JP2024095343A - Pottery with glaze layer - Google Patents
Pottery with glaze layer Download PDFInfo
- Publication number
- JP2024095343A JP2024095343A JP2022212563A JP2022212563A JP2024095343A JP 2024095343 A JP2024095343 A JP 2024095343A JP 2022212563 A JP2022212563 A JP 2022212563A JP 2022212563 A JP2022212563 A JP 2022212563A JP 2024095343 A JP2024095343 A JP 2024095343A
- Authority
- JP
- Japan
- Prior art keywords
- glaze
- pottery
- weight
- thermal expansion
- vitreous
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 43
- 239000010453 quartz Substances 0.000 claims abstract description 27
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 14
- 238000010521 absorption reaction Methods 0.000 claims abstract description 10
- 235000012239 silicon dioxide Nutrition 0.000 claims description 28
- 210000004127 vitreous body Anatomy 0.000 claims description 22
- 239000004927 clay Substances 0.000 claims description 20
- 239000000919 ceramic Substances 0.000 claims description 15
- 239000000203 mixture Substances 0.000 claims description 13
- 239000000377 silicon dioxide Substances 0.000 claims description 7
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 4
- 229910052708 sodium Inorganic materials 0.000 claims description 4
- 229910052681 coesite Inorganic materials 0.000 claims description 3
- 229910052906 cristobalite Inorganic materials 0.000 claims description 3
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 claims description 3
- 229910052682 stishovite Inorganic materials 0.000 claims description 3
- 229910052905 tridymite Inorganic materials 0.000 claims description 3
- 239000002245 particle Substances 0.000 abstract description 16
- 230000035515 penetration Effects 0.000 abstract description 12
- 238000001816 cooling Methods 0.000 abstract description 5
- 239000002994 raw material Substances 0.000 description 17
- 238000010304 firing Methods 0.000 description 13
- 239000010433 feldspar Substances 0.000 description 11
- 239000013078 crystal Substances 0.000 description 9
- 239000004575 stone Substances 0.000 description 8
- 239000003086 colorant Substances 0.000 description 7
- 238000000034 method Methods 0.000 description 7
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 238000010791 quenching Methods 0.000 description 6
- 229910052500 inorganic mineral Inorganic materials 0.000 description 5
- 238000002844 melting Methods 0.000 description 5
- 230000008018 melting Effects 0.000 description 5
- 239000011707 mineral Substances 0.000 description 5
- 230000000171 quenching effect Effects 0.000 description 5
- 239000011521 glass Substances 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 229910052664 nepheline Inorganic materials 0.000 description 4
- 239000010434 nepheline Substances 0.000 description 4
- 239000011734 sodium Substances 0.000 description 4
- 238000000465 moulding Methods 0.000 description 3
- 239000003605 opacifier Substances 0.000 description 3
- 239000000049 pigment Substances 0.000 description 3
- 238000004017 vitrification Methods 0.000 description 3
- 239000005995 Aluminium silicate Substances 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- 235000012211 aluminium silicate Nutrition 0.000 description 2
- DLHONNLASJQAHX-UHFFFAOYSA-N aluminum;potassium;oxygen(2-);silicon(4+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[Al+3].[Si+4].[Si+4].[Si+4].[K+] DLHONNLASJQAHX-UHFFFAOYSA-N 0.000 description 2
- HPTYUNKZVDYXLP-UHFFFAOYSA-N aluminum;trihydroxy(trihydroxysilyloxy)silane;hydrate Chemical compound O.[Al].[Al].O[Si](O)(O)O[Si](O)(O)O HPTYUNKZVDYXLP-UHFFFAOYSA-N 0.000 description 2
- 239000010427 ball clay Substances 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 239000002734 clay mineral Substances 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 229910052621 halloysite Inorganic materials 0.000 description 2
- 229910052622 kaolinite Inorganic materials 0.000 description 2
- 239000003973 paint Substances 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 239000004576 sand Substances 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- 239000010435 syenite Substances 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N Alumina Chemical compound [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 235000019738 Limestone Nutrition 0.000 description 1
- 241000269821 Scombridae Species 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 239000004115 Sodium Silicate Substances 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 229910052661 anorthite Inorganic materials 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 238000011088 calibration curve Methods 0.000 description 1
- 150000001869 cobalt compounds Chemical class 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- GWWPLLOVYSCJIO-UHFFFAOYSA-N dialuminum;calcium;disilicate Chemical compound [Al+3].[Al+3].[Ca+2].[O-][Si]([O-])([O-])[O-].[O-][Si]([O-])([O-])[O-] GWWPLLOVYSCJIO-UHFFFAOYSA-N 0.000 description 1
- 229910001649 dickite Inorganic materials 0.000 description 1
- KZHJGOXRZJKJNY-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Si]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O KZHJGOXRZJKJNY-UHFFFAOYSA-N 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 239000010459 dolomite Substances 0.000 description 1
- 229910000514 dolomite Inorganic materials 0.000 description 1
- -1 firing conditions Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 238000003306 harvesting Methods 0.000 description 1
- 229910052900 illite Inorganic materials 0.000 description 1
- 150000002506 iron compounds Chemical class 0.000 description 1
- 239000006028 limestone Substances 0.000 description 1
- 235000020640 mackerel Nutrition 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 229910052618 mica group Inorganic materials 0.000 description 1
- 229910052863 mullite Inorganic materials 0.000 description 1
- 239000005306 natural glass Substances 0.000 description 1
- VGIBGUSAECPPNB-UHFFFAOYSA-L nonaaluminum;magnesium;tripotassium;1,3-dioxido-2,4,5-trioxa-1,3-disilabicyclo[1.1.1]pentane;iron(2+);oxygen(2-);fluoride;hydroxide Chemical compound [OH-].[O-2].[O-2].[O-2].[O-2].[O-2].[F-].[Mg+2].[Al+3].[Al+3].[Al+3].[Al+3].[Al+3].[Al+3].[Al+3].[Al+3].[Al+3].[K+].[K+].[K+].[Fe+2].O1[Si]2([O-])O[Si]1([O-])O2.O1[Si]2([O-])O[Si]1([O-])O2.O1[Si]2([O-])O[Si]1([O-])O2.O1[Si]2([O-])O[Si]1([O-])O2.O1[Si]2([O-])O[Si]1([O-])O2.O1[Si]2([O-])O[Si]1([O-])O2.O1[Si]2([O-])O[Si]1([O-])O2 VGIBGUSAECPPNB-UHFFFAOYSA-L 0.000 description 1
- 239000011505 plaster Substances 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 230000002335 preservative effect Effects 0.000 description 1
- 229910052903 pyrophyllite Inorganic materials 0.000 description 1
- 239000011819 refractory material Substances 0.000 description 1
- 239000011435 rock Substances 0.000 description 1
- 238000007569 slipcasting Methods 0.000 description 1
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 1
- 229910052911 sodium silicate Inorganic materials 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- 229910052845 zircon Inorganic materials 0.000 description 1
- GFQYVLUOOAAOGM-UHFFFAOYSA-N zirconium(iv) silicate Chemical compound [Zr+4].[O-][Si]([O-])([O-])[O-] GFQYVLUOOAAOGM-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Glass Compositions (AREA)
- Sanitary Device For Flush Toilet (AREA)
Abstract
Description
本発明は釉薬層を備えた陶器に関し、詳しくは熔化質素地に釉薬層が設けられた陶器に関する。 The present invention relates to pottery with a glaze layer, and more specifically to pottery in which a glaze layer is provided on a vitreous clay base.
衛生陶器、タイルなどの陶器は、素地とその表面に設けられた釉薬層とから基本的になり、素地と釉薬層との密着性は最終的な陶器の耐久性、外観などに影響を与える。とりわけ、焼成の過程で特に素地は収縮、変形することから、素地と釉薬層と組み合わせは重要になる。 Ceramics such as sanitary ware and tiles basically consist of a base and a glaze layer applied to its surface, and the adhesion between the base and the glaze layer affects the durability and appearance of the final ceramic. In particular, the base shrinks and deforms during the firing process, so the combination of the base and the glaze layer is important.
特開2002-114566号公報(特許文献1)は、素地と釉薬層との組み合わせにおいて、熱膨張率への配慮を開示する。具体的には、釉薬を、素地よりも熱膨張係数が0~30×10-7/℃小さいものとなるようにし、これによって、釉薬表面の経年変化に伴う微細なひび割れが生じにくくなるとし(段落0022)、さらに素地の熱膨張係数が50~90×-7/℃(50~600℃)である素地の衝撃強度が2×10-1J/cm2以上であったとされている(段落0023及び0024)。この公報開示の素地はその組成、焼成条件及び吸水率が18%であること等から非熔化質素地である。 JP 2002-114566 A (Patent Document 1) discloses consideration of the coefficient of thermal expansion in the combination of the base and the glaze layer. Specifically, the glaze is made to have a coefficient of thermal expansion 0-30×10 -7 /°C smaller than that of the base, which makes it difficult for fine cracks to occur on the glaze surface due to aging (paragraph 0022), and furthermore, it is said that the impact strength of the base, which has a coefficient of thermal expansion of 50-90× -7 /°C (50-600°C), is 2×10 -1 J/cm 2 or more (paragraphs 0023 and 0024). The base disclosed in this publication is a non-vitrified base due to its composition, firing conditions, water absorption rate of 18%, etc.
また、特開平6-056516号公報(特許文献2)は、いわゆる“釉めくれ”の観点から、熔化質素地と釉薬の昇温時の熱膨張率に着目し、釉薬の昇温時の熱膨張挙動を素地のそれに合せることが好ましいとし、そのための手段を開示する。 In addition, from the perspective of so-called "glaze peeling," Japanese Patent Laid-Open Publication No. 6-056516 (Patent Document 2) focuses on the thermal expansion coefficients of the vitreous base and glaze when the temperature is increased, and states that it is preferable to match the thermal expansion behavior of the glaze when the temperature is increased to that of the base, and discloses a method for achieving this.
本発明者らは、今般、熔化質素地と釉薬の昇温時の熱膨張率を合せるのではなく、一定の差が生じる関係にあるものの組み合わせとし、さらに石英の存在形態を制御することで、良好な性能の陶器を実現できるとの知見を得た。具体的には、耐貫入性、耐急冷性に優れ、釉薬面の剥げの発生が有効に防止された陶器が実現できるとの知見を得た。 The inventors have now discovered that by combining vitreous base and glaze that have a certain difference in their thermal expansion coefficients when heated, rather than matching them, and further controlling the form in which quartz is present, it is possible to realize pottery with good performance. Specifically, they have discovered that it is possible to realize pottery that has excellent resistance to penetration and rapid cooling, and effectively prevents the occurrence of peeling of the glaze surface.
したがって、本発明は熔化質素地を用いながら、良好な性能の陶器、例えば耐貫入性、耐急冷性に優れ、釉薬面の剥げの発生が有効に防止された陶器の提供をその目的としている。 Therefore, the object of the present invention is to provide pottery that uses a vitreous body and has good performance, for example, pottery that has excellent resistance to penetration and rapid cooling and effectively prevents the occurrence of peeling of the glaze surface.
そして、本発明による陶器は、
熔化質素地と、釉薬からなる層とを少なくとも備えてなる陶器であって、
前記熔化質素地の熱膨張率が前記釉薬の熱膨張率より大であり、その差が5×10-7/K乃至25×10-7/Kの範囲にあり、
前記熔化質素地が石英を含み、該石英の最大粒径が50μm以下であり、
前記熔化質素地の吸水率が0.5%以下である
ことを特徴とするものである。
And the pottery according to the present invention is
A pottery having at least a vitreous body and a layer of glaze,
The thermal expansion coefficient of the vitreous body is greater than that of the glaze, the difference being in the range of 5×10 −7 /K to 25×10 −7 /K;
The vitreous body contains quartz, and the maximum grain size of the quartz is 50 μm or less;
The vitreous clay has a water absorption rate of 0.5% or less.
本発明によれば、熔化質素地を用いた、良好な性能の陶器、例えば耐貫入性、耐急冷性に優れ、釉薬面の剥げの発生が有効に防止された陶器が提供される。 The present invention provides pottery with good performance, for example, pottery that is excellent in resistance to penetration and rapid cooling and effectively prevents the occurrence of peeling of the glaze surface, using a vitreous body.
本発明による陶器
本発明において、「陶器」とは、衛生陶器、タイルなど素地に釉薬層が設けられた基本構成を備えた物を意味する。また、「衛生陶器」とは、バスルーム、トイレ空間、化粧室、洗面所、または台所などで用いられる陶器製品を意味する。具体的には、大便器、小便器、便器のサナ、便器タンク、洗面器、手洗い器などを意味する。
In the present invention , "ceramics" refers to sanitary ware, tiles, and other items that have a basic structure of a glaze layer on a base material. In addition, "sanitary ware" refers to ceramic products used in bathrooms, toilet spaces, dressing rooms, washrooms, kitchens, etc. Specifically, it refers to toilet bowls, urinals, toilet basins, toilet tanks, wash basins, hand basins, etc.
本発明による陶器は、熔化質素地と、釉薬からなる層とを少なくとも備えてなる。そして、素地の熱膨張率が釉薬の熱膨張率より大であり、その差が5×10-7/K乃至25×10-7/Kの範囲にあることを特徴とする。両者の熱膨張率の差を上記範囲に置くことで、良好な性質、性能の陶器が実現できる。具体的には、釉薬面への貫入の発生が抑制されるという耐貫入性に優れ、また耐急冷性に優れることから、素地面又は釉薬面におけるクラックの発生が有効に防止でき、さらに、釉飛び、すなわち釉薬面の剥げの発生が防止できるとの利点が得られる。上記した特許文献3が提案するように、素地の熱膨張率が釉薬の熱膨張率を合わせることは釉薬面の剥げの発生を有効に防止できるが、素地の熱膨張率が釉薬の熱膨張率より大であり、その差を上記範囲におくことで、耐貫入性に優れ、また耐急冷性にも優れるということは意外な事実と評価されるべきである。 The pottery according to the present invention comprises at least a vitreous base and a layer made of a glaze. The thermal expansion coefficient of the base is greater than that of the glaze, and the difference is in the range of 5×10 −7 /K to 25×10 −7 /K. By setting the difference between the thermal expansion coefficients of the two in the above range, pottery with good properties and performance can be realized. Specifically, since the crack generation on the base surface or the glaze surface can be effectively prevented by excellent resistance to penetration, which suppresses the occurrence of penetration into the glaze surface, and excellent resistance to quenching, the occurrence of glaze skipping, i.e., peeling of the glaze surface, can be effectively prevented. As proposed in the above-mentioned Patent Document 3, matching the thermal expansion coefficient of the base with that of the glaze can effectively prevent the occurrence of peeling of the glaze surface, but it should be evaluated as a surprising fact that the thermal expansion coefficient of the base is greater than that of the glaze, and the difference is set in the above range, and thus the crack generation resistance and the quenching resistance are excellent.
本発明の好ましい態様によれば、素地の熱膨張率と釉薬の熱膨張率との差の範囲は、その下限が好ましくは6×10-7/Kであり、より好ましくは10×10-7/Kであり、また上限は好ましくは22×10-7/K、より好ましくは20×10-7/Kである。差が、これら好ましい範囲にあることで、耐貫入性又は耐急冷性においてより有利となる。 According to a preferred embodiment of the present invention, the range of the difference between the thermal expansion coefficient of the base and the thermal expansion coefficient of the glaze has a lower limit of preferably 6×10 −7 /K, more preferably 10×10 −7 /K, and an upper limit of preferably 22×10 −7 /K, more preferably 20×10 −7 /K. Having the difference within these preferred ranges provides greater advantages in terms of resistance to penetration or quenching.
本発明において、熔化質素地は石英を含み、この石英の最大粒径が15μm以上50μm以下とされる。好ましい態様によれば、石英の最大粒径は17μm以上48μm以下、より好ましくは19μm以上46μm以下とされる。石英の最大粒径が上記範囲にあることで、良好な性質、性能の陶器が実現でき、具体的には、耐貫入性、耐急冷性に優れた陶器が実現できる。 In the present invention, the vitreous body contains quartz, and the maximum grain size of this quartz is 15 μm or more and 50 μm or less. In a preferred embodiment, the maximum grain size of the quartz is 17 μm or more and 48 μm or less, more preferably 19 μm or more and 46 μm or less. By having the maximum grain size of quartz within the above range, pottery with good properties and performance can be realized, specifically pottery with excellent resistance to penetration and quenching can be realized.
また、本発明の好ましい態様によれば、石英の含有量は、22重量%以下とされる。好ましい態様によれば、石英の含有量は8~22重量%、より好ましくは10~20重量%とされる。 In addition, according to a preferred embodiment of the present invention, the quartz content is 22% by weight or less. In a preferred embodiment, the quartz content is 8-22% by weight, more preferably 10-20% by weight.
本発明において、熔化質素地の吸水率は0.5%以下とされ、好ましくは0.48%以下であり、より好ましくは0.46%以下とされる。 In the present invention, the water absorption rate of the vitreous clay is 0.5% or less, preferably 0.48% or less, and more preferably 0.46% or less.
本発明の好ましい態様によれば、熔化質素地自体の熱膨張率は63×10-7/K乃至75×10-7/Kであることが好ましく、より好ましくは64×10-7/K乃至5874×10-7/Kである。 According to a preferred embodiment of the present invention, the thermal expansion coefficient of the vitreous body itself is preferably 63×10 −7 /K to 75×10 −7 /K, and more preferably 64×10 −7 /K to 5874×10 −7 /K.
また、本発明の好ましい態様によれば、釉薬自体の熱膨張率は50×10-7/K乃至58×10-7/K程度であることが好ましく、より好ましくは51×10-7/K乃至57×10-7/Kである。 According to a preferred embodiment of the present invention, the thermal expansion coefficient of the glaze itself is preferably about 50×10 −7 /K to 58×10 −7 /K, and more preferably 51×10 −7 /K to 57×10 −7 /K.
熔化質素地
本発明による陶器を構成する熔化質素地とは、緻密で均質な組織であって、開気孔がほとんど又は実質的に全くなくなるまで焼き締めた素地を意味する。ここで、「熔化」(vitrification) とは、焼成中に素地粒子が熔融してガラス相が生成され、このガラス相が高温下で流動状態になり、熔融しなかった素地粒子のスキマを埋めていく現象を指している。この熔融する粒子と熔融しない粒子の区別は、粒子を構成する結晶の種類による融点の違い、及びその組み合せ(単独では融点が高い結晶でも別の結晶が存在することにより融点が下る場合もある)と焼成温度・時間によって決定される。熔融する原料としては、熔剤としてはたらく長石類や、成形時に素地に可塑性を与える粘土類があげられ、又、熔融しない原料としては、石英をあげることができる。ただし石英は、全く熔融しないわけではなく、一部が熔融してガラス相中に熔け込み、一部が結晶としてそのまま残るという構造をとってもよい。
Vitrification The vitrification of the pottery according to the present invention means a body that has a dense and homogeneous structure and is fired until it has few or no open pores. Here, "vitrification" refers to the phenomenon in which the body particles melt during firing to produce a glass phase, which becomes fluid at high temperatures and fills the gaps between the body particles that did not melt. The distinction between particles that melt and particles that do not melt is determined by the difference in melting point due to the type of crystal that constitutes the particle, the combination of the crystals (even if a crystal has a high melting point by itself, the melting point may be lowered by the presence of other crystals), and the firing temperature and time. Examples of raw materials that melt include feldspars that act as melting agents and clays that give plasticity to the body during molding, and examples of raw materials that do not melt include quartz. However, quartz does not necessarily not melt at all, but may have a structure in which a part of it melts and dissolves into the glass phase, and a part of it remains as crystals.
本発明において利用可能な熔化質素地の原料である粘土類の例としては、カオリナイト、ハロイサイト、メタハロイサイト、ディッカイト、パイロフィライト等の粘土質鉱物と、セリサイト、イライト等の粘土状雲母等が挙げられる。これらの鉱物は、蛙目粘土、木節粘土、カオリン、ボールクレー、チャイナクレー等の粘土質原料や各種陶石中に豊富に含まれており、又、長石質原料中にも一部含まれている。これらの粘土類としては、カオリナイト、ハロイサイトが特に成形時の可塑性を向上させるのに優れており、セリサイトは素地の焼成温度を低下させることに効果が大きい。これらの粘土類の鉱物は焼成中に熔融してガラス相を形成するものであるが、一部未熔融のまま結晶として残存してもよい。 Examples of clays that can be used as raw materials for the vitreous clay body in the present invention include clay minerals such as kaolinite, halloysite, metahalloysite, dickite, and pyrophyllite, and clay-like micas such as sericite and illite. These minerals are abundantly contained in clay raw materials such as frog-eye clay, kibushi clay, kaolin, ball clay, and china clay, as well as in various pottery stones, and are also contained in part in feldspar raw materials. Of these clays, kaolinite and halloysite are particularly excellent at improving plasticity during molding, and sericite is highly effective in lowering the firing temperature of the body. These clay minerals melt during firing to form a glass phase, but some may remain unmelted as crystals.
また、本発明において利用可能な熔化質素地の原料である長石類の例としては、カリ長石、ソーダ長石、灰長石の様な長石質鉱物やネフェライト、及び天然ガラス、フリット等が挙げられる。これらの原料は各種の長石質原料やネフェリンサイアナイト、コーニッシューストーン、さば、ガラス質火山岩、及び各種陶石中に豊富に含まれており、又、粘土質原料中にも一部含まれている。これらの長石類としては特にアルカリ成分としてK2O及びNa2Oを豊富に含むものが好ましく、その例としてはカリ長石、ソーダ長石、及びネフェライトが挙げられる。また、その組成中に石英を実質的に全く含んでいないネフェリンサイアナイトを用いることもできる。これらの長石類の鉱物は焼成中に熔融してガラス相を形成するものであるが、一部未熔融のまま結晶として残存してもよい。 In addition, examples of feldspars that are raw materials for the vitreous body that can be used in the present invention include feldspar minerals such as potassium feldspar, soda feldspar, and anorthite, nephelite, natural glass, frit, etc. These raw materials are abundantly contained in various feldspar raw materials, nepheline syenite, Cornish stone, mackerel, glassy volcanic rocks, and various pottery stones, and are also partially contained in clay raw materials. As these feldspars, those that are rich in K 2 O and Na 2 O as alkaline components are particularly preferable, and examples thereof include potassium feldspar, soda feldspar, and nepheline. In addition, nepheline syenite, which does not substantially contain any quartz in its composition, can also be used. These feldspar minerals melt during firing to form a glass phase, but some may remain unmelted as crystals.
本発明において利用可能な熔化質素地の原料である石英の例としては珪砂、珪石の様なほぼ全量が石英からなる原料を用いることもでき、又、上記各種陶石や、サバ、長石質原料、粘土質原料中にも含まれているため、これらを用いることもできる。 Examples of quartz, which is a raw material for the vitreous clay that can be used in this invention, include raw materials that are almost entirely made of quartz, such as silica sand and silica stone, and also include the various pottery stones mentioned above, saba, feldspathic raw materials, and clayey raw materials, and these can also be used because quartz is contained in these raw materials.
本発明において利用可能な熔化質素地は、α-アルミナを含むことができる。 The vitreous body that can be used in the present invention can contain α-alumina.
本発明の好ましい態様によれば、本発明による陶器を構成する素地は、以下の組成を有する。
SiO2を60~75重量%、好ましくは65~72.5重量%、
Al2O3を20~30重量%、好ましくは22.5~27.5重量%、
Fe2O3を0.4~1.5重量%、好ましくは0.5~1.4重量%、
CaOを0.1~2.0重量%、好ましくは0.2~1.5重量%、
MgOを0.1~1.5重量%、好ましくは0.2~1.2重量%、
K2Oを0.8~5.0重量%、好ましくは1.0~4.0重量%、そして
Na2Oを0.4~4.0重量%、好ましくは0.8~3.0重量%
を含む。
According to a preferred embodiment of the present invention, the body constituting the pottery according to the present invention has the following composition:
SiO2 60 to 75% by weight, preferably 65 to 72.5% by weight,
Al 2 O 3 20 to 30% by weight, preferably 22.5 to 27.5% by weight,
Fe2O3 0.4-1.5 wt%, preferably 0.5-1.4 wt%,
CaO: 0.1 to 2.0% by weight, preferably 0.2 to 1.5% by weight;
0.1 to 1.5% by weight, preferably 0.2 to 1.2% by weight, of MgO;
K 2 O: 0.8-5.0 wt %, preferably 1.0-4.0 wt %, and Na 2 O: 0.4-4.0 wt %, preferably 0.8-3.0 wt %.
including.
釉薬
本発明による陶器の釉薬層を形成する釉薬は、特に限定されず種々の釉薬を利用することができ、さらに、その色も種々のものを利用することができる。
Glaze The glaze for forming the glaze layer of the pottery according to the present invention is not particularly limited, and various glazes can be used, and further, glazes of various colors can be used.
本発明において釉薬は、珪砂、長石、石灰石などの天然鉱物粒子の混合物及び/又は非晶質釉薬に顔料及び/又は乳濁剤を添加したものを使用できる。例えば、釉薬の組成は、SiO2:52~80重量部、Al2O3:5~14重量部、CaO:6~17重量部、MgO:0.5~4.0重量部、ZnO:1~11重量部、K2O:1~5重量部、Na2O:0.5~2.5重量部、乳濁剤:0.1~15重量部、顔料:0.001~20重量部である。釉薬は、その他に糊剤、分散剤、防腐剤、抗菌剤などが含有されていてもよい。顔料としては、コバルト化合物、鉄化合物などが挙げられる。乳濁剤としては、ジルコン、酸化錫などが挙げられる。また、非晶質釉薬とは、上記のような天然鉱物粒子などの混合物からなる釉薬原料を高温で溶融し、ガラス化させた釉薬をいい、例えばフリット釉薬が好適に利用可能である。 In the present invention, the glaze may be a mixture of natural mineral particles such as silica sand, feldspar, and limestone and/or an amorphous glaze to which a pigment and/or an opacifier have been added. For example, the composition of the glaze is SiO 2 : 52 to 80 parts by weight, Al 2 O 3 : 5 to 14 parts by weight, CaO: 6 to 17 parts by weight, MgO: 0.5 to 4.0 parts by weight, ZnO: 1 to 11 parts by weight, K 2 O: 1 to 5 parts by weight, Na 2 O: 0.5 to 2.5 parts by weight, opacifier: 0.1 to 15 parts by weight, pigment: 0.001 to 20 parts by weight. The glaze may further contain a paste, a dispersant, a preservative, an antibacterial agent, etc. Examples of the pigment include a cobalt compound and an iron compound. Examples of the opacifier include zircon and tin oxide. The amorphous glaze refers to a glaze obtained by melting a glaze raw material consisting of a mixture of the above-mentioned natural mineral particles at a high temperature and vitrifying it, and for example, a frit glaze can be suitably used.
本発明において利用可能な釉薬の色は、ホワイト、アイボリー、グレー、ピンク、ブラウンと表現される色、またはホワイト、パステルアイボリー、ホワイトグレー、パステルピンク、ハーベストブラウンと表現される色が例示できる。ホワイト、アイボリー、グレー、ピンク、ブラウンは、例えば、マンセル値で表すと、それぞれN8.6、3.0Y 8.7/0.9、1.4Y 7.8/0.5、0.9YR8.2/1.9、8.3YR7.1/1.2に近似する色、また一般社団法人日本塗料工業会の塗料用標準色で表すと、それぞれLN93、L19-92B、LN-80、L09-80D、L19-70Bに近似する色である。 The colors of the glazes that can be used in the present invention include colors expressed as white, ivory, gray, pink, and brown, or colors expressed as white, pastel ivory, white gray, pastel pink, and harvest brown. White, ivory, gray, pink, and brown are, for example, colors that are similar to N8.6, 3.0Y 8.7/0.9, 1.4Y 7.8/0.5, 0.9YR8.2/1.9, and 8.3YR7.1/1.2, respectively, when expressed in Munsell values, and colors that are similar to LN93, L19-92B, LN-80, L09-80D, and L19-70B, respectively, when expressed in standard paint colors of the Japan Paint Manufacturers Association.
本発明の一つの態様によれば、釉薬層は着色された釉薬層の上に、透明な釉薬層を設けることができる。 According to one aspect of the invention, the glaze layer can be a transparent glaze layer on top of a colored glaze layer.
焼成条件
本発明による陶器は、素地及び釉薬の組成を考慮して、その焼成条件を適宜定め、製造されてよい。例えば、素地に釉薬を適用した後、1100~1300℃の温度で、2~2.5時間、昇温温度を1.2~25℃/分程度で焼成することにより、成形素地を焼結させ、かつ釉薬層を固着させることができる。
The pottery according to the present invention may be manufactured by appropriately determining the firing conditions in consideration of the composition of the base and the glaze. For example, after applying the glaze to the base, the pottery is fired at a temperature of 1100 to 1300° C. for 2 to 2.5 hours with a temperature rise rate of about 1.2 to 25° C./min, thereby sintering the molded base and fixing the glaze layer.
本発明をさらに以下の実施例により説明するが、本発明はこれら実施例に限定されるものではない。 The present invention will be further described with reference to the following examples, but the present invention is not limited to these examples.
試験1:熔化質素地試験片の用意
表1に記載の組成からなる熔化質素地1~3を以下のようにして得た。原料として、骨格形成材料であるセリサイト陶石およびカオリン陶石、または珪石を8~45重量%、可塑性材料であるチャイナクレー(粉体)およびボールクレー(粉体)を28~65重量%、主焼結助剤である長石を約10~35重量%、およびドロマイトを1~4重量%秤量し、水と解膠剤として珪酸ソーダを適量添加したものを一括してボールミルに入れ、レーザー回折式粒度分布計を用いた粉砕後の素地スラリーの粒度測定結果が、10μm以下が52~60%、50%平均粒径(D50)が7~9μm程度になるまで湿式粉砕し、陶器素地材料を得た。得られた陶器素地材料を、石膏型を用いた泥漿鋳込み成形法により成形し、成形体を得た。得られた成形体を電気炉により焼成して、表1に記載の熔化質素地1~3を得た。ヒートカーブの最高温度は約1200℃とした。
Test 1: Preparation of Vitreous Body Test Pieces Vitreous bodies 1 to 3 having the compositions shown in Table 1 were obtained as follows. As raw materials, 8 to 45% by weight of sericite pottery stone and kaolin pottery stone, or silica stone as a skeleton forming material, 28 to 65% by weight of china clay (powder) and ball clay (powder) as a plastic material, about 10 to 35% by weight of feldspar as a main sintering aid, and 1 to 4% by weight of dolomite were weighed out, and water and an appropriate amount of sodium silicate as a peptizing agent were added and placed in a ball mill. The mixture was wet-ground until the particle size measurement result of the ground slurry after grinding using a laser diffraction particle size distribution analyzer showed that 52 to 60% of the particles were 10 μm or less and the 50% average particle size (D50) was about 7 to 9 μm, to obtain a ceramic base material. The obtained ceramic base material was molded by a slip casting molding method using a plaster mold to obtain a molded body. The obtained molded body was fired in an electric furnace to obtain vitreous bodies 1 to 3 shown in Table 1. The maximum temperature of the heat curve was about 1200°C.
物性評価
得られた熔化質素地1~3について、以下の項目及び方法につき測定を行った。これらの結果は、前記表1に記載のとおりであった。
Physical property evaluation The following items and methods were measured for the obtained vitreous bodies 1 to 3. The results were as shown in Table 1 above.
インキ浸透度
JIS A5207に則して測定した。
Ink penetration: Measured according to JIS A5207.
吸水率
吸水率は、JIS A1509-3に則して測定した。素地材料の焼成体サンプルを110℃で24hr乾燥させ、冷却した後、質量W1を測定した。次に、サンプルをデシケータ内で水中に浸漬し、真空状態で1hr保持することで、強制的に開気孔を水で飽和させ、このときの質量W2を測定した。吸水率を下記式にて求めた。
吸水率=(W2-W1)/W1×100(%)
Water absorption rate Water absorption rate was measured according to JIS A1509-3. A sintered sample of the base material was dried at 110°C for 24 hours, cooled, and then the mass W1 was measured. Next, the sample was immersed in water in a desiccator and held in a vacuum for 1 hour to forcibly saturate the open pores with water, and the mass W2 at this time was measured. The water absorption rate was calculated using the following formula.
Water absorption rate = (W2 - W1) / W1 x 100 (%)
結晶相構成状態
結晶相として存在する石英およびムライトはX線回折装置により各結晶相の量を標準物質による検量線から定量し重量%で示した。また、石英は電子顕微鏡により観察し、その画像の解析にて平均粒径および最大粒径を求めた。
The amount of each crystal phase of quartz and mullite present as crystal phases was quantified by an X-ray diffractometer based on a calibration curve of a standard substance and expressed as weight percent. Quartz was observed under an electron microscope, and the average and maximum grain sizes were determined by analyzing the images.
熱膨張係数
焼成した直径5mm、長さ20mmのテストピースを用い、示差膨張計によって、圧縮荷重法また測定温度範囲50~600℃にて測定した線熱膨張係数を求め、これを熱膨張率係数とした。
Thermal expansion coefficient: Using a sintered test piece having a diameter of 5 mm and a length of 20 mm, the linear thermal expansion coefficient was determined by a differential dilatometer using a compressive load method in a measurement temperature range of 50 to 600° C., and this was taken as the thermal expansion coefficient.
試験2:釉薬の用意
表2の組成からなる釉薬1~8を以下のようにして得た。釉薬原料2Kgと水1Kg及び球石4Kgを、容積6リットルの陶器製ポットに入れ、レーザー回折式粒度分布計を用いた粉砕後の着色性釉薬スラリーの粒度測定結果が、10μm以下が65%、50%平均粒径(D50)が6.0μm程度になるように、ボールミルにより粉砕を行い、釉薬を得た。釉薬の色は焼成後の釉薬層の色がホワイトになるよう調整した。
Test 2: Preparation of glazes Glazes 1 to 8 having the compositions shown in Table 2 were obtained as follows. 2 kg of the glaze raw materials, 1 kg of water, and 4 kg of spheres were placed in a 6-liter ceramic pot, and crushed in a ball mill so that the particle size measurement results of the colored glaze slurry after crushing using a laser diffraction particle size distribution analyzer showed that 65% of the particles were 10 μm or less and the 50% average particle size (D50) was about 6.0 μm, to obtain glazes. The color of the glaze was adjusted so that the color of the glaze layer after firing was white.
熱膨張係数
得られた釉薬1~8について、熱膨張係数を次のように測定した。彫り込みを入れた耐火材に釉薬を注入して焼成した後、釉薬部分を切り出して直径5mm、長さ20mmのテストピースに加工を行ない、示差膨張計によって、圧縮荷重法また測定温度範囲50~600℃にて測定した線熱膨張係数を求め、これを熱膨張率係数とした。
Thermal expansion coefficient The thermal expansion coefficient of the obtained glazes 1 to 8 was measured as follows. After pouring the glaze into the engraved refractory material and firing it, the glaze part was cut out and processed into a test piece with a diameter of 5 mm and a length of 20 mm. The linear thermal expansion coefficient was measured by a differential dilatometer using a compression load method in a measurement temperature range of 50 to 600°C, and this was taken as the thermal expansion coefficient.
試験3:陶器の製造
試験1と同様の方法により熔化質素地1~3に対応する成形体を得て、この成形体に試験2で得た釉薬1~8を塗布し、焼成して陶器を得た。陶器素地及び釉薬の組成を考慮して、その焼成条件を適宜定めた。例えば、陶器素地に釉薬を適用した後、1100~1300℃の温度で、2時間~25時間、昇温温度を1.2~25℃/分程度で焼成することにより、成形素地を焼結させ、かつ釉薬層を固着させた。
Test 3: Pottery production: Molded bodies corresponding to vitreous bodies 1 to 3 were obtained by the same method as in Test 1, and the glazes 1 to 8 obtained in Test 2 were applied to these molded bodies and fired to obtain pottery. The firing conditions were appropriately determined in consideration of the composition of the pottery body and the glaze. For example, after applying the glaze to the pottery body, the molded body was sintered and the glaze layer was fixed by firing at a temperature of 1100 to 1300°C for 2 to 25 hours with a temperature rise rate of about 1.2 to 25°C/min.
物性評価
得られた熔化質素地1~3と釉薬1~8とを組み合わせた陶器について、それぞれ以下の試験を行った。
Evaluation of Physical Properties The pottery obtained by combining the obtained vitreous bodies 1 to 3 and the obtained glazes 1 to 8 was subjected to the following tests.
耐貫入性
JIS A 5207 8.1.1 c)に準じて試験した。
The penetration resistance was tested according to JIS A 5207 8.1.1 c).
耐急冷性
JIS A 5207 8.1.1 b)に準じて試験した。そして、素地面及び釉薬面におけるクラックを抑制できているものを「〇」、製品の部位によってはクラックが発生しているものを「△」、製品全体にクラックが発生しているものを「×」と評価した。
The quench resistance test was conducted in accordance with JIS A 5207 8.1.1 b). Products that were able to suppress cracks on the base surface and glaze surface were rated as "Good", products that had cracks in some parts of the product were rated as "Good", and products that had cracks all over the product were rated as "Poor".
釉飛び
焼成して得られた陶器について、目視による陶器表面の外観検査を行い、釉薬面の外観検査を行い、釉薬剥げが発生しているかを試験した。そして、釉薬面における釉薬剥げを抑制できているものを「〇」、製品の部位によっては釉薬剥げが発生しているものを「△」、製品全体に釉薬剥げが発生しているものを「×」と評価した。
The pottery obtained by the glaze-skimming firing was visually inspected for the appearance of the pottery surface and the glaze surface to check for the occurrence of glaze peeling. Then, products that had been able to suppress glaze peeling on the glaze surface were rated as "Good", products that had glaze peeling in some parts of the product were rated as "Good", products that had glaze peeling over the entire product were rated as "Poor", and products that had glaze peeling over the entire product were rated as "Poor".
結果は、以下の表3~表5に記載のとおりであった。
以上の表3~表5に示される結果は、前記素地の熱膨張率が前記釉薬の熱膨張率より大であり、その差が5×10-7/K乃至25×10-7/Kの範囲にあることで、耐貫入性、耐急冷性に優れ、釉薬面の剥げの発生が防止できることを示している。 The results shown in Tables 3 to 5 above show that the thermal expansion coefficient of the base is greater than that of the glaze, with the difference being in the range of 5×10 −7 /K to 25×10 −7 /K, which results in excellent resistance to penetration and quenching and prevents the glaze surface from peeling.
本発明の好ましい態様
本発明の好ましい態様は以下のとおりである。
(1) 熔化質素地と、釉薬からなる層とを少なくとも備えてなる陶器であって、
前記素地の熱膨張率が前記釉薬の熱膨張率より大であり、その差が5×10-7/K乃至25×10-7/Kの範囲にあり、
前記熔化質素地が石英を含み、該石英の最大粒径が50μm以下であり、
前記熔化質素地の吸水率が0.5%以下である
ことを特徴とする、陶器。
(2) 前記熔化質素地の熱膨張率と前記釉薬の熱膨張率との差が6×10-7/K以上である、(1)に記載の陶器。
(3) 前記熔化質素地の熱膨張率と前記釉薬の熱膨張率との差が22×10-7/K以下である、(1)又は(2)に記載の陶器。
(4) 前記熔化質素地の熱膨張率が63×10-7/K乃至75×10-7/Kである、(1)乃至(3)に記載の陶器。
(5) 前記熔化質素地の熱膨張率が50×10-7/K乃至58×10-7/Kである、(1)乃至(4)に記載の陶器。
(6) 前記熔化質素地が石英を22重量%以下含み、かつ該石英の最大粒径が15μm以上50μm以下である、(1)乃至(5)に記載の陶器。
(7) 前記熔化質素地の組成が、
SiO2を60~75重量%、好ましくは65~72.5重量%、
Al2O3を20~30重量%、好ましくは22.5~27.5重量%、
Fe2O3を0.4~1.5重量%、好ましくは0.5~1.4重量%、
CaO を0.1~2.0重量%、好ましくは0.2~1.5重量%、
MgO を0.1~1.5重量%、好ましくは0.2~1.2重量%、
K2O を0.8~5.0重量%、好ましくは1.0~4.0重量%、そして
Na2O を0.4~4.0重量%、好ましくは0.8~3.0重量%
である、(1)乃至(6)に記載の陶器。
(8) 衛生陶器又はタイルである、(1)乃至(7)に記載の陶器。
Preferred aspects of the present invention
Preferred aspects of the present invention are as follows.
(1) Pottery comprising at least a vitreous clay body and a layer of glaze,
The thermal expansion coefficient of the base is greater than the thermal expansion coefficient of the glaze, the difference being in the range of 5×10 −7 /K to 25×10 −7 /K;
The vitreous body contains quartz, and the maximum grain size of the quartz is 50 μm or less;
The ceramic ware is characterized in that the water absorption rate of the vitreous clay is 0.5% or less.
(2) The pottery according to (1), wherein the difference between the thermal expansion coefficient of the vitreous clay and the thermal expansion coefficient of the glaze is 6×10 −7 /K or more.
(3) The pottery according to (1) or (2), wherein the difference between the thermal expansion coefficient of the vitreous clay and the thermal expansion coefficient of the glaze is 22×10 −7 /K or less.
(4) The ceramic according to any one of (1) to (3), wherein the thermal expansion coefficient of the vitreous clay is 63×10 −7 /K to 75×10 −7 /K.
(5) The ceramic according to any one of (1) to (4), wherein the thermal expansion coefficient of the vitreous clay is 50×10 −7 /K to 58×10 −7 /K.
(6) The pottery according to any one of (1) to (5), wherein the vitreous body contains 22% by weight or less of quartz, and the maximum grain size of the quartz is 15 μm or more and 50 μm or less.
(7) The composition of the vitreous clay is
SiO2 60 to 75% by weight, preferably 65 to 72.5% by weight,
Al 2 O 3 20 to 30% by weight, preferably 22.5 to 27.5% by weight,
Fe2O3 0.4-1.5 wt%, preferably 0.5-1.4 wt%,
CaO 0.1 to 2.0% by weight, preferably 0.2 to 1.5% by weight,
MgO 0.1 to 1.5% by weight, preferably 0.2 to 1.2% by weight,
K 2 O: 0.8-5.0 wt %, preferably 1.0-4.0 wt %, and Na 2 O: 0.4-4.0 wt %, preferably 0.8-3.0 wt %.
The pottery according to any one of (1) to (6),
(8) The ceramic according to any one of (1) to (7), which is sanitary ware or tile.
Claims (8)
前記素地の熱膨張率が前記釉薬の熱膨張率より大であり、その差が5×10-7/K乃至25×10-7/Kの範囲にあり、
前記熔化質素地が石英を含み、該石英の最大粒径が50μm以下であり、
前記熔化質素地の吸水率が0.5%以下である
ことを特徴とする、陶器。 A pottery having at least a vitreous body and a layer of glaze,
The thermal expansion coefficient of the base is greater than the thermal expansion coefficient of the glaze, the difference being in the range of 5×10 −7 /K to 25×10 −7 /K;
The vitreous body contains quartz, and the maximum grain size of the quartz is 50 μm or less;
The ceramic ware is characterized in that the water absorption rate of the vitreous clay is 0.5% or less.
SiO2を60~75重量%、好ましくは65~72.5重量%、
Al2O3を20~30重量%、好ましくは22.5~27.5重量%、
Fe2O3を0.4~1.5重量%、好ましくは0.5~1.4重量%、
CaO を0.1~2.0重量%、好ましくは0.2~1.5重量%、
MgO を0.1~1.5重量%、好ましくは0.2~1.2重量%、
K2O を0.8~5.0重量%、好ましくは1.0~4.0重量%、そして
Na2O を0.4~4.0重量%、好ましくは0.8~3.0重量%
である、請求項1又は2に記載の陶器。 The composition of the vitreous clay is
SiO2 60 to 75% by weight, preferably 65 to 72.5% by weight,
Al 2 O 3 20 to 30% by weight, preferably 22.5 to 27.5% by weight,
Fe2O3 0.4-1.5 wt%, preferably 0.5-1.4 wt%,
CaO 0.1 to 2.0% by weight, preferably 0.2 to 1.5% by weight,
MgO 0.1 to 1.5% by weight, preferably 0.2 to 1.2% by weight,
K 2 O: 0.8-5.0 wt %, preferably 1.0-4.0 wt %, and Na 2 O: 0.4-4.0 wt %, preferably 0.8-3.0 wt %.
The pottery according to claim 1 or 2.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022212563A JP7420209B1 (en) | 2022-12-28 | 2022-12-28 | Pottery with glaze layer |
JP2023213207A JP2024095570A (en) | 2022-12-28 | 2023-12-18 | Pottery with glaze layer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022212563A JP7420209B1 (en) | 2022-12-28 | 2022-12-28 | Pottery with glaze layer |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2023213207A Division JP2024095570A (en) | 2022-12-28 | 2023-12-18 | Pottery with glaze layer |
Publications (2)
Publication Number | Publication Date |
---|---|
JP7420209B1 JP7420209B1 (en) | 2024-01-23 |
JP2024095343A true JP2024095343A (en) | 2024-07-10 |
Family
ID=89615983
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2022212563A Active JP7420209B1 (en) | 2022-12-28 | 2022-12-28 | Pottery with glaze layer |
JP2023213207A Pending JP2024095570A (en) | 2022-12-28 | 2023-12-18 | Pottery with glaze layer |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2023213207A Pending JP2024095570A (en) | 2022-12-28 | 2023-12-18 | Pottery with glaze layer |
Country Status (1)
Country | Link |
---|---|
JP (2) | JP7420209B1 (en) |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002068822A (en) | 2000-08-31 | 2002-03-08 | Toto Ltd | Sanitary ware |
-
2022
- 2022-12-28 JP JP2022212563A patent/JP7420209B1/en active Active
-
2023
- 2023-12-18 JP JP2023213207A patent/JP2024095570A/en active Pending
Also Published As
Publication number | Publication date |
---|---|
JP2024095570A (en) | 2024-07-10 |
JP7420209B1 (en) | 2024-01-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Kamseu et al. | Characterisation of porcelain compositions using two china clays from Cameroon | |
JP2980457B2 (en) | Base for sanitary ware and its manufacturing method | |
EP1971559B1 (en) | Glaze compositions | |
Zanelli et al. | Glass–ceramic frits for porcelain stoneware bodies: Effects on sintering, phase composition and technological properties | |
Abadir et al. | Preparation of porcelain tiles from Egyptian raw materials | |
BRPI0802190B1 (en) | COMPOSITION OF METAL ENAMEL AND ITS USE | |
WO2001077041A1 (en) | Sanitary ware | |
CZ2003197A3 (en) | Glass-ceramics, process for their preparation and use | |
WO2016038447A1 (en) | Glaze composition for treating ceramics, method of glazing ceramic articles and glazed ceramic articles | |
Kayacı | The use of perlite as flux in the production of porcelain stoneware tiles | |
Mukhopadhyay et al. | Phase analysis and microstructure evolution of a bone china body modified with scrap addition | |
Ochen et al. | Physical and mechanical properties of porcelain tiles made from raw materials in Uganda | |
El-Fadaly | Characterization of porcelain stoneware tiles based on solid ceramic wastes | |
Gajek et al. | Microstructure and mechanical properties of diopside and anorthite glazes with high abrasion resistance | |
Awaad et al. | Effect of replacing weathered feldspar for potash feldspar in the production of stoneware tiles containing fish bone ash | |
KR102153315B1 (en) | Manufacturing method of bone china earthenware using the glaze composition for chemical strengthening of bone china earthenware | |
Boulaiche et al. | Valorisation of Industrial Soda-Lime Glass Waste and Its Effect on the Rheological Behavior, Physical-Mechanical and Structural Properties of Sanitary Ceramic Vitreous Bodies | |
JP7420209B1 (en) | Pottery with glaze layer | |
Wannagon et al. | Crystalline phases and physical properties of modified stoneware body with glaze sludge | |
KR101017359B1 (en) | Ceramic ware with high strength, its porcelin body and manufacturing process thereof | |
Patrick et al. | Investigation of the physical properties of tiles produced with Otukpo clay | |
JP2003137639A (en) | Porcelain clay for ceramic, ceramic, and production method therefor | |
KR100635689B1 (en) | Composition of transparent glaze for plate | |
CA3124294A1 (en) | Method for manufacturing coloured glass-ceramic slab articles from a base mix, glass frit for manufacturing the base mix and coloured glass-ceramic slab article so obtained | |
JP7144776B1 (en) | sanitary ware |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20230113 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20230113 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230207 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230406 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230627 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230824 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20231024 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20231027 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20231212 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20231225 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7420209 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |