Nothing Special   »   [go: up one dir, main page]

JP2024090853A - Optical film and polarization film using the same - Google Patents

Optical film and polarization film using the same Download PDF

Info

Publication number
JP2024090853A
JP2024090853A JP2022207011A JP2022207011A JP2024090853A JP 2024090853 A JP2024090853 A JP 2024090853A JP 2022207011 A JP2022207011 A JP 2022207011A JP 2022207011 A JP2022207011 A JP 2022207011A JP 2024090853 A JP2024090853 A JP 2024090853A
Authority
JP
Japan
Prior art keywords
polymer
optical film
fiber
polymer matrix
longitudinal direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022207011A
Other languages
Japanese (ja)
Inventor
佳実 山田
Yoshimi Yamada
朋哉 細木
Tomoya Hosoki
郷史 勝谷
Satoshi Katsuya
祥玄 小野木
Yoshiharu Onoki
康平 山▲崎▼
Kohei Yamazaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Kuraray Trading Co Ltd
Original Assignee
Kuraray Co Ltd
Kuraray Trading Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd, Kuraray Trading Co Ltd filed Critical Kuraray Co Ltd
Priority to JP2022207011A priority Critical patent/JP2024090853A/en
Publication of JP2024090853A publication Critical patent/JP2024090853A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Laminated Bodies (AREA)

Abstract

To provide an optical film and a polarization film having polarization dependent scattering functions with relatively simple configuration, capable of improving brightness and efficiency for light utilization of a liquid crystal display device at low cost.SOLUTION: The optical film comprises polymer matrix containing at least one or more types of polymer, and a plurality of monofilament which includes at least one or more types of polymer and is arranged substantially parallel in a longer direction in the polymer matrix. Refractive index of the monofilament in the longer direction is different from refractive index of the monofilament of the polymer matrix in a direction parallel to the longer direction. A haze value when polarization light parallel to a direction perpendicular to the longer direction of the monofilament made incident is 20% or less, transmittance when polarization light parallel to the longer direction of the monofilament is made incident is 60% or less, a diameter of the monofilament is 500 nm or less, and volume fraction in the polymer matrix of the monofilament is 10% or more.SELECTED DRAWING: Figure 1

Description

本発明は偏光分離性能を有する光学フィルム、光学フィルムの製造方法、および光学フィルムを有する偏光フィルムに関する。特に液晶表示装置に適した光学フィルム等に関する。 The present invention relates to an optical film having polarization separation performance, a manufacturing method for the optical film, and a polarizing film having the optical film. In particular, the present invention relates to an optical film suitable for liquid crystal display devices.

液晶テレビ、スマートフォンなどの液晶表示装置ではバックライト側の偏光フィルムを透過してバックライトから液晶層に取り込まれる光は理論上50%が限界であり、残り50%は偏光フィルムで吸収されていた。この吸収を低減して光利用効率を高め、輝度向上および低消費電力化の要望が高まっている。
この課題に対して、偏光フィルムで吸収される偏光を、偏光フィルム入射前に反射させバックライト側でリサイクルして光利用効率、輝度を向上させる輝度向上光学フィルムの検討がなされてきた。
In LCD TVs, smartphones and other LCD display devices, the theoretical limit for the amount of light that can pass through the polarizing film on the backlight side and be taken in from the backlight to the liquid crystal layer is 50%, with the remaining 50% being absorbed by the polarizing film. There is a growing demand to reduce this absorption to increase light utilization efficiency, improve brightness, and reduce power consumption.
In response to this issue, research has been conducted into brightness-enhancing optical films that reflect polarized light absorbed by the polarizing film before it enters the film and recycles it on the backlight side, thereby improving light utilization efficiency and brightness.

例えば、3M社のDBEF(登録商標)という商品が市販されている。DBEF(登録商標)は数百層以上の複層構成となっており、光の干渉により片方の偏光を透過させ、もう一方の偏光を反射させている。安定した光干渉機能を発現させるには各層の厚み制御、および各層の屈折率制御に高い技術を要する。
また特許文献1にはアスペクト比が1以上である散乱粒子を、該散乱粒子とは屈折率が異なる支持媒質中にほぼ一方向に分散配列する異方性散乱素子が提案されている。しかし散乱粒子をほぼ一方向に配列することは困難である。
For example, 3M's product DBEF (registered trademark) is commercially available. DBEF (registered trademark) has a multi-layer structure of several hundred layers, and transmits one polarized light and reflects the other polarized light by optical interference. To realize a stable optical interference function, high technology is required to control the thickness of each layer and the refractive index of each layer.
Furthermore, Patent Document 1 proposes an anisotropic scattering element in which scattering particles having an aspect ratio of 1 or more are dispersed and aligned in approximately one direction in a support medium having a different refractive index from the scattering particles. However, it is difficult to align scattering particles in approximately one direction.

特許文献2では散乱繊維を充填剤中に配向して配置した複合繊維をポリマーマトリックス中に配置する構成が提案されている。しかし本構成では、反射光が大きく、光学性能は十分ではなかった。 Patent document 2 proposes a configuration in which composite fibers in which scattering fibers are oriented and arranged in a filler are placed in a polymer matrix. However, with this configuration, the reflected light was large and the optical performance was insufficient.

特許文献3では二色性色素を含浸した熱可塑性樹脂繊維を単一方向に並べた繊維と、光干渉機能を有する繊維を同一方向面上に並べ、光学樹脂に内包させる輝度上昇機能を有する偏光板が提案されている。しかし、本構成では光干渉機能を有する繊維を複数本並べ、かつ光干渉機能の方向を同一方向にそろえる必要があり、偏光板の大面積化、低コスト化は困難であった。 Patent Document 3 proposes a polarizing plate with a brightness-increasing function in which thermoplastic resin fibers impregnated with a dichroic dye are arranged in a single direction and fibers with optical interference function are arranged on the same directional plane and encapsulated in an optical resin. However, this configuration requires arranging multiple fibers with optical interference function and aligning the direction of the optical interference function in the same direction, making it difficult to increase the area of the polarizing plate and reduce its cost.

特許第3090890号Patent No. 3090890 特許第5209326号Patent No. 5209326 特開2007-233243JP2007-233243

前記のとおり液晶表示装置において、バックライトの光利用効率の向上と液晶表示装置の輝度を向上させる目的で、種々の輝度向上光学フィルムの検討がなされているが、技術的に高度であるか光学性能的には未だ不十分であった。
本発明は比較的単純な構成で偏光依存性の散乱機能を有し、安価に液晶表示装置の輝度および光利用効率の向上が可能な光学フィルムおよび偏光フィルムを提供することを目的とする。
As described above, in liquid crystal display devices, various brightness-enhancing optical films have been investigated for the purpose of improving the light utilization efficiency of the backlight and improving the brightness of the liquid crystal display device. However, although they are technically advanced, their optical performance is still insufficient.
An object of the present invention is to provide an optical film and a polarizing film that have a polarization-dependent scattering function with a relatively simple structure and that can inexpensively improve the brightness and light utilization efficiency of a liquid crystal display device.

本発明者らは上記課題を解決するために検討した結果、以下の本発明を完成させた。
[1]
少なくとも1種以上のポリマーを含むポリマーマトリックスと、
前記ポリマーマトリックス内に長手方向に略平行状態に配置された、少なくとも1種のポリマーよりなる複数の単繊維を含み、
前記単繊維体の長手方向の屈折率が、前記単繊維の長手方向と平行な方向の前記ポリマーマトリックスの屈折率と異なり、
前記単繊維体の長手方向に直交する方向に平行な偏光を入射させた際のヘイズ値が20%以下、
前記単繊維の長手方向と平行な偏光を入射させた場合の透過率が60%以下、
前記単繊維の径が500nm以下、
前記単繊維の前記ポリマーマトリックス中の体積分率が10%以上である光学フィルム。
As a result of investigations aimed at solving the above problems, the present inventors have completed the present invention as described below.
[1]
A polymer matrix comprising at least one polymer;
a plurality of monofilaments of at least one polymer arranged longitudinally and generally parallel within the polymer matrix;
The refractive index in the longitudinal direction of the single fiber body is different from the refractive index of the polymer matrix in a direction parallel to the longitudinal direction of the single fiber,
a haze value of 20% or less when polarized light parallel to a direction perpendicular to the longitudinal direction of the single fiber body is incident thereon;
The transmittance when polarized light parallel to the longitudinal direction of the single fiber is incident is 60% or less.
The diameter of the single fiber is 500 nm or less,
The volume fraction of the single fibers in the polymer matrix is 10% or more.

[2]前記ポリマーマトリックスが実質的に水溶性である前記[1]記載の光学フィルム。
[3]前記ポリマーマトリックスが含む少なくとも1種のポリマーがポリビニルアルコールを主な構成要素とするポリマーである前記[1]または[2]に記載の光学フィルム。
[4]前記ポリマーマトリックスがポリビニルアルコールを20から100質量%含む前記[3]に記載の光学フィルム。
[5]前記単繊維が含む少なくとも1種のポリマーが複屈折性を有する前記[1]から[4]のいずれかに記載の光学フィルム。
[6]複数の前記単繊維を一群とする繊維構造体を複数含む[1]から[5]のいずれかに記載の光学フィルム。
[7]前記[1]から[6]のいずれかに記載の光学フィルムとポリビニルアルコールフィルムとが直接積層している偏光フィルム。
[2] The optical film according to [1] above, wherein the polymer matrix is substantially water-soluble.
[3] The optical film according to [1] or [2], wherein at least one of the polymers contained in the polymer matrix is a polymer containing polyvinyl alcohol as a main component.
[4] The optical film according to [3], wherein the polymer matrix contains 20 to 100 mass % of polyvinyl alcohol.
[5] The optical film according to any one of [1] to [4], wherein at least one type of polymer contained in the single fiber has birefringence.
[6] The optical film according to any one of [1] to [5], comprising a plurality of fiber structures each having a plurality of the single fibers as a group.
[7] A polarizing film in which the optical film according to any one of [1] to [6] above and a polyvinyl alcohol film are directly laminated together.

[8] 少なくとも1種のポリマーを含む海相と、少なくとも1種のポリマーを含む島相が長手方向に連続して存在する断面海島構造を有する複合繊維を製造する工程、
前記複合繊維を束ねて繊維束を作製する工程、
前記繊維束における各前記複合繊維を互いに融着させ、フィルム状に成形する工程、
を含む、前記[1]から[6]のいずれかに記載の光学フィルムの製造方法。
[9]前記複合繊維を延伸する工程を、前記繊維束を作成する工程の前に含む前記[8]に記載の光学フィルムの製造方法。
[8] A step of producing a composite fiber having a cross-sectional sea-island structure in which a sea phase containing at least one kind of polymer and an island phase containing at least one kind of polymer are continuously present in the longitudinal direction,
bundling the composite fibers to prepare a fiber bundle;
A step of fusing the composite fibers in the fiber bundle to each other and forming them into a film;
The method for producing an optical film according to any one of [1] to [6] above,
[9] The method for producing an optical film according to [8], further comprising a step of stretching the composite fiber prior to the step of preparing the fiber bundle.

本発明によると、複数の単繊維とポリマー材とからなる単純な構成で偏光依存性の散乱機能を有するため、安価に液晶表示装置の輝度、効率向上が可能な光学フィルムおよび偏光フィルムを提供することができる。 The present invention provides optical films and polarizing films that have a polarization-dependent scattering function with a simple structure consisting of multiple single fibers and a polymer material, making it possible to inexpensively improve the brightness and efficiency of liquid crystal display devices.

本発明の光学フィルムの模式図である。1 is a schematic diagram of an optical film of the present invention. 図1のA-A線に沿う断面図である。2 is a cross-sectional view taken along line AA in FIG. 1. 本発明の光学フィルムの断面図の別例である。3 is a cross-sectional view of another example of the optical film of the present invention. 本発明の光学フィルムと偏光子を組み合わせた断面図の例である。1 is a cross-sectional view of a combination of the optical film of the present invention and a polarizer. 本発明の実施例1のフィルムに、単繊維と直交する方向の偏光のレーザーを入射させた場合の透過光の散乱状態を示す図であるFIG. 1 is a diagram showing the scattering state of transmitted light when a laser beam polarized in a direction perpendicular to the single fiber is incident on the film of Example 1 of the present invention. 本発明の比較例1のフィルムに、単繊維と直交する方向の偏光のレーザーを入射させた場合の透過光の散乱状態を示す図であるFIG. 1 is a diagram showing the scattering state of transmitted light when a laser beam polarized in a direction perpendicular to the single fiber is incident on the film of Comparative Example 1 of the present invention. 本発明の比較例2のフィルムに、単繊維と直交する方向の偏光のレーザーを入射させた場合の透過光の散乱状態を示す図であるFIG. 13 is a diagram showing the scattering state of transmitted light when a laser beam polarized in a direction perpendicular to the single fiber is incident on the film of Comparative Example 2 of the present invention. 本発明の光学フィルムを得る工程の例を示す図である。1A to 1C are diagrams illustrating an example of a process for obtaining an optical film of the present invention. 単繊維の屈折率を変化させた時の、フィルム厚みに対する光学フィルムの透過率のシミュレーション結果である。13 shows the results of a simulation of the transmittance of an optical film versus film thickness when the refractive index of a single fiber is changed.

本発明の光学フィルムは、少なくとも1種以上のポリマーを含むポリマーマトリックスと、前記ポリマーマトリックス内に長手方向に略平行状態に配置された、少なくとも1種のポリマーよりなる複数の単繊維を含む。
ポリマーマトリックスに含まれるポリマー(以下、「ポリマー材A」とも記す)は透明性に優れるポリマーであり、例えば、ポリビニルアルコール(PVA)、ポリビニルアルコールブチラート変性体(PVB)、エチレン-ビニルアルコール共重合体(EVOH)、ポリメチルメタクリレート(PMMA)、ポリカーボネート(PC)、シクロオレフィンポリマー(COP)、シクロオレフィンコポリマー(COC)などが挙げられる。ポリマー材Aは2種以上のポリマーでもよい。2種以上のポリマーの場合、これらポリマーは、互いに相溶性に優れるのが透明性の観点から好ましい。
The optical film of the present invention comprises a polymer matrix containing at least one type of polymer, and a plurality of monofilaments made of at least one type of polymer and arranged in the polymer matrix in a state substantially parallel to each other in the longitudinal direction.
The polymer contained in the polymer matrix (hereinafter also referred to as "polymer material A") is a polymer having excellent transparency, such as polyvinyl alcohol (PVA), modified polyvinyl alcohol butyrate (PVB), ethylene-vinyl alcohol copolymer (EVOH), polymethyl methacrylate (PMMA), polycarbonate (PC), cycloolefin polymer (COP), cycloolefin copolymer (COC), etc. Polymer material A may be two or more kinds of polymers. In the case of two or more kinds of polymers, it is preferable that these polymers have excellent compatibility with each other from the viewpoint of transparency.

前記ポリマーマトリックスは複屈折性を有していても良いが、複屈折が小さいか、単繊維を構成する材料と反対の複屈折を有するのが好ましい。複屈折を有している場合であっても、一般に複屈折材料を延伸配向した場合、熱を掛けると複屈折材料の配向が緩和され、延伸方向とそれと直行する方向の屈折率差が小さくなる。ポリマーマトリクスが水溶性である場合、低温でフィルム化できるため、複屈折材料の配向を緩和させずにフィルム化でき、延伸方向とそれと直行する方向の屈折率差の維持が容易となる。 The polymer matrix may have birefringence, but it is preferable that the birefringence is small or that the birefringence is opposite to that of the material constituting the single fiber. Even if the polymer matrix has birefringence, when the birefringent material is stretched and oriented, the orientation of the birefringent material is generally relaxed when heat is applied, and the difference in refractive index between the stretching direction and the direction perpendicular thereto becomes small. When the polymer matrix is water-soluble, it can be made into a film at low temperatures, so that the orientation of the birefringent material can be made into a film without relaxing, and it is easy to maintain the difference in refractive index between the stretching direction and the direction perpendicular thereto.

また本発明の光学フィルムと偏光子とを直接積層する場合、偏光子にポリビニルアルコールフィルムを用いるのが、高い偏光選択性による画面品位の観点から好ましい。積層の際にポリビニルアルコールと水糊で容易に貼り合わせることができるという観点からも、ポリマーマトリックスは水溶性であるのが好ましい。ポリマーマトリックスを水溶性とするために、ポリマー材Aとして、水溶性のポリマーを少なくとも1種用いることが好ましい。
水溶性のポリマーとしてはポリビニルアルコールが挙げられ、ポリマー材Aはポリビニルコールが好ましい。ポリマーマトリックスの質量を100質量%として、ポリマーマトリックスはポリマー材Aとしてポリビニルアルコールを20から100質量%含むのが水溶性の観点から好ましい。
In addition, when the optical film of the present invention is directly laminated to a polarizer, it is preferable to use a polyvinyl alcohol film as the polarizer from the viewpoint of screen quality due to high polarization selectivity. The polymer matrix is preferably water-soluble from the viewpoint of easy lamination with polyvinyl alcohol and water paste during lamination. In order to make the polymer matrix water-soluble, it is preferable to use at least one water-soluble polymer as the polymer material A.
An example of a water-soluble polymer is polyvinyl alcohol, and polyvinyl alcohol is preferably used as the polymer material A. From the viewpoint of water solubility, it is preferable that the polymer matrix contains 20 to 100% by mass of polyvinyl alcohol as the polymer material A, with the mass of the polymer matrix being 100% by mass.

単繊維に含まれるポリマー(以下、「ポリマー材B」とも記す。)はポリカーボネート(PC)、ポリスチレン類(PS)、芳香族ポリエステル、半芳香族ポリエステル、芳香族ポリアミド、半芳香族ポリアミド、ポリイミド、ポリメチルメタクリレート(PMMA)、などが挙げられる。ポリマー材Bは2種以上のポリマーでもよい。ポリマー材Bは繊維構造体とする時に延伸されるので、延伸時にポリマーマトリックスとの屈折率差を得るために、正の複屈折性を有するポリマーが好ましい。正の複屈折性を有するポリマーとしては、芳香族ポリエステル、例えばポリエチレンテレフタレート、ポリナフタレンテレフタレート、ポリカーボネートが好ましい。 The polymer contained in the single fiber (hereinafter also referred to as "polymer material B") may be polycarbonate (PC), polystyrenes (PS), aromatic polyesters, semi-aromatic polyesters, aromatic polyamides, semi-aromatic polyamides, polyimides, polymethyl methacrylate (PMMA), etc. Polymer material B may be two or more types of polymers. Since polymer material B is stretched when it is made into a fiber structure, a polymer having positive birefringence is preferred in order to obtain a refractive index difference with the polymer matrix during stretching. As a polymer having positive birefringence, aromatic polyesters, such as polyethylene terephthalate, polynaphthalene terephthalate, and polycarbonate are preferred.

本発明の光学フィルム1は図1に模式的に示したように、ポリマーマトリックス2内に単繊維3が長手方向に略平行状態に配置されている。長手方向とは図1の矢印で示したように、単繊維3の繊維方向である。単繊維3はこの長手方向に略平行状態に配置されている。略平行状態とは、各単繊維3の長手方向がほぼ同じ方向を向いている状態であり、全ての単繊維3の長手方向が±5°の範囲内に入る状態が好ましい。
各単繊維3は一列に並んでいる必要はなく、ポリマーマトリックスの面内(図1における紙面内)に互いに略平行状態で配置されていればよい。
As shown in Fig. 1, the optical film 1 of the present invention has single fibers 3 arranged in a polymer matrix 2 in a substantially parallel state in the longitudinal direction. The longitudinal direction is the fiber direction of the single fibers 3 as shown by the arrows in Fig. 1. The single fibers 3 are arranged in a substantially parallel state in this longitudinal direction. The substantially parallel state refers to a state in which the longitudinal directions of the single fibers 3 are oriented in substantially the same direction, and it is preferable that the longitudinal directions of all the single fibers 3 are within a range of ±5°.
The individual monofilaments 3 do not need to be aligned in a row, but may be arranged approximately parallel to one another within the plane of the polymer matrix (within the plane of the paper in FIG. 1).

図2は図1のA-A線に沿う断面図である。各単繊維3はポリマーマトリックスの厚み方向に対しては略平行方向に配置されている必要はなく、ランダムな方向を向いていてもよい。本発明の光学フィルムと偏光子と組み合わせて用いた場合の偏光効率の観点から、各単繊維3は厚み方向にも略平行状態に配置されているのが好ましい。略平行状態とは前記と同じである。 Figure 2 is a cross-sectional view taken along line A-A in Figure 1. Each single fiber 3 does not need to be arranged substantially parallel to the thickness direction of the polymer matrix, and may be oriented in a random direction. From the viewpoint of polarization efficiency when the optical film of the present invention is used in combination with a polarizer, each single fiber 3 is preferably arranged substantially parallel in the thickness direction as well. The substantially parallel state is the same as described above.

本発明の光学フィルムにおいて、前記単繊維の長手方向の屈折率と、前記ポリマーマトリックスの前記単繊維の長手方向と平行な方向の屈折率とは異なる。両者の屈折率の差は0.05から0.35が好ましい。更に好ましくは、0.1から0.25である。このような屈折率の差となる前記ポリマー材Aと前記ポリマー材Bの組合せとしては、ポリマー材Aがポリビニルアルコール、ポリマー材Bがポリエステルテレフタレートであるのが好ましい。
なお、前記単繊維の長手方向の屈折率とは、前記単繊維の長手方向に平行な偏光を入れた場合の屈折率であり、前記ポリマーマトリックの前記単繊維の長手方向と平行な方向の屈折率とはポリマーマトリックスの前記単繊維の長手方向に平行な偏光を入れた場合の屈折率である。
In the optical film of the present invention, the refractive index of the single fiber in the longitudinal direction is different from the refractive index of the polymer matrix in the direction parallel to the longitudinal direction of the single fiber. The difference between the two refractive indices is preferably 0.05 to 0.35, and more preferably 0.1 to 0.25. As a combination of the polymer material A and the polymer material B that results in such a refractive index difference, it is preferable that the polymer material A is polyvinyl alcohol and the polymer material B is polyester terephthalate.
The refractive index in the longitudinal direction of the single fiber is the refractive index when polarized light parallel to the longitudinal direction of the single fiber is introduced, and the refractive index in the direction parallel to the longitudinal direction of the single fiber of the polymer matrix is the refractive index when polarized light parallel to the longitudinal direction of the single fiber of the polymer matrix is introduced.

本発明の光学フィルムにおいて、前記単繊維の長手方向に直交する方向に平行な偏光を入射させた際のヘイズ値は20%以下である。長手方向に直交する方向とは、図1においてポリマーマトリックスの面内(図1の紙面内)において、長手方向に対して直交する方向である。
単繊維の長手方向に直交する方向に平行な偏光を入射させた際のヘイズ値は17%以下が好ましく、12%以下がより好ましい。
In the optical film of the present invention, the haze value when polarized light is incident parallel to the direction perpendicular to the longitudinal direction of the single fiber is 20% or less. The direction perpendicular to the longitudinal direction means a direction perpendicular to the longitudinal direction in the plane of the polymer matrix in FIG. 1 (within the plane of FIG. 1).
The haze value when polarized light parallel to the direction perpendicular to the longitudinal direction of the single fiber is incident is preferably 17% or less, and more preferably 12% or less.

本発明の光学フィルムにおいて、前記単繊維の長手方向と平行な偏光を入射させた場合の透過率は60%以下である。単繊維の長手方向と平行な偏光を入射させた際の透過率は50%以下が好ましく、45%以下がより好ましい。 In the optical film of the present invention, the transmittance is 60% or less when polarized light is incident parallel to the longitudinal direction of the single fiber. The transmittance is preferably 50% or less, and more preferably 45% or less, when polarized light is incident parallel to the longitudinal direction of the single fiber.

前記単繊維の繊維径は500nm以下であり、300nm以下であることが好ましい。単繊維径が500nmより大きくなると光の散乱を生じ、光学性能の低下を招く。可視光の波長の1/2以下の200nm以下がより好ましく、可視光波長より十分小さい1/4以下である100nm以下がさらに好ましい。 The fiber diameter of the single fiber is 500 nm or less, and preferably 300 nm or less. If the single fiber diameter is greater than 500 nm, light scattering occurs, leading to a deterioration in optical performance. It is more preferable that the diameter is 200 nm or less, which is half the wavelength of visible light, and even more preferable that the diameter is 100 nm or less, which is 1/4 or less, which is sufficiently smaller than the wavelength of visible light.

図9に光線追跡ソフトLightTools(Synopsys社)を用いて反射したい側の偏光に対する透過率のフィルム厚み依存性の計算結果を示す。計算では、以下を仮定した。
1.光学フィルムはポリマー材料Aからなるポリマーマトリックス、およびポリマー材料Bからなる単繊維の2つの材料のみから構成されている。
2.材料吸収は全ての材料に対してゼロ、すなわち1-透過率が反射率と等しい。
3.ポリマーマトリックスの屈折率は1.5である。
4.Nは単繊維の長手方向と平行方向の偏光に対する単繊維の屈折率である。
5.繊維径が250nmの単繊維がポリマーマトリックスに分散している。
6.体積分率はポリマーマトリックと単繊維の体積合計を100%として、単繊維が63%、ポリマーマトリックスが37%である。
9 shows the results of calculations of the film thickness dependency of the transmittance for polarized light on the side to be reflected, using ray tracing software LightTools (Synopsys). The following assumptions were made in the calculations.
1. The optical film is composed of only two materials: a polymer matrix made of polymer material A, and a monofilament made of polymer material B.
2. Material absorption is zero for all materials, i.e. 1 - transmittance equals reflectance.
3. The refractive index of the polymer matrix is 1.5.
4. N is the refractive index of the single fiber for light polarized parallel to the longitudinal direction of the single fiber.
5. Single fibers with a fiber diameter of 250 nm are dispersed in a polymer matrix.
6. The volume fraction is 63% for the single fiber and 37% for the polymer matrix, with the total volume of the polymer matrix and single fiber being 100%.

図9の上図は光学フィルムの厚さが0から100μm、下図は100から300μmの場合の結果である。図9から分かるように、光学フィルムの厚みの増加に伴い、光が散乱する単繊維の量が増え、偏光選択性が高くなる。したがって光学性能の観点から、光学フィルムの厚みは厚い方が好ましいが、光学フィルムの厚みが厚いとコストが大きくなる。また、本発明の光学フィルムを液晶ディスプレイに用いた場合、液晶ディスプレイの重量や厚みが増える。このため光学フィルムの厚みは10μmから1000μmが好ましく、20μmから700μmがさらに好ましい。 The upper graph in Figure 9 shows the results when the optical film thickness is 0 to 100 μm, and the lower graph shows the results when the optical film thickness is 100 to 300 μm. As can be seen from Figure 9, as the thickness of the optical film increases, the amount of single fibers that scatter light increases, and the polarization selectivity increases. Therefore, from the viewpoint of optical performance, a thicker optical film is preferable, but a thicker optical film increases the cost. Furthermore, when the optical film of the present invention is used in a liquid crystal display, the weight and thickness of the liquid crystal display increase. For this reason, the thickness of the optical film is preferably 10 μm to 1000 μm, and more preferably 20 μm to 700 μm.

また光学フィルムの中の単繊維の体積割合が大きいほど、同じ厚みでも光が散乱する散乱体の量が増え、偏光選択性が高くなる。一方で、単繊維の体積割合が大きくなりすぎると、単繊維同士の距離が近くなるため単繊維が凝集すると界面が消失し、散乱性能が低下する。したがって、本発明の光学フィルム中の単繊維の体積分率は、ポリマーマトリックスと単繊維との体積合計を100%として、10%以上であり、10から80%が望ましく、更に望ましくは15から70%である。 Furthermore, the larger the volume fraction of single fibers in the optical film, the greater the amount of light scattering bodies that scatter light even with the same thickness, and the higher the polarization selectivity. On the other hand, if the volume fraction of single fibers becomes too large, the distance between the single fibers becomes too close, and when the single fibers aggregate, the interface disappears and the scattering performance decreases. Therefore, the volume fraction of single fibers in the optical film of the present invention is 10% or more, preferably 10 to 80%, and more preferably 15 to 70%, assuming that the total volume of the polymer matrix and the single fibers is 100%.

前記体積分率はポリマーマトリックスに含まれるポリマー材Aと単繊維に含まれるポリマー材Bとの重量および比重から計算することができる。 The volume fraction can be calculated from the weight and specific gravity of polymer material A contained in the polymer matrix and polymer material B contained in the single fiber.

本発明の光学フィルムは、図3に示したように、ポリマーマトリックス2内において単繊維3の周囲にさらにポリマーマトリックスを構成する第2のポリマー4(以下、「ポリマー材C」とも記す。)が存在するかもしれない。ポリマー材Cが存在する場合、図3においてポリマー材Aとポリマー材Cとの界面での光の反射を抑えるためにポリマー材Aとポリマー材Cとの屈折率差は0.05以下が好ましい。さらに好ましくは0.02以下であり、ポリマー材Aとポリマー材Cとを同じポリマーとして屈折率差を0にするのが最も好ましい。図3に示したように、ポリマーマトリックスを厚み方向に切断した断面を見たとき、ポリマー材Cは複数の単繊維3を包含するように存在するのが好ましく、ポリマー材Cは複数の単繊維3の長手方向に伸びた繊維状の繊維構造体であるのが好ましい。なお、ポリマー材Cが単繊維3の長手方向に延びた繊維状で複数の単繊維3を包含する場合、隣り合う繊維状のポリマー材Cの間に存在するポリマー材Aが多くなりすぎると、単繊維3の存在しない領域が増加し、光の散乱が増えるため好ましくない。ポリマー材Cが単繊維3の長手方向に延びた繊維状で複数の単繊維3を包含する場合、隣り合うポリマー材C間の厚さすなわち繊維構造体間の厚さは1μm以下が好ましい。
ポリマー材Cは前記ポリマー材Aと同じものが例示でき、同じポリマーであるのが好ましい。
As shown in FIG. 3, the optical film of the present invention may further include a second polymer 4 (hereinafter, also referred to as "polymer material C") constituting the polymer matrix around the single fiber 3 in the polymer matrix 2. When the polymer material C is present, the refractive index difference between the polymer material A and the polymer material C is preferably 0.05 or less in order to suppress the reflection of light at the interface between the polymer material A and the polymer material C in FIG. 3. More preferably, it is 0.02 or less, and it is most preferable that the polymer material A and the polymer material C are the same polymer and the refractive index difference is 0. As shown in FIG. 3, when the cross section of the polymer matrix cut in the thickness direction is viewed, the polymer material C is preferably present so as to include a plurality of single fibers 3, and the polymer material C is preferably a fibrous fiber structure extending in the longitudinal direction of the plurality of single fibers 3. Note that when the polymer material C is fibrous extending in the longitudinal direction of the single fiber 3 and includes a plurality of single fibers 3, if the amount of polymer material A present between adjacent fibrous polymer materials C becomes too large, the area without the single fiber 3 increases, which is undesirable because it increases the scattering of light. When the polymer material C is in the form of fibers extending in the longitudinal direction of the single fibers 3 and includes a plurality of single fibers 3, the thickness between adjacent polymer materials C, i.e., the thickness between the fiber structures, is preferably 1 μm or less.
The polymer material C can be exemplified by the same materials as the polymer material A, and is preferably the same polymer.

本発明の光学フィルムの製造方法を図8に模式的に示した。図8(a)のように前記ポリマー材Bを含有する単繊維3を複数本含むポリマー材Cに包含された断面が海島構造である複合繊維7を複数本同方向に略平行に配向するよう配置する。この時、海島構造の島相は前記ポリマー材Bを含み、海相は前記ポリマー材Cを含む。島相の長手方向は複合繊維7の長手方向に沿って配置される。さらに図8(b)に示したように、複合繊維7間の厚さが小さくなるように密集させ、必要に応じて周囲をポリマーマトリックス2となる前記ポリマー材Aで被覆する。その後、温度および圧力の印加により海島構造の配列を崩すことで、図8(c)に示したように前記ポリマー材Cを含むポリマーマトリックス2内に配置された単繊維3が得られる。 The manufacturing method of the optical film of the present invention is shown in FIG. 8. As shown in FIG. 8(a), a plurality of composite fibers 7, each having a cross section of an island-in-sea structure, are arranged so as to be oriented approximately parallel to the same direction, and are contained in a polymer material C containing a plurality of single fibers 3 containing the polymer material B. At this time, the island phase of the island-in-sea structure contains the polymer material B, and the sea phase contains the polymer material C. The longitudinal direction of the island phase is arranged along the longitudinal direction of the composite fiber 7. Furthermore, as shown in FIG. 8(b), the composite fibers 7 are packed together so that the thickness between them is small, and the surroundings are covered with the polymer material A, which becomes the polymer matrix 2, as necessary. After that, the arrangement of the island-in-sea structure is broken by applying temperature and pressure, and a single fiber 3 arranged in a polymer matrix 2 containing the polymer material C is obtained, as shown in FIG. 8(c).

前記複合繊維7は特開2014-005578に記載されているように海成分を構成するポリマー材Cと島成分構成するポリマー材Bを各々独立に溶融し、それぞれが海成分、島成分となるように溶融紡糸装置を用いて口金より紡出する。溶融紡糸装置の口金の形状や大きさによって、得られる複合繊維の断面形状や径を任意に設定することができる。 As described in JP 2014-005578 A, the composite fiber 7 is produced by melting the polymer material C that constitutes the sea component and the polymer material B that constitutes the island components separately, and spinning them from a spinneret using a melt spinning device so that they become the sea component and the island component, respectively. The cross-sectional shape and diameter of the resulting composite fiber can be set as desired by changing the shape and size of the spinneret of the melt spinning device.

前記本発明の光学フィルムは偏光子と積層することで偏光フィルムとなる。図4に本発明の光学フィルムを用いた偏光フィルムの一態様を模式的に示した。
図4では本発明の光学フィルム1と偏光子5とを積層し、その両表面に保護フィルム6
を積層した態様を示している。
光学フィルム1と偏光子5とを、熱融着、接着剤等により積層すればよい。光学フィルム1のポリマーマトリックスが水溶性であり、偏光子5がポリビニルアルコールからなる場合、水糊により積層できる。
The optical film of the present invention can be laminated with a polarizer to form a polarizing film. Fig. 4 shows a schematic diagram of one embodiment of a polarizing film using the optical film of the present invention.
In FIG. 4, the optical film 1 of the present invention and a polarizer 5 are laminated together, and protective films 6 are provided on both surfaces of the laminate.
4 shows a laminated embodiment.
The optical film 1 and the polarizer 5 may be laminated together by heat fusion, an adhesive, etc. When the polymer matrix of the optical film 1 is water-soluble and the polarizer 5 is made of polyvinyl alcohol, they can be laminated together by using a water-based glue.

前記得られた偏光フィルムは液晶テレビ、スマートフォンなどの液晶表示装置に好適に用いることができる。 The obtained polarizing film can be suitably used in liquid crystal display devices such as liquid crystal televisions and smartphones.

以下に本発明を実施例などにより具体的に説明するが、本発明は、以下の実施例により何ら限定されるものではない。なお、以下の実施例および比較例において採用された評価項目とその方法は、下記の通りである。 The present invention will be described in detail below with reference to examples, but the present invention is not limited to these examples. The evaluation items and methods used in the following examples and comparative examples are as follows:

実施例1
特開2014-005578記載の実施例の記載に従い、単繊維となる島成分がPET(比重1.38)であり、その繊維径が250nm、繊維本数726本をポリビニルアルコール(株式会社クラレ製エクセバールCP4104MI、比重1.20)中に配向した海島構造繊維を得た。この海島構造繊維の海成分は80wt%であり、島成分は20wt%であった。得られた海島構造繊維をステンレス板に巻き付けて配向させたのち、170℃で60秒プレスし、複数本の複合繊維を一体化させた。この後、プレスした後の一体化したフィルムを切り出し実施例1の光学フィルムを得た。このフィルム内での海島構造繊維の島成分の体積比率は、海島構造繊維の重量比率から換算し18%であり、フィルムの厚さは50μmであった。
Example 1
According to the description of the examples in JP2014-005578A, an island-in-sea structure fiber was obtained in which the island component fibers that became single fibers were PET (specific gravity 1.38), the fiber diameter was 250 nm, and the number of fibers was 726 fibers were oriented in polyvinyl alcohol (EXCEVAL CP4104MI, specific gravity 1.20, manufactured by Kuraray Co., Ltd.). The sea component of this island-in-sea structure fiber was 80 wt %, and the island component was 20 wt %. The obtained island-in-sea structure fiber was wound around a stainless steel plate and oriented, and then pressed at 170°C for 60 seconds to integrate a plurality of composite fibers. Thereafter, the integrated film after pressing was cut out to obtain the optical film of Example 1. The volume ratio of the island component fibers in this film was 18% calculated from the weight ratio of the island-in-sea structure fiber, and the thickness of the film was 50 μm.

比較例1
特開2014-005578記載の実施例の記載に従い、単繊維となる島成分がPET(比重1.38)であり、その繊維径が250nm、繊維本数726本をポリビニルアルコール(株式会社クラレ製エクセバールCP4104MI、比重1.20)中に配向した海島構造繊維を得た。この海島構造繊維の海成分は80wt%であり、島成分は20wt%であった。得られた海島構造繊維をガラス板に巻き付けて配向させたのち、PET製の容器に入れ、完全に繊維が埋設する厚みになるよう、ポリビニルアルコール(株式会社クラレ製エクセバールCP4104MI)水溶液を容器に満たした。この後、常温で水を揮発させることにより繊維構造体が配向したフィルムを作製し比較例1の光学フィルムを得た。この光学フィルム内では、図8(a)のように、海島構造繊維がそのまま残っている状態であり、散乱が多い。このフィルムの厚さは120μmであり、海島構造繊維の島成分の比率は、フィルム厚さと海島構造繊維の重量比率から換算し7%であった。
Comparative Example 1
According to the description of the examples in JP2014-005578A, an island-in-sea structure fiber was obtained in which the island components that became single fibers were PET (specific gravity 1.38), the fiber diameter was 250 nm, and the number of fibers was 726 fibers were oriented in polyvinyl alcohol (Exceval CP4104MI, manufactured by Kuraray Co., Ltd., specific gravity 1.20). The sea component of this island-in-sea structure fiber was 80 wt %, and the island component was 20 wt %. The obtained island-in-sea structure fiber was wound around a glass plate and oriented, and then placed in a PET container, which was filled with an aqueous solution of polyvinyl alcohol (Exceval CP4104MI, manufactured by Kuraray Co., Ltd.) to a thickness that completely buried the fibers. Thereafter, the water was evaporated at room temperature to produce a film in which the fiber structure was oriented, and an optical film of Comparative Example 1 was obtained. In this optical film, as shown in FIG. 8(a), the island-in-sea structure fibers remained as they were, and there was a lot of scattering. The thickness of this film was 120 μm, and the ratio of island components in the sea-island structure fiber was 7%, calculated from the film thickness and the weight ratio of the sea-island structure fiber.

比較例2
特開2014-005578記載の実施例の記載に従い、単繊維となる島成分がPET(比重1.38)であり、その繊維径が1.5μm、繊維本数36本をポリビニルアルコール(株式会社クラレ製エクセバールCP4104MI、比重1.20)中に配向した海島構造繊維を得た。この海島構造繊維の海成分は40wt%であり、島成分は60wt%であった。得られた海島構造繊維をステンレス板に巻き付けて配向させたのち、170℃で60secプレスし、複数本の繊維を一体化させた。この後、プレスした後の一体化したフィルムを切り出して比較例2の光学フィルムを得た。このフィルム内での海島構造繊維の島成分の体積比率は、海島構造繊維の重量比率から換算し57%であり、フィルムの厚さは50μmであった。
Comparative Example 2
According to the description of the examples in JP2014-005578A, an island-sea structure fiber was obtained in which the island components that became single fibers were PET (specific gravity 1.38), had a fiber diameter of 1.5 μm, and 36 fibers were oriented in polyvinyl alcohol (Exeval CP4104MI, specific gravity 1.20, manufactured by Kuraray Co., Ltd.). The sea component of this island-sea structure fiber was 40 wt %, and the island component was 60 wt %. The obtained island-sea structure fiber was wound around a stainless steel plate and oriented, and then pressed at 170°C for 60 seconds to integrate the multiple fibers. Thereafter, the integrated film after pressing was cut out to obtain an optical film of Comparative Example 2. The volume ratio of the island components of the island-sea structure fiber in this film was 57%, calculated from the weight ratio of the island-sea structure fiber, and the thickness of the film was 50 μm.

[測定]
(1)偏光透過率
分光光度計(日立ハイテクノロジーズ製U4100)に開口幅1mmのスリットを設置し・繊維状構造体と平行な偏光を入射して透過率を測定した。
[measurement]
(1) Polarized Light Transmittance A slit having an opening width of 1 mm was provided in a spectrophotometer (U4100 manufactured by Hitachi High-Technologies Corporation) and polarized light parallel to the fibrous structure was made incident thereon to measure the transmittance.

(2)全光線透過率およびヘイズ
ヘイズメータ(日本電色製NDH5000)に開口2mm×2mmのアパーチャーを取り付けた状態で標準校正を実施した。この後、偏光フィルムを取り付け、偏光フィルムの透過軸方向と繊維構造体の配向方向が直行するように設置し、全光線透過率およびヘイズを測定した。なお、偏光フィルムのヘイズは僅かであり、サンプルのヘイズ値の測定結果に対する影響は無視できる。一方で、偏光フィルムによって片方の偏光は吸収されるため、(1)における偏光透過率と異なり、この測定方法における透過率は最大で50%である。
(2) Total light transmittance and haze Standard calibration was performed with an aperture of 2 mm x 2 mm attached to a haze meter (NDH5000 manufactured by Nippon Denshoku). After this, a polarizing film was attached and set so that the transmission axis direction of the polarizing film and the orientation direction of the fiber structure were perpendicular to each other, and the total light transmittance and haze were measured. Note that the haze of the polarizing film is slight, and its effect on the measurement results of the haze value of the sample can be ignored. On the other hand, since one polarized light is absorbed by the polarizing film, the transmittance in this measurement method is a maximum of 50%, unlike the polarized light transmittance in (1).

(3)散乱状態
波長633nmのHe-Neレーザー(メレスグリオ製)と繊維構造体との間に、繊維構造体の配向方向と直行する方向の光が入射するように偏光フィルムを挿入し、入射位置から600mm離れた位置でスクリーンに投影し、その散乱状態を撮影した。
(3) Scattering state A polarizing film was inserted between a He-Ne laser (manufactured by Melles Griot) with a wavelength of 633 nm and the fiber structure so that light was incident in a direction perpendicular to the orientation direction of the fiber structure. The light was projected onto a screen at a position 600 mm away from the incident position, and the scattering state was photographed.

実施例1では繊維構造体と平行な方向の偏光を反射し、繊維状構造体と直交する偏光を透過させることができている。繊維構造体と直交する方向の偏光に対しては、散乱が少なく、光をそのまま透過させることができている。液晶ディスプレイの偏光板の透過軸に対して直交な方向に繊維を設けることによって、輝度の高いディスプレイを得ることができる。 In Example 1, polarized light parallel to the fiber structure is reflected, and polarized light perpendicular to the fiber structure is transmitted. There is little scattering of polarized light perpendicular to the fiber structure, and the light is transmitted as is. By arranging the fibers perpendicular to the transmission axis of the polarizing plate of the liquid crystal display, a display with high brightness can be obtained.

比較例1、2では繊維構造体と直交する方向の偏光に対して、光が散乱している。液晶ディスプレイに用いた場合、光が散乱して、輝度が低下してしまう。繊維と直交する方向の偏光に対して、光が散乱しているため、液晶ディスプレイに用いた場合、光が散乱して、輝度が低下してしまう。 In Comparative Examples 1 and 2, light is scattered for light polarized perpendicular to the fiber structure. When used in an LCD display, the light is scattered and brightness is reduced. Because light is scattered for light polarized perpendicular to the fiber, when used in an LCD display, the light is scattered and brightness is reduced.

1 光学フィルム
2 ポリマーマトリックス
3 単繊維
4 繊維構造体を構成する第2のポリマー
5 偏光子
6 保護フィルム
7 複合繊維

1 Optical film 2 Polymer matrix 3 Single fiber 4 Second polymer constituting fiber structure 5 Polarizer 6 Protective film 7 Composite fiber

Claims (9)

少なくとも1種以上のポリマーを含むポリマーマトリックスと、
前記ポリマーマトリックス内に長手方向に略平行状態に配置された、少なくとも1種のポリマーよりなる複数の単繊維を含み、
前記単繊維の長手方向の屈折率が、前記単繊維の長手方向と平行な方向の前記ポリマーマトリックスの屈折率と異なり、
前記単繊維の長手方向に直交する方向に平行な偏光を入射させた際のヘイズ値が20%以下、
前記単繊維の長手方向と平行な偏光を入射させた場合の透過率が60%以下、
前記単繊維の径が500nm以下、
前記単繊維の前記ポリマーマトリックス中の体積分率が10%以上である光学フィルム。
A polymer matrix comprising at least one polymer;
a plurality of monofilaments of at least one polymer arranged longitudinally and generally parallel within the polymer matrix;
The refractive index in the longitudinal direction of the single fiber is different from the refractive index of the polymer matrix in a direction parallel to the longitudinal direction of the single fiber,
a haze value of 20% or less when polarized light is incident in a direction perpendicular to the longitudinal direction of the single fiber;
The transmittance when polarized light parallel to the longitudinal direction of the single fiber is incident is 60% or less.
The diameter of the single fiber is 500 nm or less,
The volume fraction of the single fibers in the polymer matrix is 10% or more.
前記ポリマーマトリクスが実質的に水溶性である請求項1に記載の光学フィルム。 The optical film of claim 1, wherein the polymer matrix is substantially water-soluble. 前記ポリマーマトリックスが含む少なくとも1種のポリマーがポリビニルアルコールを主な構成要素とするポリマーである請求項1または2に記載の光学フィルム。 The optical film according to claim 1 or 2, wherein at least one of the polymers contained in the polymer matrix is a polymer whose main component is polyvinyl alcohol. 前記ポリマーマトリックスがポリビニルアルコールを20から100質量%含む請求項3に記載の光学フィルム。 The optical film according to claim 3, wherein the polymer matrix contains 20 to 100% by mass of polyvinyl alcohol. 前記単繊維が含む少なくとも1種のポリマーが複屈折性を有する請求項1から4のいずれかに記載の光学フィルム。 The optical film according to any one of claims 1 to 4, wherein at least one type of polymer contained in the single fiber has birefringence. 複数の前記単繊維を一群とする繊維構造体を複数含む請求項1から5のいずれかに記載の光学フィルム。 An optical film according to any one of claims 1 to 5, comprising a plurality of fiber structures each having a group of a plurality of the single fibers. 請求項1から6のいずれかに記載の光学フィルムとポリビニルアルコールフィルムとが直接積層している偏光フィルム。 A polarizing film in which the optical film according to any one of claims 1 to 6 and a polyvinyl alcohol film are directly laminated together. 少なくとも1種のポリマーを含む海相と、少なくとも1種のポリマーを含む島相が長手方向に連続して存在する断面海島構造を有する複合繊維を製造する工程、
前記複合繊維を複数束ねて繊維束を作製する工程、
前記繊維束における各前記複合繊維を互いに融着させ、フィルム状に成形する工程、
を含む、請求項1から6のいずれかに記載の光学フィルムの製造方法。
A step of producing a composite fiber having a cross-sectional sea-island structure in which a sea phase containing at least one polymer and an island phase containing at least one polymer are continuously present in the longitudinal direction;
A step of bundling a plurality of the composite fibers to prepare a fiber bundle;
A step of fusing the composite fibers in the fiber bundle to each other and forming them into a film;
A method for producing the optical film according to claim 1 , comprising:
前記複合繊維を延伸する工程を、前記繊維束を作製する工程の前に含む請求項8に記載の光学フィルムの製造方法。 The method for producing an optical film according to claim 8, further comprising a step of stretching the composite fiber prior to the step of producing the fiber bundle.
JP2022207011A 2022-12-23 2022-12-23 Optical film and polarization film using the same Pending JP2024090853A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022207011A JP2024090853A (en) 2022-12-23 2022-12-23 Optical film and polarization film using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022207011A JP2024090853A (en) 2022-12-23 2022-12-23 Optical film and polarization film using the same

Publications (1)

Publication Number Publication Date
JP2024090853A true JP2024090853A (en) 2024-07-04

Family

ID=91714743

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022207011A Pending JP2024090853A (en) 2022-12-23 2022-12-23 Optical film and polarization film using the same

Country Status (1)

Country Link
JP (1) JP2024090853A (en)

Similar Documents

Publication Publication Date Title
KR101782827B1 (en) Liquid-crystal display device
JP3591699B2 (en) Polarizing element, optical element, illumination device, and liquid crystal display device
KR101772348B1 (en) Liquid crystal display device
CN101573643B (en) Polarizing element and liquid crystal display device
KR100724905B1 (en) Optical film, polarizer and display device
KR100855837B1 (en) Polarizing plate and method for manufacturing the same, and liquid crystal display using said polarizing plate
CN100573197C (en) The optical element that contains polymer fiber weave
KR100575914B1 (en) Laminated optical film, method for producing the same film and liquid-crystal display device using the same film
KR101858878B1 (en) Liquid crystal display device
JP2004318060A (en) Optical element, polarizing element, lighting device, and liquid crystal display device
JP2009540362A (en) Diffuse reflective polarizer with a nearly isotropic continuous phase
CN102066994A (en) Optical film
WO2015037369A1 (en) Polarizing plate, method for manufacturing polarizing plate, image display device, method for manufacturing image display device, and method for improving transmittance of polarizing plate
CN104981718A (en) Optical member, polarizing plate set and liquid crystal display device
JP2012137759A (en) Method of manufacturing diffusely-reflecting polarizer having nearly isotropic continuous phase
KR20040102166A (en) Light converging system and transmission liquid crystal display
JP3331150B2 (en) Display element illumination method and liquid crystal display device
KR20180026341A (en) Optical member
JP2024090853A (en) Optical film and polarization film using the same
JPH11133231A (en) Polarizing element, optical element, illumination device and liquid crystal display device
KR102021909B1 (en) Light guide panel, surface light source apparatus comprising light guide panel and flat panel display comprising surface light source apparatus
KR102315475B1 (en) Optical member
KR101078599B1 (en) High luminance multifunctional polarizing sheet, rear polarizing film of liquid crystal display with them and liquid crystal display having the same
JPH11311710A (en) Polarizing element, optical element, lighting device, and liquid crystal display device
JP5038968B2 (en) Condensing element, surface light source using the same, and liquid crystal display device