationic resin:anionic resin ratio of 1:1. The anionic exchange resin was a porous anionic exchange resin with a specific gravity of 1.05 g/mL (when wet), and the cationic exchange resin was a porous cation exchange resin with a specific gravity of 1.28 g/mL (when wet).
アニオン交換樹脂再生塔4には濃厚NaOH水溶液タンク7から未使用の濃厚NaOH水溶液Nを純水Wで希釈して供給した。アニオン交換樹脂の再生工程及び後述するセプレックス分離工程で使用したNaOH水溶液は、回収・供給タンク8で受けて、再利用NaOH水溶液Rとしてセプレックス分離塔3に供給して再利用し、さらにNaOH濃度の不足分として未使用の濃厚NaOH水溶液Nと必要に応じて超純水Wを追加して供給した。そして、回収・供給タンク8の再利用NaOH水溶液Rは、逆洗分離塔2でのイオン型調整で再利用した。
Unused concentrated NaOH aqueous solution N was diluted with pure water W and supplied from concentrated NaOH
逆洗分離工程のイオン型調整工程では4重量%に調整したNaOH水溶液を使用し、再生レベルはアニオン樹脂に対して200g-NaOH/LRとした。ここで、再生レベル[g--再生剤(NaOH/LR]は、樹脂量に対する再生剤(100%換算)の使用量を表す。ここでは、アニオン樹脂量に対してであるので、混合樹脂600Lではなく、アニオン交換樹脂300Lに対しての再生剤使用量をあらわす。 In the ion type adjustment process of the backwash separation process, an aqueous NaOH solution adjusted to 4% by weight was used, and the regeneration level was set to 200 g-NaOH/LR for the anion resin. Here, the regeneration level [g--regenerant (NaOH/LR)] represents the amount of regenerant (100% conversion) used relative to the amount of resin. Here, since it is relative to the amount of anion resin, it represents the amount of regenerant used relative to 300 L of anion exchange resin, not 600 L of mixed resin.
セプレックス分離工程では16重量%に調整したNaOH水溶液を使用し、アニオン交換樹脂の1.5倍量(体積比)のNaOH水溶液を使用した。 In the Sephrex separation process, an aqueous NaOH solution adjusted to 16% by weight was used, and 1.5 times the amount (volume ratio) of the anion exchange resin was used.
再生工程では4重量%のNaOH水溶液を使用し、再生レベルはアニオン樹脂に対して50g-NaOH/LRとした。 A 4% by weight aqueous NaOH solution was used in the regeneration process, with the regeneration level being 50 g NaOH/LR for the anion resin.
これら、逆洗分離工程、セプレックス分離工程及び再生工程で使用したNaOH水溶液量(100%換算)を表1に、参考資料として16%NaOH水溶液の比重、イオン型調整前のカチオン交換樹脂(H型)、イオン型調整前のアニオン交換樹脂(OH型)及びイオン型調整後のカチオン交換樹脂(Na型)の比重を表2それぞれに示す。 The amounts of NaOH aqueous solution (100% equivalent) used in the backwash separation process, the Sephrex separation process and the regeneration process are shown in Table 1, and for reference, the specific gravity of a 16% NaOH aqueous solution, the specific gravity of the cation exchange resin (H type) before ion type adjustment, the anion exchange resin (OH type) before ion type adjustment and the cation exchange resin (Na type) after ion type adjustment are shown in Table 2.
表1から明らかなとおり、逆洗分離に必要なNaOH水溶液は60Lであるが、セプレックス分離工程、再生工程で使用したNaOH水溶液を再利用しているので、実質“0”であり、廃棄されるNaOH水溶液は87Lであった。 As is clear from Table 1, 60 L of NaOH aqueous solution is required for backwash separation, but since the NaOH aqueous solution used in the Seplex separation process and regeneration process is reused, the amount of NaOH aqueous solution was essentially "0", and 87 L of NaOH aqueous solution was discarded.
[比較例1]
混合イオン交換樹脂の逆洗分離塔、カチオン交換樹脂再生塔、セプレックス分離塔及びアニオン交換樹脂再生塔により混合イオン交換樹脂のアニオン交換樹脂とカチオン交換樹脂との分離再生装置を構成し、図3に示すプロセスでアニオン交換樹脂とカチオン交換樹脂の分離精製とアニオン交換樹脂の再生を行った。この際、図4に示す方法でNaOH水溶液の供給及び回収を行った。
[Comparative Example 1]
The anion exchange resin and cation exchange resin separation and regeneration device of the mixed ion exchange resin was composed of the mixed ion exchange resin backwash separation tower, the cation exchange resin regeneration tower, the Seplex separation tower, and the anion exchange resin regeneration tower, and the anion exchange resin was separated and purified by the process shown in Figure 3. At this time, the NaOH aqueous solution was supplied and recovered by the method shown in Figure 4.
分離する混合樹脂は600Lで、カチオン樹脂:アニオン樹脂=1:1とし、アニオン交換樹脂としては比重1.05g/mL(湿潤時)のポーラス型アニオン交換樹脂を、カチオン交換樹脂としては比重1.28g/mL(湿潤時)のポーラス型カチオン交換樹脂をそれぞれ用いた。 The mixed resin to be separated was 600 L, with a cationic resin:anionic resin ratio of 1:1. The anionic exchange resin was a porous anionic exchange resin with a specific gravity of 1.05 g/mL (when wet), and the cationic exchange resin was a porous cation exchange resin with a specific gravity of 1.28 g/mL (when wet).
アニオン交換樹脂再生塔4の再生工程、セプレックス分離塔3のセプレックス分離工程、逆洗分離塔2での逆洗分離工程の各工程で使用されたNaOH水溶液は再利用せず、廃棄することとした。
The NaOH aqueous solution used in the regeneration process of the anion exchange
逆洗分離工程のイオン型調整工程では4重量%に調整したNaOH水溶液を使用し、再生レベルはアニオン樹脂に対して200g-NaOH/LRとした。 In the ion type adjustment process of the backwash separation process, an aqueous NaOH solution adjusted to 4% by weight was used, and the regeneration level was 200 g-NaOH/LR for the anion resin.
セプレックス分離工程では16重量%に調整したNaOH水溶液を使用し、アニオン交換樹脂の1.5倍量(体積比)のNaOH水溶液を使用した。 In the Sephrex separation process, an aqueous NaOH solution adjusted to 16% by weight was used, and 1.5 times the amount (volume ratio) of the anion exchange resin was used.
再生工程では4重量%のNaOH水溶液を使用し、再生レベルはアニオン樹脂に対して50g-NaOH/LRとした。 A 4% by weight aqueous NaOH solution was used in the regeneration process, with the regeneration level being 50 g NaOH/LR for the anion resin.
これら、逆洗分離工程、セプレックス分離工程及び再生工程で使用したNaOH水溶液量(100%換算)を表3に示す。 The amounts of NaOH aqueous solution (100% equivalent) used in the backwash separation process, the Sephrex separation process, and the regeneration process are shown in Table 3.
表3から明らかなとおり、逆洗分離工程、セプレックス分離工程及びアニオン交換樹脂再生工程を実施する際に使用するNaOH水溶液を未使用のものとし、一過的に廃棄した場合、その消費量は合計で147Lであり、実施例1と比較してNaOHの廃液量が60L(65%以上)増加することがわかる。 As is clear from Table 3, if the NaOH aqueous solution used in the backwash separation process, the Sephrex separation process, and the anion exchange resin regeneration process is unused and temporarily discarded, the total consumption is 147 L, which is an increase of 60 L (65% or more) of the amount of NaOH waste liquid compared to Example 1.
1 NaOH溶液の供給及び回収機構
2 逆洗分離塔
3 セプレックス塔(アニオン交換樹脂高度分離塔)
4 アニオン交換樹脂再生塔
5 超純水供給源
6 超純水供給管
7 濃厚NaOH水溶液タンク
8 NaOH水溶液の回収・供給タンク
9 廃液タンク
10 NaOH水溶液供給管
11,12,13 回収管
12A 13A 予備廃棄管
14,14A,14B NaOH水溶液供給管
15 廃棄管
16A,16B,16C,16D 比重計
W 超純水
N 濃厚NaOH水溶液
R 再利用NaOH水溶液
1 NaOH solution supply and
Reference Signs List 4: Anion exchange resin regeneration tower 5: Ultrapure water supply source 6: Ultrapure water supply pipe 7: Concentrated NaOH aqueous solution tank 8: NaOH aqueous solution recovery/supply tank 9: Waste liquid tank 10: NaOH aqueous
Claims (5)
混合イオン交換樹脂の投入部と、上下方向の途中に設けられたアニオン交換樹脂抜出部と、該アニオン交換樹脂抜出部よりも下方に設けられたカチオン交換樹脂抜出部と、底部に設けられたエア及び分離用水の注入部とを有する略筒状の混合イオン交換樹脂の逆洗分離塔に混合イオン交換樹脂投入し、前記分離塔内にエア及び分離用水の注入部から分離用水を上向流で通水して前記混合イオン交換樹脂を比重差を利用して分離する逆洗分離工程と、
前記アニオン交換樹脂とカチオン交換樹脂の分離界面より上側のアニオン交換樹脂を前記アニオン交換樹脂抜出部から抜き出してアニオン交換樹脂高度分離塔に移送するとともに、残余のカチオン交換樹脂をカチオン交換樹脂抜出部から抜き出してカチオン交換樹脂再生塔に移送する移送工程と、
前記アニオン交換樹脂高度分離塔に5重量%以上30重量%以下の第一のNaOH水溶液に浸漬して、アニオン交換樹脂中に混入しているカチオン交換樹脂を分離し、該カチオン交換樹脂を排出するアニオン交換樹脂分離工程と、
前記アニオン交換樹脂高度分離塔に残存したアニオン交換樹脂を第二のNaOH水溶液で再生するアニオン交換樹脂再生工程と、
前記カチオン交換樹脂再生塔内のカチオン交換樹脂を再生するカチオン交換樹脂再生工程と、
を有する混合イオン交換樹脂におけるアニオン交換樹脂とカチオン交換樹脂との分離再生方法において、
前記第二のNaOH水溶液として未使用の高濃度NaOH水溶液を使用するとともに、前記第一のNaOH水溶液として、前記アニオン交換樹脂再生工程で使用済の第二のNaOH水溶液、又は前記アニオン交換樹脂再生工程で使用済の第二のNaOH水溶液及び前記アニオン交換樹脂分離工程で使用済の第一のNaOH水溶液を回収したNaOH水溶液を用いる、混合イオン交換樹脂におけるアニオン交換樹脂とカチオン交換樹脂との分離再生方法。 A method for separating and regenerating anion exchange resin and cation exchange resin from a mixed ion exchange resin of anion exchange resin and cation exchange resin, comprising the steps of:
a backwash separation step in which the mixed ion exchange resin is introduced into a substantially cylindrical mixed ion exchange resin backwash separation tower having a mixed ion exchange resin introduction section, an anion exchange resin discharge section provided in the vertical direction, a cation exchange resin discharge section provided below the anion exchange resin discharge section, and an air and separation water injection section provided at the bottom, and separation water is passed through the air and separation water injection section in an upward flow into the separation tower to separate the mixed ion exchange resin by utilizing the difference in specific gravity;
a transfer step of extracting the anion exchange resin above the separation interface between the anion exchange resin and the cation exchange resin from the anion exchange resin extraction section and transferring it to an anion exchange resin high-speed separation tower, and extracting the remaining cation exchange resin from the cation exchange resin extraction section and transferring it to a cation exchange resin regeneration tower;
an anion exchange resin separation step of immersing the anion exchange resin high-speed separation tower in a first NaOH aqueous solution having a concentration of 5% by weight or more and 30% by weight or less to separate the cation exchange resin mixed in the anion exchange resin and discharging the cation exchange resin;
an anion exchange resin regeneration step of regenerating the anion exchange resin remaining in the anion exchange resin high-speed separation column with a second NaOH aqueous solution;
a cation exchange resin regeneration step of regenerating the cation exchange resin in the cation exchange resin regeneration tower;
A method for separating and regenerating anion exchange resin and cation exchange resin in a mixed ion exchange resin having
The method for separating and regenerating anion exchange resin and cation exchange resin in a mixed ion exchange resin comprises using an unused high-concentration NaOH aqueous solution as the second NaOH aqueous solution, and using, as the first NaOH aqueous solution, a second NaOH aqueous solution used in the anion exchange resin regeneration step, or a NaOH aqueous solution obtained by recovering the second NaOH aqueous solution used in the anion exchange resin regeneration step and the first NaOH aqueous solution used in the anion exchange resin separation step.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023000518A JP7405285B1 (en) | 2023-01-05 | 2023-01-05 | Method for separating and regenerating anion exchange resin and cation exchange resin in mixed ion exchange resin |
PCT/JP2023/033723 WO2024147215A1 (en) | 2023-01-05 | 2023-09-15 | Method for separating and regenerating anion exchange resin and cation exchange resin in ion exchange resin mixture |
TW112137595A TW202428505A (en) | 2023-01-05 | 2023-10-02 | Method for separating and regenerating anion exchange resin and cation exchange resin in ion exchange resin mixture |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023000518A JP7405285B1 (en) | 2023-01-05 | 2023-01-05 | Method for separating and regenerating anion exchange resin and cation exchange resin in mixed ion exchange resin |
Publications (2)
Publication Number | Publication Date |
---|---|
JP7405285B1 JP7405285B1 (en) | 2023-12-26 |
JP2024097173A true JP2024097173A (en) | 2024-07-18 |
Family
ID=89307859
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2023000518A Active JP7405285B1 (en) | 2023-01-05 | 2023-01-05 | Method for separating and regenerating anion exchange resin and cation exchange resin in mixed ion exchange resin |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP7405285B1 (en) |
TW (1) | TW202428505A (en) |
WO (1) | WO2024147215A1 (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5528738A (en) * | 1978-08-23 | 1980-02-29 | Japan Organo Co Ltd | Regenerating method of mixed ion exchange resin |
JPS5594650A (en) * | 1979-01-16 | 1980-07-18 | Japan Organo Co Ltd | Method of regenerating anion exchange resin of mixed-bed type ion exchange equipment of out-of-tower regeneration system |
JPS55124548A (en) * | 1979-03-20 | 1980-09-25 | Japan Organo Co Ltd | Separating fine cation-exchange resin mixing into anion-exchange resin |
JPS5771689A (en) * | 1980-10-22 | 1982-05-04 | Kurita Water Ind Ltd | Desalting method for condensate |
JPS60122043A (en) * | 1983-12-02 | 1985-06-29 | Hitachi Ltd | Apparatus for treating waste regenerative liquid of ion exchange resin |
JPS61155898A (en) * | 1984-12-28 | 1986-07-15 | 株式会社日立製作所 | Treater for regenerated waste liquor of ion exchnage resin |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5528738B2 (en) | 2009-08-10 | 2014-06-25 | 京セラドキュメントソリューションズ株式会社 | Image forming apparatus and image forming method |
JP5594650B2 (en) | 2010-05-14 | 2014-09-24 | 三浦工業株式会社 | Steam system |
CN103582668B (en) | 2011-06-03 | 2015-06-17 | 株式会社普利司通 | Rubber composition and tire using same |
-
2023
- 2023-01-05 JP JP2023000518A patent/JP7405285B1/en active Active
- 2023-09-15 WO PCT/JP2023/033723 patent/WO2024147215A1/en unknown
- 2023-10-02 TW TW112137595A patent/TW202428505A/en unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5528738A (en) * | 1978-08-23 | 1980-02-29 | Japan Organo Co Ltd | Regenerating method of mixed ion exchange resin |
JPS5594650A (en) * | 1979-01-16 | 1980-07-18 | Japan Organo Co Ltd | Method of regenerating anion exchange resin of mixed-bed type ion exchange equipment of out-of-tower regeneration system |
JPS55124548A (en) * | 1979-03-20 | 1980-09-25 | Japan Organo Co Ltd | Separating fine cation-exchange resin mixing into anion-exchange resin |
JPS5771689A (en) * | 1980-10-22 | 1982-05-04 | Kurita Water Ind Ltd | Desalting method for condensate |
JPS60122043A (en) * | 1983-12-02 | 1985-06-29 | Hitachi Ltd | Apparatus for treating waste regenerative liquid of ion exchange resin |
JPS61155898A (en) * | 1984-12-28 | 1986-07-15 | 株式会社日立製作所 | Treater for regenerated waste liquor of ion exchnage resin |
Also Published As
Publication number | Publication date |
---|---|
TW202428505A (en) | 2024-07-16 |
JP7405285B1 (en) | 2023-12-26 |
WO2024147215A1 (en) | 2024-07-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
BRPI0720039B1 (en) | methods for treating produced water derived from a contaminant-containing oil recovery operation and for treating contaminated wastewater | |
TWI808053B (en) | Ultrapure water production system and ultrapure water production method | |
CN110395816A (en) | The acid recovery and purification system of pickle liquor | |
JP5540574B2 (en) | Metal recovery method | |
JP5844558B2 (en) | Recycling method for waste liquid containing tetraalkylammonium hydroxide | |
WO2024147215A1 (en) | Method for separating and regenerating anion exchange resin and cation exchange resin in ion exchange resin mixture | |
TWI746036B (en) | Method and device of removing and recycling metals from mixing acid solution | |
JPH0592187A (en) | Treatment of fluorine-containing water | |
JPH05253576A (en) | Treatment of fluorine-containing water | |
WO2024075500A1 (en) | Method for separating and regenerating anion exchange resin and cation exchange resin in ion exchange resin mixture | |
KR100798450B1 (en) | Regeneration process for producing high-concentrate cuso4 solution from cu-waste water | |
WO2024224873A1 (en) | Method for separating anion exchange resin and cation exchange resin in mixed ion exchange resin | |
WO2024171803A1 (en) | Method for separating and regenerating anion exchange resin and cation exchange resin in mixed ion exchange resin | |
JP5075159B2 (en) | Separation tower for mixed ion exchange resin | |
JP2024158264A (en) | Method for separating anion exchange resin and cation exchange resin in mixed ion exchange resin | |
CN105565544B (en) | A kind of recovery method of nickel | |
KR100790370B1 (en) | Recycling method and apparatus of waste etching solution | |
TWI636018B (en) | Method to recycle copper sulfate in waste from wafer fab or pcb manufacturing and system of wafer or pcb manufacturing having copper sulfate recycling unit | |
JP2891820B2 (en) | Regeneration method of ion exchange resin | |
JP7184152B1 (en) | Separation column for mixed ion exchange resin and method for separating mixed ion exchange resin using the same | |
CN219314759U (en) | Treatment device for recycling high-purity crystalline silicon production wastewater | |
JP5564817B2 (en) | Ion exchange resin regeneration method and ultrapure water production apparatus | |
TW202438173A (en) | Method for separating and regenerating anion exchange resin and cation exchange resin in mixed ion exchange resin | |
JP4346214B2 (en) | Separation method of mixed ion exchange resin | |
JP2008297568A (en) | Method of electrolyzing sodium chloride aqueous solution |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20230915 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20231114 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20231127 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7405285 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |