JP2024088819A - Method of manufacturing molded body - Google Patents
Method of manufacturing molded body Download PDFInfo
- Publication number
- JP2024088819A JP2024088819A JP2021037498A JP2021037498A JP2024088819A JP 2024088819 A JP2024088819 A JP 2024088819A JP 2021037498 A JP2021037498 A JP 2021037498A JP 2021037498 A JP2021037498 A JP 2021037498A JP 2024088819 A JP2024088819 A JP 2024088819A
- Authority
- JP
- Japan
- Prior art keywords
- composite material
- resin
- molded body
- continuous fibers
- fiber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 47
- 239000000835 fiber Substances 0.000 claims abstract description 233
- 239000002131 composite material Substances 0.000 claims abstract description 232
- 229920005989 resin Polymers 0.000 claims abstract description 187
- 239000011347 resin Substances 0.000 claims abstract description 187
- 238000000465 moulding Methods 0.000 claims description 64
- 238000001723 curing Methods 0.000 claims description 63
- 229920001187 thermosetting polymer Polymers 0.000 claims description 45
- 239000003795 chemical substances by application Substances 0.000 claims description 42
- 229920005992 thermoplastic resin Polymers 0.000 claims description 20
- 238000006243 chemical reaction Methods 0.000 claims description 15
- 239000003094 microcapsule Substances 0.000 claims description 14
- 238000000748 compression moulding Methods 0.000 claims description 12
- 238000000034 method Methods 0.000 claims description 11
- 229910052796 boron Inorganic materials 0.000 claims description 6
- 238000010030 laminating Methods 0.000 claims description 6
- 238000004090 dissolution Methods 0.000 claims description 4
- 239000002808 molecular sieve Substances 0.000 claims description 4
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 claims description 4
- 238000003848 UV Light-Curing Methods 0.000 claims description 3
- 229920000049 Carbon (fiber) Polymers 0.000 description 34
- 239000004917 carbon fiber Substances 0.000 description 34
- 239000012783 reinforcing fiber Substances 0.000 description 27
- 239000004848 polyfunctional curative Substances 0.000 description 23
- -1 polypropylene Polymers 0.000 description 21
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 18
- 239000000463 material Substances 0.000 description 13
- 229920002292 Nylon 6 Polymers 0.000 description 11
- 239000003822 epoxy resin Substances 0.000 description 11
- 229920000647 polyepoxide Polymers 0.000 description 11
- 239000011159 matrix material Substances 0.000 description 10
- 239000003365 glass fiber Substances 0.000 description 9
- 238000010438 heat treatment Methods 0.000 description 9
- 101000710013 Homo sapiens Reversion-inducing cysteine-rich protein with Kazal motifs Proteins 0.000 description 6
- 229920002302 Nylon 6,6 Polymers 0.000 description 6
- JBKVHLHDHHXQEQ-UHFFFAOYSA-N epsilon-caprolactam Chemical compound O=C1CCCCCN1 JBKVHLHDHHXQEQ-UHFFFAOYSA-N 0.000 description 6
- 238000002844 melting Methods 0.000 description 6
- 230000008018 melting Effects 0.000 description 6
- 239000004744 fabric Substances 0.000 description 5
- 238000002156 mixing Methods 0.000 description 5
- 229920006045 Akulon® Polymers 0.000 description 4
- 239000003677 Sheet moulding compound Substances 0.000 description 4
- 230000006835 compression Effects 0.000 description 4
- 238000007906 compression Methods 0.000 description 4
- 230000014759 maintenance of location Effects 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 229920002239 polyacrylonitrile Polymers 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 230000002787 reinforcement Effects 0.000 description 4
- 238000007493 shaping process Methods 0.000 description 4
- 238000004513 sizing Methods 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 239000004734 Polyphenylene sulfide Substances 0.000 description 3
- 230000004888 barrier function Effects 0.000 description 3
- 229920006038 crystalline resin Polymers 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 238000003475 lamination Methods 0.000 description 3
- 229920006122 polyamide resin Polymers 0.000 description 3
- 229920001707 polybutylene terephthalate Polymers 0.000 description 3
- 229920000069 polyphenylene sulfide Polymers 0.000 description 3
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 description 2
- GVNWZKBFMFUVNX-UHFFFAOYSA-N Adipamide Chemical compound NC(=O)CCCCC(N)=O GVNWZKBFMFUVNX-UHFFFAOYSA-N 0.000 description 2
- 229920000305 Nylon 6,10 Polymers 0.000 description 2
- 229930182556 Polyacetal Natural products 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- 229920000122 acrylonitrile butadiene styrene Polymers 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- ILRSCQWREDREME-UHFFFAOYSA-N dodecanamide Chemical compound CCCCCCCCCCCC(N)=O ILRSCQWREDREME-UHFFFAOYSA-N 0.000 description 2
- 229920001568 phenolic resin Polymers 0.000 description 2
- 239000005011 phenolic resin Substances 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 229920013716 polyethylene resin Polymers 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 229920006324 polyoxymethylene Polymers 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 239000011342 resin composition Substances 0.000 description 2
- 229920006337 unsaturated polyester resin Polymers 0.000 description 2
- 229920001567 vinyl ester resin Polymers 0.000 description 2
- OEPOKWHJYJXUGD-UHFFFAOYSA-N 2-(3-phenylmethoxyphenyl)-1,3-thiazole-4-carbaldehyde Chemical compound O=CC1=CSC(C=2C=C(OCC=3C=CC=CC=3)C=CC=2)=N1 OEPOKWHJYJXUGD-UHFFFAOYSA-N 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 229920002748 Basalt fiber Polymers 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- 101000836394 Homo sapiens Sestrin-1 Proteins 0.000 description 1
- 239000002841 Lewis acid Substances 0.000 description 1
- YLCXGBZIZBEVPZ-UHFFFAOYSA-N Medazepam Chemical compound C12=CC(Cl)=CC=C2N(C)CCN=C1C1=CC=CC=C1 YLCXGBZIZBEVPZ-UHFFFAOYSA-N 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 239000004696 Poly ether ether ketone Substances 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004695 Polyether sulfone Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 229920006121 Polyxylylene adipamide Polymers 0.000 description 1
- 229920000297 Rayon Polymers 0.000 description 1
- 102100027288 Sestrin-1 Human genes 0.000 description 1
- 230000006750 UV protection Effects 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- XECAHXYUAAWDEL-UHFFFAOYSA-N acrylonitrile butadiene styrene Chemical compound C=CC=C.C=CC#N.C=CC1=CC=CC=C1 XECAHXYUAAWDEL-UHFFFAOYSA-N 0.000 description 1
- 239000004676 acrylonitrile butadiene styrene Substances 0.000 description 1
- 229920001893 acrylonitrile styrene Polymers 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 229920006127 amorphous resin Polymers 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000004760 aramid Substances 0.000 description 1
- 229920006231 aramid fiber Polymers 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000037237 body shape Effects 0.000 description 1
- 239000002775 capsule Substances 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000011300 coal pitch Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- QGBSISYHAICWAH-UHFFFAOYSA-N dicyandiamide Chemical compound NC(N)=NC#N QGBSISYHAICWAH-UHFFFAOYSA-N 0.000 description 1
- 229920006351 engineering plastic Polymers 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000003733 fiber-reinforced composite Substances 0.000 description 1
- 239000012765 fibrous filler Substances 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- 230000009969 flowable effect Effects 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 150000002460 imidazoles Chemical class 0.000 description 1
- 239000012784 inorganic fiber Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 150000007517 lewis acids Chemical class 0.000 description 1
- 229920005610 lignin Polymers 0.000 description 1
- 125000005395 methacrylic acid group Chemical group 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 239000011301 petroleum pitch Substances 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 229920000933 poly (ε-caprolactam) Polymers 0.000 description 1
- 229920003207 poly(ethylene-2,6-naphthalate) Polymers 0.000 description 1
- 229920006111 poly(hexamethylene terephthalamide) Polymers 0.000 description 1
- 229920000747 poly(lactic acid) Polymers 0.000 description 1
- 229920002492 poly(sulfone) Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920001230 polyarylate Polymers 0.000 description 1
- 229920005668 polycarbonate resin Polymers 0.000 description 1
- 239000004431 polycarbonate resin Substances 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920006393 polyether sulfone Polymers 0.000 description 1
- 229920002530 polyetherether ketone Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 239000011112 polyethylene naphthalate Substances 0.000 description 1
- 229920006123 polyhexamethylene isophthalamide Polymers 0.000 description 1
- 239000004626 polylactic acid Substances 0.000 description 1
- 229920001955 polyphenylene ether Polymers 0.000 description 1
- 229920005990 polystyrene resin Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- SCUZVMOVTVSBLE-UHFFFAOYSA-N prop-2-enenitrile;styrene Chemical compound C=CC#N.C=CC1=CC=CC=C1 SCUZVMOVTVSBLE-UHFFFAOYSA-N 0.000 description 1
- 239000002964 rayon Substances 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 238000007660 shear property test Methods 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 229920006345 thermoplastic polyamide Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C43/00—Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
- B29C43/02—Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
- B29C43/20—Making multilayered or multicoloured articles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C43/00—Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
- B29C43/32—Component parts, details or accessories; Auxiliary operations
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C43/00—Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
- B29C43/32—Component parts, details or accessories; Auxiliary operations
- B29C43/58—Measuring, controlling or regulating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C70/00—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
- B29C70/04—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
- B29C70/06—Fibrous reinforcements only
- B29C70/10—Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C70/00—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
- B29C70/04—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
- B29C70/28—Shaping operations therefor
- B29C70/40—Shaping or impregnating by compression not applied
- B29C70/42—Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2105/00—Condition, form or state of moulded material or of the material to be shaped
- B29K2105/06—Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
- B29K2105/08—Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts of continuous length, e.g. cords, rovings, mats, fabrics, strands or yarns
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Composite Materials (AREA)
- Casting Or Compression Moulding Of Plastics Or The Like (AREA)
- Moulding By Coating Moulds (AREA)
Abstract
Description
本発明は、複合材料Aと複合材料Bとを積層して圧縮成形し、成形体を製造する方法に関するものである。 The present invention relates to a method for producing a molded body by stacking composite material A and composite material B and compression molding them.
近年、不連続繊維や連続繊維で強化された成形体は、機械物性に優れており、自動車等の構造部材として注目されている。 In recent years, molded articles reinforced with discontinuous or continuous fibers have been attracting attention as structural components for automobiles and other vehicles due to their excellent mechanical properties.
特許文献1では、未硬化の熱硬化性マトリックス樹脂を用いた連続強化繊維プリプレグと熱可塑性樹脂シートを用い、熱可塑性樹脂シート特有の粘度範囲に合わせた金型温度に設定して成形した成形体の製造方法が記載されている。 Patent Document 1 describes a method for producing a molded product using a continuous reinforced fiber prepreg made of uncured thermosetting matrix resin and a thermoplastic resin sheet, with the mold temperature set to match the viscosity range specific to the thermoplastic resin sheet.
特許文献2では、シートモールディングコンパウド層と連続繊維による強化層との間に繊維が互いに交差する構造を有するバリア層を設けて成形した成形体が記載されている。 Patent document 2 describes a molded body that is formed by providing a barrier layer between a sheet molding compound layer and a continuous fiber reinforcement layer, the barrier layer having a structure in which the fibers cross each other.
しかしながら、特許文献1に記載の連続繊維強化プリプレグは、プリプレグに含まれる熱硬化性樹脂の硬化度が10%以下と低いため、その他の材料(例えば不連続繊維強化複合材料)とともに圧縮成形すると、その他の材料の流動方向にプリプレグに含まれる連続繊維が追従してしまう。この結果、連続繊維が乱れてしまい、成形体となったときに、高い物性を保つことができない。 However, the continuous fiber reinforced prepreg described in Patent Document 1 has a low degree of cure of 10% or less for the thermosetting resin contained in the prepreg, so when it is compression molded together with other materials (such as discontinuous fiber reinforced composite materials), the continuous fibers contained in the prepreg follow the flow direction of the other materials. As a result, the continuous fibers become disordered, and the molded product cannot maintain high physical properties.
また、特許文献2に記載の複合材料は、シートモールディングコンパウンド層と連続繊維による強化層との間にバリア層を設けているため、成形体を製造するにあたって、本来必要のない層が必要となり、積層の手間が増える。更に、3つの層間での層間せん断強度の確保に問題が生じるし、層間の収縮率の違いによって得られた成形体が反ってしまう課題が生じる。 In addition, the composite material described in Patent Document 2 has a barrier layer between the sheet molding compound layer and the continuous fiber reinforcement layer, which means that an unnecessary layer is required when manufacturing a molded body, and the labor required for lamination increases. Furthermore, problems arise in ensuring interlaminar shear strength between the three layers, and differences in the shrinkage rates between the layers can cause the molded body to warp.
そこで本発明の目的は、連続繊維の繊維配向が特に乱れやすくなる、曲面を含んだ三次元形状の成形型を用いた場合であっても、連続繊維の乱れを抑制し、機械物性を担保できる成形体の製造方法を提供する。 The object of the present invention is to provide a method for producing a molded body that can suppress the disorder of continuous fibers and ensure mechanical properties, even when using a molding mold with a three-dimensional shape that includes curved surfaces, in which the fiber orientation of the continuous fibers is particularly likely to become disordered.
上記課題を解決するために、本発明は以下の手段を提供する。
1.不連続繊維と樹脂M1を含む複合材料Aと、連続繊維と樹脂M2を含む複合材料Bとを積層して圧縮成形し、成形体を製造する方法であって、
複合材料Bの成形型への配置面Xは、曲面を含んだ三次元形状であって、前記連続繊維の束幅方向に向かって曲がっており、
成形体に含まれる連続繊維の最大厚みTmaxと、最小厚みTminの関係が、1≦Tmax/Tmin≦1.5である。
2.前記配置面Xは、連続繊維の束幅方向に向かって、弧を描いた状態、又は折れた状態
で曲がっている、前記1.に記載の成形体の製造方法。
3.成形体における複合材料Aと複合材料Bとの層間せん断強度が30MPa以上である、前記1.又は2.に記載の成形体の製造方法。
4.樹脂M2が半硬化した熱硬化性樹脂であって、樹脂M2の複素粘度η2が8000Pa・s以上30000Pa・s以下である、前記1.乃至3.のいずれか1項に記載の成形体の製造方法。
5.樹脂M2が半硬化した熱硬化性樹脂であって、硬化度が50%以上である、前記1.乃至4.のいずれか1項に記載の成形体の製造方法。
6.成形の時に、樹脂M2を完全硬化して成形体を製造する、前記4.又は5.に記載の成形体の製造方法。
7.複合材料Bは潜在性硬化剤を含み、前記潜在性硬化剤は、イオン反応、加熱溶解、モレキュラーシーブ、マイクロカプセル、又はUV硬化の一群から選ばれる少なくとも1つを利用したものである、前記4.乃至6.のいずれか1項に記載の成形体の製造方法。
8.樹脂M1、及び樹脂M2が熱可塑性樹脂である、前記1.乃至3.のいずれか1項に記載の成形体の製造方法。
9.樹脂M1と樹脂M2の複素粘度が、下記の関係を満たす前記8.に記載の成形体の製造方法。
3×η1<η2<30000(Pa・s) かつ η1<500(Pa・s)
ただし、
η1(Pa・s):せん断速度2(1/s)のときの、樹脂M1の複素粘度
η2(Pa・s):せん断速度2(1/s)のときの、樹脂M2の複素粘度
である。
10.下記式を満たす、前記1.乃至9.のいずれか1項に記載の成形体の製造方法。
(繊維束の最大幅Wmax-繊維束の最小幅Wmin)/繊維束の平均幅Wave<0.25
11.複合材料Bに含まれる連続繊維は、一軸配向した連続繊維であって、複合材料Bの長手方向に配向している、前記1.乃至10.のいずれか1項に記載の成形体の製造方法。
12.複合材料Bに含まれる連続繊維は、二軸配向した連続繊維であって、複合材料Bの長手方向、及び長手方向と直交した方向に配向している、前記1.乃至10.のいずれか1項に記載の成形体の製造方法。
In order to solve the above problems, the present invention provides the following means.
1. A method for producing a molded product by laminating and compression molding a composite material A containing discontinuous fibers and a resin M1 and a composite material B containing continuous fibers and a resin M2, comprising the steps of:
The surface X of the composite material B placed on the molding die has a three-dimensional shape including a curved surface and is curved toward the bundle width direction of the continuous fibers,
The relationship between the maximum thickness Tmax and the minimum thickness Tmin of the continuous fibers contained in the molded body is 1≦Tmax/Tmin≦1.5.
2. The method for producing a molded article according to 1. above, wherein the arrangement surface X is curved in an arc or folded state toward the bundle width direction of the continuous fibers.
3. The method for producing a molded body according to 1. or 2. above, wherein the interlaminar shear strength between composite material A and composite material B in the molded body is 30 MPa or more.
4. The method for producing a molded body according to any one of 1. to 3. above, wherein the resin M2 is a semi-cured thermosetting resin and has a complex viscosity η2 of 8000 Pa·s or more and 30000 Pa·s or less.
5. The method for producing a molded article according to any one of 1. to 4., wherein the resin M2 is a semi-cured thermosetting resin having a degree of cure of 50% or more.
6. The method for producing a molded article according to 4. or 5. above, wherein the resin M2 is completely cured during molding to produce the molded article.
7. The method for producing a molded product according to any one of 4. to 6. above, wherein the composite material B contains a latent curing agent, and the latent curing agent utilizes at least one selected from the group consisting of ion reaction, heat dissolution, molecular sieve, microcapsules, and UV curing.
8. The method for producing a molded article according to any one of 1. to 3. above, wherein the resin M1 and the resin M2 are thermoplastic resins.
9. The method for producing a molded article according to 8. above, wherein the complex viscosities of the resins M1 and M2 satisfy the following relationship:
3×η1<η2<30000 (Pa·s) and η1<500 (Pa·s)
however,
η1 (Pa·s): Complex viscosity of resin M1 at a shear rate of 2 (1/s) η2 (Pa·s): Complex viscosity of resin M2 at a shear rate of 2 (1/s).
10. The method for producing a molded article according to any one of 1. to 9. above, which satisfies the following formula:
(Maximum width of fiber bundle Wmax-minimum width of fiber bundle Wmin)/average width of fiber bundle Wave<0.25
11. The method for producing a molded product according to any one of 1. to 10. above, wherein the continuous fibers contained in composite material B are uniaxially oriented continuous fibers and oriented in the longitudinal direction of composite material B.
12. The method for producing a molded product according to any one of 1. to 10. above, wherein the continuous fibers contained in composite material B are biaxially oriented continuous fibers and are oriented in the longitudinal direction of composite material B and in a direction perpendicular to the longitudinal direction.
不連続繊維で強化された複合材料と、連続繊維で強化された複合材料とを積層して成形したときに、連続繊維が乱れずに成形できるため、安定して高い機械物性を有する成形体を製造することができる。 When a composite material reinforced with discontinuous fibers and a composite material reinforced with continuous fibers are laminated and molded, the continuous fibers are not disturbed during molding, making it possible to produce a molded product with stable and high mechanical properties.
[強化繊維]
複合材料A、又は複合材料Bに含まれる繊維に特に限定は無いが、強化繊維であることが好ましい。具体的には、炭素繊維、ガラス繊維、アラミド繊維、ボロン繊維、及び玄武岩繊維からなる群より選ばれる1つ以上の強化繊維であることが好ましい。
[Reinforced fiber]
Although there is no particular limitation on the fibers contained in the composite material A or the composite material B, it is preferable that the fibers are reinforcing fibers. Specifically, it is preferable that the fibers are one or more reinforcing fibers selected from the group consisting of carbon fibers, glass fibers, aramid fibers, boron fibers, and basalt fibers.
[炭素繊維]
本発明の複合材料A又はBに含まれる繊維は、炭素繊維であることが好ましい。炭素繊
維としては、一般的にポリアクリロニトリル(PAN)系炭素繊維、石油・石炭ピッチ系炭素繊維、レーヨン系炭素繊維、セルロース系炭素繊維、リグニン系炭素繊維、フェノール系炭素繊維、などが知られているが、本発明においてはこれらのいずれの炭素繊維であっても好適に用いることができる。なかでも、本発明においては引張強度に優れる点でポリアクリロニトリル(PAN)系炭素繊維を用いることが好ましい。
[Carbon fiber]
The fibers contained in the composite material A or B of the present invention are preferably carbon fibers. Generally, polyacrylonitrile (PAN)-based carbon fibers, petroleum/coal pitch-based carbon fibers, rayon-based carbon fibers, cellulose-based carbon fibers, lignin-based carbon fibers, phenol-based carbon fibers, and the like are known as carbon fibers, and any of these carbon fibers can be suitably used in the present invention. Among them, it is preferable to use polyacrylonitrile (PAN)-based carbon fibers in the present invention because of their excellent tensile strength.
[炭素繊維の繊維直径]
本発明の複合材料A又は複合材料Bに含まれる繊維が炭素繊維の場合、用いられる炭素繊維の単糸(一般的に、単糸はフィラメントと呼ぶ場合がある)の繊維直径は、炭素繊維の種類に応じて適宜決定すればよく、特に限定されるものではない。平均繊維直径は、通常、3μm~50μmの範囲内であることが好ましく、4μm~12μmの範囲内であることがより好ましく、5μm~8μmの範囲内であることがさらに好ましい。炭素繊維が繊維束状である場合は、繊維束の径ではなく、繊維束を構成する炭素繊維(単糸)の直径を指す。炭素繊維の平均繊維直径は、例えば、JIS R-7607:2000に記載された方法によって測定することができる。
[Fiber diameter of carbon fiber]
When the fibers contained in the composite material A or composite material B of the present invention are carbon fibers, the fiber diameter of the single yarn of the carbon fiber used (generally, the single yarn may be called a filament) may be appropriately determined according to the type of carbon fiber, and is not particularly limited. The average fiber diameter is usually preferably in the range of 3 μm to 50 μm, more preferably in the range of 4 μm to 12 μm, and even more preferably in the range of 5 μm to 8 μm. When the carbon fiber is in the form of a fiber bundle, it refers to the diameter of the carbon fiber (single yarn) constituting the fiber bundle, not the diameter of the fiber bundle. The average fiber diameter of the carbon fiber can be measured, for example, by the method described in JIS R-7607:2000.
[ガラス繊維]
本発明の複合材料A又は複合材料Bに含まれる繊維は、ガラス繊維であっても良い。ガラス繊維の種類に特に限定は無く、Eガラス、AガラスまたはCガラスからなるガラス繊維のいずれをも使用することができ、また、これらを混合して使用することもできる。本発明におけるガラス繊維に特に限定は無いが、ガラス繊維の平均繊維直径は、1μm~50μmが好ましく、5μm~20μmがより好ましい。
[Glass fiber]
The fibers contained in the composite material A or the composite material B of the present invention may be glass fibers. There is no particular limitation on the type of glass fiber, and any glass fiber made of E glass, A glass, or C glass may be used, or these may be used in combination. There is no particular limitation on the glass fiber in the present invention, but the average fiber diameter of the glass fiber is preferably 1 μm to 50 μm, more preferably 5 μm to 20 μm.
[サイジング剤]
本発明に用いられる炭素繊維又はガラス繊維は、表面にサイジング剤が付着しているものであってもよい。サイジング剤が付着している強化繊維を用いる場合、当該サイジング剤の種類は、強化繊維及びマトリクス樹脂の種類に応じて適宜選択することができるものであり、特に限定されるものではない。
[Sizing agent]
The carbon fiber or glass fiber used in the present invention may have a sizing agent attached to the surface. When using reinforcing fibers with a sizing agent attached thereto, the type of the sizing agent can be appropriately selected according to the types of reinforcing fibers and matrix resin, and is not particularly limited.
[複合材料A]
[複合材料Aに含まれる不連続繊維]
1.重量平均繊維長
複合材料Aに含まれる不連続繊維の重量平均繊維長は0.3mm以上が好ましく、0.3mm以上100mm以下であることがより好ましく、0.3mm以上80mm以下であることが更に好ましく、0.3mm以上50mm以下であることが一層好ましく、0.3mm以上40mm以下であることがより一層好ましい。強化繊維の重量平均繊維長が100mm以下の場合、複合材料Aの流動性が向上し、圧縮成形する際に、所望の成形体形状を得やすい。一方、重量平均繊維長が0.3mm以上の場合、成形体の機械強度が向上しやすい。
[Composite Material A]
[Discontinuous fibers contained in composite material A]
1. Weight average fiber length The weight average fiber length of the discontinuous fibers contained in the composite material A is preferably 0.3 mm or more, more preferably 0.3 mm or more and 100 mm or less, even more preferably 0.3 mm or more and 80 mm or less, even more preferably 0.3 mm or more and 50 mm or less, and even more preferably 0.3 mm or more and 40 mm or less. When the weight average fiber length of the reinforcing fibers is 100 mm or less, the fluidity of the composite material A is improved, and the desired molded body shape is easily obtained during compression molding. On the other hand, when the weight average fiber length is 0.3 mm or more, the mechanical strength of the molded body is easily improved.
不連続繊維は繊維長が互いに異なる強化繊維を併用してもよい。換言すると、強化繊維は、重量平均繊維長に単一のピークを有するものであってもよく、あるいは複数のピークを有するものであってもよい。 Discontinuous fibers may be used in combination with reinforcing fibers having different fiber lengths. In other words, the reinforcing fibers may have a single peak in the weight average fiber length, or may have multiple peaks.
強化繊維の平均繊維長は3mm以上であれば、例えば、成形体から無作為に抽出した100本の繊維の繊維長を、ノギス等を用いて1mm単位まで測定し、下記式(a)に基づいて求めることができる。平均繊維長の測定は、重量平均繊維長(Lw)で測定する。 If the average fiber length of the reinforcing fibers is 3 mm or more, for example, the fiber lengths of 100 fibers randomly extracted from the molded body can be measured to the nearest 1 mm using a caliper or the like, and the average fiber length can be calculated based on the following formula (a). The average fiber length is measured as the weight average fiber length (Lw).
個々の強化繊維の繊維長をLi、測定本数をjとすると、数平均繊維長(Ln)と重量平均繊維長(Lw)とは、以下の式(a)、(b)により求められる。
Ln=ΣLi/j・・・式(a)
Lw=(ΣLi2)/(ΣLi)・・・式(b)
なお、繊維長が一定長の場合は数平均繊維長と重量平均繊維長は同じ値になる。
成形体から強化繊維の抽出は、例えば、成形体に対し、500℃×1時間程度の加熱処理を施し、炉内にて樹脂を除去することによって行うことができる。
When the fiber length of each reinforcing fiber is Li and the number of fibers measured is j, the number average fiber length (Ln) and the weight average fiber length (Lw) can be calculated by the following formulas (a) and (b).
Ln=ΣLi/j Formula (a)
Lw=(ΣLi 2 )/(ΣLi)...Equation (b)
When the fiber length is constant, the number average fiber length and the weight average fiber length have the same value.
The reinforcing fibers can be extracted from the molded body, for example, by subjecting the molded body to a heat treatment at 500° C. for about 1 hour and removing the resin in a furnace.
[複合材料Aの繊維体積割合VfA]
本発明において、複合材料Aに含まれる繊維体積割合VfAは下記式(c)で定義される。
繊維体積割合(VfA)=100×繊維体積/(繊維体積+複合材料Aの樹脂体積) ・・・ 式(c)
より具体的には、繊維体積割合(VfA)は10Vol%以上50Vol%以下であることが好ましく、15Vol%以上45Vol%以下であることがより好ましく、20Vol%以上40Vol%以下であれば更に好ましい。
[Fiber volume fraction VfA of composite material A]
In the present invention, the fiber volume fraction VfA contained in the composite material A is defined by the following formula (c).
Fiber volume ratio (VfA)=100×fiber volume/(fiber volume+resin volume of composite material A) (Equation (c))
More specifically, the fiber volume fraction (VfA) is preferably 10 Vol% or more and 50 Vol% or less, more preferably 15 Vol% or more and 45 Vol% or less, and even more preferably 20 Vol% or more and 40 Vol% or less.
強化繊維体積割合(VfA)が10Vol%以上の場合、所望の機械特性が得られやすい。一方で、強化繊維体積割合(VfA)が50Vol%を超えない場合、プレス成形等に使用する際の流動性が良好で、所望の成形体形状を得られやすい。 When the reinforcing fiber volume fraction (VfA) is 10 Vol% or more, the desired mechanical properties are easily obtained. On the other hand, when the reinforcing fiber volume fraction (VfA) does not exceed 50 Vol%, the flowability is good when used in press molding, etc., and the desired molded shape is easily obtained.
[複合材料Aに含まれる不連続繊維の繊維形態]
1.束形態
強化繊維は繊維長が5mm以上の不連続繊維であって、繊維束0.3mm未満の炭素繊維a1と、束幅0.3mm以上3.0mm以下の炭素繊維束a2とを含んでいることが好ましい。複合材料Aに含まれる強化繊維に対する強化繊維束a2の体積割合は、5Vol%以上95Vol%未満が好ましく、10Vol%以上90Vol%未満がより好ましい。
[Fiber morphology of discontinuous fibers contained in composite material A]
1. Bundle form The reinforcing fibers are discontinuous fibers having a fiber length of 5 mm or more, and preferably contain carbon fibers a1 having a fiber bundle width of less than 0.3 mm and carbon fiber bundles a2 having a bundle width of 0.3 mm or more and 3.0 mm or less. The volume ratio of the reinforcing fiber bundles a2 to the reinforcing fibers contained in the composite material A is preferably 5 Vol% or more and less than 95 Vol%, and more preferably 10 Vol% or more and less than 90 Vol%.
2.分散
複合材料Aにおいて、強化繊維は面内方向に分散していることが好ましい。面内方向とは、成形体の板厚方向に直交する方向であり、板厚方向に直交する平行な面の不定の方向を意味している。
2. Dispersion In the composite material A, the reinforcing fibers are preferably dispersed in an in-plane direction. The in-plane direction is a direction perpendicular to the plate thickness direction of the molded body, and means an arbitrary direction of a parallel plane perpendicular to the plate thickness direction.
更に、強化繊維は面内方向に2次元方向にランダムに分散していることが好ましい。複合材料Aを流動させずに圧縮成形した場合、成形前後で強化繊維の形態はほぼ維持されるため、複合材料Aを成形した成形体に含まれる強化繊維も同様に、成形体の面内方向に2次元ランダムに分散していることが好ましい。 Furthermore, it is preferable that the reinforcing fibers are dispersed two-dimensionally and randomly in the in-plane direction. When composite material A is compression molded without flowing, the shape of the reinforcing fibers is largely maintained before and after molding, so it is preferable that the reinforcing fibers contained in the molded product obtained by molding composite material A are also dispersed two-dimensionally and randomly in the in-plane direction of the molded product.
ここで、2次元ランダムに分散しているとは、強化繊維が、成形体の面内方向において一方向のような特定方向ではなく無秩序に配向しており、全体的には特定の方向性を示すことなくシート面内に配置されている状態を言う。この2次元ランダムに分散している不連続繊維を用いて得られる複合材料Aは、面内に異方性を有しない、実質的に等方性の複合材料Aである。 Here, "dispersed randomly in two dimensions" refers to a state in which the reinforcing fibers are oriented randomly in the in-plane direction of the molded body, rather than in a specific direction such as one direction, and are arranged in the sheet plane overall without showing a specific directionality. Composite material A obtained using discontinuous fibers that are randomly dispersed in this way is a substantially isotropic composite material A that does not have anisotropy in the plane.
なお、2次元ランダムの配向度は、互いに直交する二方向の引張弾性率の比を求めることで評価する。成形体の任意の方向、及びこれと直交する方向について、それぞれ測定した引張弾性率の値のうち大きいものを小さいもので割った(Eδ)比が5以下、より好ましくは2以下、更に好ましくは1.5以下であれば、強化繊維が2次元ランダムに分散していると評価できる。成形体は形状を有しているため、面内方向への2次元ランダム分散の評価方法としては、複合材料Aに含まれる樹脂が熱可塑性樹脂の場合、軟化温度以上に加熱して平板形状に戻して固化すると良い。この際、複合材料Aと複合材料Bは分離し、
複合材料Aのみ取り出す。その後、試験片を切り出して引張弾性率を求めると、2次元方向のランダム分散状態を確認できる。
The degree of two-dimensional random orientation is evaluated by determining the ratio of the tensile modulus in two mutually orthogonal directions. If the (Eδ) ratio, calculated by dividing the larger of the tensile modulus values measured in any direction of the molded body and the direction orthogonal thereto by the smaller, is 5 or less, more preferably 2 or less, and even more preferably 1.5 or less, it can be evaluated that the reinforcing fibers are two-dimensionally randomly dispersed. Since the molded body has a shape, when the resin contained in the composite material A is a thermoplastic resin, it is preferable to heat it to a softening temperature or higher to return it to a flat plate shape and solidify it. At this time, the composite material A and the composite material B are separated,
Only composite material A is taken out. Then, a test piece is cut out and the tensile modulus is measured, thereby making it possible to confirm the random dispersion state in two dimensions.
[複合材料Aに含まれる樹脂M1]
複合材料Aに含まれる樹脂M1に特に限定は無く、熱硬化性樹脂であっても、熱可塑性樹脂であっても良い。
[Resin M1 contained in composite material A]
There is no particular limitation on the resin M1 contained in the composite material A, and it may be a thermosetting resin or a thermoplastic resin.
1.熱可塑性樹脂
複合材料Aに含まれる好ましい樹脂M1は、熱可塑性樹脂である。熱可塑性樹脂の種類は特に限定されるものではなく、所望の軟化点又は融点を有するものを適宜選択して用いることができる。上記熱可塑性のマトリクス樹脂としては、通常、軟化点が180℃~350℃の範囲内のものが用いられるが、これに限定されるものではない。
1. Thermoplastic resin The preferred resin M1 contained in the composite material A is a thermoplastic resin. The type of thermoplastic resin is not particularly limited, and one having a desired softening point or melting point can be appropriately selected and used. As the thermoplastic matrix resin, one having a softening point in the range of 180°C to 350°C is usually used, but is not limited thereto.
熱可塑性樹脂の種類としては、例えば、塩化ビニル系樹脂、塩化ビニリデン系樹脂、酢酸ビニル系樹脂、ポリビニルアルコール系樹脂、ポリスチレン系樹脂、アクリロニトリル-スチレン系樹脂(AS樹脂)、アクリロニトリル-ブタジエン-スチレン系樹脂(ABS樹脂)、アクリル系樹脂、メタクリル系樹脂、ポリエチレン系樹脂、ポリプロピレン系樹脂、各種の熱可塑性ポリアミド系樹脂、ポリアセタール系樹脂、ポリカーボネート系樹脂、ポリエチレンテレフタレート系樹脂、ポリエチレンナフタレート系樹脂、ポリブチレンナフタレート系樹脂、ボリブチレンテレフタレート系樹脂、ポリアリレート系樹脂、ポリフェニレンエーテ系樹脂、ポリフェニレンスルフィド系樹脂、ポリスルホン系樹脂、ポリエーテルスルホン系樹脂、ポリエーテルエーテルケトン系樹脂、ポリ乳酸系樹脂などが挙げられる。 Examples of types of thermoplastic resins include vinyl chloride resins, vinylidene chloride resins, vinyl acetate resins, polyvinyl alcohol resins, polystyrene resins, acrylonitrile-styrene resins (AS resins), acrylonitrile-butadiene-styrene resins (ABS resins), acrylic resins, methacrylic resins, polyethylene resins, polypropylene resins, various thermoplastic polyamide resins, polyacetal resins, polycarbonate resins, polyethylene terephthalate resins, polyethylene naphthalate resins, polybutylene naphthalate resins, polybutylene terephthalate resins, polyarylate resins, polyphenylene ether resins, polyphenylene sulfide resins, polysulfone resins, polyether sulfone resins, polyether ether ketone resins, and polylactic acid resins.
熱可塑性樹脂は、結晶性樹脂であっても、非晶性樹脂であっても良い。結晶性樹脂の場合、好ましい結晶性樹脂は、具体的にはナイロン6などのポリアミド系樹脂、ポリエチレンテレフタレート系樹脂、ポリブチレンテレフタレート系樹脂、ポリエチレン系樹脂、ポリプロピレン系樹脂、ポリアセタール系樹脂、ポリフェニレンスルフィド系樹脂などを挙げる事ができる。中でも、ポリアミド系樹脂、ポリブチレンテレフタレート系樹脂、ポリフェニレンスルフィド系樹脂は、耐熱性や機械的強度に優れるなど好適に用いられる。 The thermoplastic resin may be either a crystalline resin or an amorphous resin. In the case of a crystalline resin, preferred crystalline resins include polyamide resins such as nylon 6, polyethylene terephthalate resins, polybutylene terephthalate resins, polyethylene resins, polypropylene resins, polyacetal resins, and polyphenylene sulfide resins. Among these, polyamide resins, polybutylene terephthalate resins, and polyphenylene sulfide resins are preferably used because of their excellent heat resistance and mechanical strength.
ポリアミド系樹脂の一つであるナイロン(以下「PA」と略記することがある)としては、PA6(ポリカプロアミド、ポリカプロラクタム、ポリε-カプロラクタムとも称される)、PA26(ポリエチレンアジパミド)、PA46(ポリテトラメチレンアジパミド)、PA66(ポリヘキサメチレンアジパミド)、PA69(ポリヘキサメチレンアゼパミド)、PA410(ポリテトラメチレンセバカミド)、PA610(ポリヘキサメチレンセバカミド)、PA611(ポリヘキサメチレンウンデカミド)、PA612(ポリヘキサメチレンドデカミド)、PA11(ポリウンデカンアミド)、PA12(ポリドデカンアミド)、PA1212(ポリドデカメチレンドデカミド)、PA6T(ポリヘキサメチレンテレフタルアミド)、PA6I(ポリヘキサメチレンイソフタルアミド)、PA912(ポリノナメチレンドデカミド)、PA1012(ポリデカメチレンドデカミド)、PA9T(ポリノナメチレンテレフタラミド)、PA9I(ポリノナメチレンイソフタルアミド)、PA10T(ポリデカメチレンテレフタラミド)、PA10I(ポリデカメチレンイソフタルアミド)、PA11T(ポリウンデカメチレンテレフタルアミド)、PA11I(ポリウンデカメチレンイソフタルアミド)、PA12T(ポリドデカメチレンテレフタラミド)、PA12I(ポリドデカメチレンイソフタルアミド)、ポリアミドMXD6(ポリメタキシリレンアジパミド)からなる群より選ばれる少なくとも1種が好ましい。 Nylon (hereinafter sometimes abbreviated as "PA"), which is a type of polyamide resin, includes PA6 (also called polycaproamide, polycaprolactam, or poly-ε-caprolactam), PA26 (polyethylene adipamide), PA46 (polytetramethylene adipamide), PA66 (polyhexamethylene adipamide), PA69 (polyhexamethylene azepamide), PA410 (polytetramethylene sebacamide), PA610 (polyhexamethylene sebacamide), PA611 (polyhexamethylene undecamide), PA612 (polyhexamethylene dodecamide), PA11 (polyundecane amide), PA12 (polydodecanamide), PA1212 (polydodecamethylene dodecamide), PA6T (polyhexamethylene At least one selected from the group consisting of polyhexamethylene isophthalamide, ...
2.熱硬化性樹脂
複合材料Aに含まれる樹脂M1は、熱硬化性樹脂であっても良い。熱硬化性樹脂の場合、不飽和ポリエステル系樹脂、ビニルエステル系樹脂、エポキシ樹脂、フェノール樹脂などが用いられる。熱硬化性樹脂としては、1種を単独で使用してもよく、2種以上を併用してもよい。より具体的には、複合材料Aは、強化繊維と熱硬化性樹脂を含んだシートモールディングコンパウンド(SMCと呼ぶ場合がある)であっても良い。
2. Thermosetting resin The resin M1 contained in the composite material A may be a thermosetting resin. In the case of a thermosetting resin, an unsaturated polyester resin, a vinyl ester resin, an epoxy resin, a phenolic resin, or the like is used. As the thermosetting resin, one type may be used alone, or two or more types may be used in combination. More specifically, the composite material A may be a sheet molding compound (sometimes called SMC) containing reinforcing fibers and a thermosetting resin.
3.その他の剤
本発明で用いる複合材料Aには、本発明の目的を損なわない範囲で、有機繊維または無機繊維の各種繊維状または非繊維状のフィラー、難燃剤、耐UV剤、安定剤、離型剤、顔料、軟化剤、可塑剤、界面活性剤等の添加剤を含んでいてもよい。
3. Other Agents The composite material A used in the present invention may contain additives such as various fibrous or non-fibrous fillers of organic or inorganic fibers, flame retardants, UV resistance agents, stabilizers, release agents, pigments, softeners, plasticizers, surfactants, etc., within the scope of not impairing the object of the present invention.
[複合材料B]
[複合材料Bに含まれる連続繊維]
1.全般
本発明における複合材料Bは連続繊維を含む。該連続繊維は連続繊維束でもあり、束幅を有する。繊維束の幅と厚みは、互いに直交する3つの直線(x軸、y軸、及びz軸とする)を考えた場合に、繊維束の繊維方向をx軸方向とし、それに直交するy軸方向の長さの最大値ymaxとz軸方向の長さの最大値zmaxとのうち長い方を幅とし、短い方を厚みとする。
[Composite Material B]
[Continuous fibers contained in composite material B]
1. General The composite material B in the present invention includes continuous fibers. The continuous fibers are also continuous fiber bundles and have a bundle width. The width and thickness of the fiber bundle are defined as follows, when considering three mutually orthogonal straight lines (x-axis, y-axis, and z-axis): the fiber direction of the fiber bundle is the x-axis direction, and the maximum length ymax in the y-axis direction perpendicular to the x-axis direction and the maximum length zmax in the z-axis direction perpendicular to the x-axis direction are defined as the longer of the two, the width and the thickness, respectively.
連続繊維は、織編物、ストランドの一方向配列シート状物及び多軸織物等のシート状であっても良い。なお、多軸織物とは、一般に、一方向に引き揃えた繊維強化材の束をシート状にして角度を変えて積層したもの(多軸織物基材)を、ポリアミド糸、ポリエステル糸、ガラス繊維糸等のステッチ糸で、この積層体を厚さ方向に貫通して、積層体の表面と裏面の間を表面方向に沿って往復しステッチした織物をいう。 The continuous fibers may be in the form of a sheet, such as a woven or knitted fabric, a sheet-like material with unidirectionally aligned strands, or a multiaxial fabric. Note that a multiaxial fabric generally refers to a fabric in which bundles of fiber reinforcement aligned in one direction are formed into a sheet and laminated at different angles (multiaxial fabric substrate), and then stitched with a stitch thread such as polyamide thread, polyester thread, or glass fiber thread that penetrates the laminate in the thickness direction and travels back and forth between the front and back surfaces of the laminate in the surface direction.
2.一軸配向
本発明における複合材料Bに含まれる連続繊維は、一軸配向した連続繊維であることが好ましい。一軸配向した連続繊維とは、配向方向が一つのみであり、他の方向には配向していないことを意味する。一軸配向した連続繊維を用いた場合、成形する時に繊維幅が広がってしまう課題が、より顕著になる。複合材料Bに含まれる連続繊維は、一軸配向した連続繊維であって、複合材料Bの長手方向に配向していることがより好ましい。
2. Uniaxial orientation The continuous fibers contained in the composite material B of the present invention are preferably uniaxially oriented continuous fibers. Uniaxially oriented continuous fibers mean that they have only one orientation direction and are not oriented in other directions. When uniaxially oriented continuous fibers are used, the problem of the fiber width expanding during molding becomes more pronounced. It is more preferable that the continuous fibers contained in the composite material B are uniaxially oriented continuous fibers and are oriented in the longitudinal direction of the composite material B.
3.二軸配向
複合材料Bに含まれる連続繊維は、二軸配向した連続繊維であって、複合材料Bの長手方向、及び長手方向と直交した方向に配向していることが好ましい。このとき、複合材料Bは一軸配向した連続繊維プリプレグを積層して二軸配向とすれば良い。これは、長手方向と直交した方向に配向している連続繊維によって、長手方向の連続繊維の乱れを抑制するためである。なお、二軸配向した場合、本発明における「連続繊維の配向の乱れ」とは、「複合材料Bの長手方向の連続繊維の乱れ」を指す。
3. Biaxial orientation The continuous fibers contained in composite material B are preferably biaxially oriented continuous fibers oriented in the longitudinal direction of composite material B and in a direction perpendicular to the longitudinal direction. In this case, composite material B may be biaxially oriented by laminating uniaxially oriented continuous fiber prepregs. This is because the continuous fibers oriented in a direction perpendicular to the longitudinal direction suppress disturbance of the continuous fibers in the longitudinal direction. In the case of biaxial orientation, the "disturbance of the orientation of the continuous fibers" in the present invention refers to "disturbance of the continuous fibers in the longitudinal direction of composite material B".
[複合材料Bの繊維体積割合(VfB)]
本発明において、複合材料Bに含まれる繊維体積割合VfBは下記式(d)で定義される。
繊維体積割合(VfB)=100×繊維体積/(繊維体積+複合材料Bの樹脂体積) ・・・ 式(d)
より具体的には、繊維体積割合(VfB)は10Vol%以上60Vol%以下であることが好ましく、30Vol%以上60Vol%以下であることがより好ましく、40Vol%以上60Vol%以下であればさらに好ましい。
[Fiber volume fraction of composite material B (VfB)]
In the present invention, the fiber volume fraction VfB contained in the composite material B is defined by the following formula (d).
Fiber volume ratio (VfB)=100×fiber volume/(fiber volume+resin volume of composite material B) Formula (d)
More specifically, the fiber volume fraction (VfB) is preferably 10 Vol% or more and 60 Vol% or less, more preferably 30 Vol% or more and 60 Vol% or less, and even more preferably 40 Vol% or more and 60 Vol% or less.
強化繊維体積割合(VfB)が10Vol%以上の場合、所望の機械特性が得られやすい。一方、強化繊維体積割合(VfB)が60Vol%を超えない場合、強化繊維周辺に樹脂が一定量存在し、複合材料Aの樹脂M1と複合材料Bの樹脂M2を安定して密着させることができるため高い物性を維持し易くなる。 When the reinforcing fiber volume fraction (VfB) is 10 Vol% or more, the desired mechanical properties are easily obtained. On the other hand, when the reinforcing fiber volume fraction (VfB) does not exceed 60 Vol%, a certain amount of resin is present around the reinforcing fibers, and resin M1 of composite material A and resin M2 of composite material B can be stably adhered to each other, making it easier to maintain high physical properties.
[複合材料Bに含まれる樹脂M2]
1.熱硬化性樹脂
1.1 種類
複合材料Bに含まれる樹脂M2は、熱硬化性樹脂であっても良い。複合材料Bに含まれる熱硬化性樹脂は、不飽和ポリエステル系樹脂、ビニルエステル系樹脂、エポキシ樹脂、フェノール樹脂などが用いられるが、接着性、耐熱性の観点からエポキシ樹脂が好ましい。熱硬化性樹脂としては、1種を単独で使用してもよく、2種以上を併用してもよい。
[Resin M2 contained in composite material B]
1. Thermosetting resin 1.1 Types The resin M2 contained in the composite material B may be a thermosetting resin. The thermosetting resin contained in the composite material B may be an unsaturated polyester resin, a vinyl ester resin, an epoxy resin, a phenolic resin, or the like, but an epoxy resin is preferred from the viewpoint of adhesion and heat resistance. As the thermosetting resin, one type may be used alone, or two or more types may be used in combination.
1.2 硬化度
複合材料Bに含まれる樹脂M2は、熱硬化性樹脂であることが好ましく、半硬化した熱硬化性樹脂であることがより好ましい。半硬化樹脂の硬化度は50%以上が好ましく、55%以上がより好ましく、60%以上が更に好ましく、65%以上が一層好ましく、70%以上がより一層好ましい。
1.2 Degree of cure The resin M2 contained in the composite material B is preferably a thermosetting resin, more preferably a semi-cured thermosetting resin. The degree of cure of the semi-cured resin is preferably 50% or more, more preferably 55% or more, even more preferably 60% or more, even more preferably 65% or more, and even more preferably 70% or more.
硬化度の調整方法は、1種類の硬化剤を使用して加熱温度を調整する方法、反応温度の異なる2種類以上の硬化剤を使用し、低温側で反応する硬化剤のみを反応させて調整する方法などがある。 There are several ways to adjust the degree of hardening, including using one type of hardener and adjusting the heating temperature, or using two or more types of hardeners with different reaction temperatures and reacting only the hardener that reacts at a lower temperature.
熱硬化性樹脂の硬化度は、未反応の熱硬化性樹脂に対して硬化剤を混ぜて反応させ、反応熱量を測定する(示差走査熱量計、DSCを用いる)ことによって決定できる。具体的には、未反応の熱硬化性樹脂に対して、様々な配合量で硬化剤を添加したサンプルを作製し、熱硬化性樹脂を硬化させたときの反応熱量をDSCで測定する。特定の配合量以上で硬化剤を添加すると反応熱量が一定となるので、反応熱量が一定となった時の硬化剤の配合量を基準量とする(硬化度100%とすることが出来る、硬化剤の配合量とする)。基準量に対して投入した添加量の割合で硬化度を決定する。例えば、基準量に対して投入した硬化剤の添加量が50%であれば、硬化度50%となる。 The degree of cure of a thermosetting resin can be determined by mixing a curing agent with unreacted thermosetting resin, allowing it to react, and measuring the amount of heat of reaction (using a differential scanning calorimeter, DSC). Specifically, samples are made by adding various amounts of curing agent to unreacted thermosetting resin, and the amount of reaction heat when the thermosetting resin is cured is measured using DSC. When a certain amount of curing agent is added, the amount of reaction heat becomes constant, so the amount of curing agent added when the amount of reaction heat becomes constant is set as the reference amount (the amount of curing agent that can give a degree of cure of 100%). The degree of cure is determined by the ratio of the amount of curing agent added to the reference amount. For example, if the amount of curing agent added to the reference amount is 50%, the degree of cure is 50%.
半硬化した熱硬化性樹脂を用いることで成形の時に複合材料Bに含まれる連続繊維の配向方向への直進性が保持されやすくなり、配置面Xが三次元形状であっても、連続繊維の最大厚みTmaxと、最小厚みTminの関係が、1≦Tmax/Tmin≦1.5となる成形体を製造するのが容易となる。 By using a semi-cured thermosetting resin, it becomes easier to maintain the straightness of the orientation of the continuous fibers contained in composite material B during molding, and even if the arrangement surface X has a three-dimensional shape, it becomes easier to manufacture a molded body in which the relationship between the maximum thickness Tmax and the minimum thickness Tmin of the continuous fibers satisfies 1≦Tmax/Tmin≦1.5.
1.3 硬化剤
1.3.1 1種類の硬化剤
硬化剤の種類に特に限定はないが、硬化度の調整を行いやすいものが好ましい。1種類の硬化剤を使用する場合には、広範囲の温度域で緩やかに硬化反応が進むものが好ましい。
1.3 Curing agent 1.3.1 One type of curing agent There is no particular limitation on the type of curing agent, but it is preferable to use one that allows easy adjustment of the degree of curing. When using one type of curing agent, it is preferable to use one that allows the curing reaction to proceed slowly over a wide temperature range.
1.3.2 2種類の硬化剤
2種類の硬化剤を使用する場合には、後述する2段階硬化に利用するため、硬化反応が進行する温度域に十分な差がある組合せが好ましい。2種類の硬化剤を使用する場合、それぞれの硬化剤の反応が開始する温度域が30℃以上離れていることが好ましく、50℃以上離れていることがより好ましい。
1.3.2 Two types of curing agents When using two types of curing agents, it is preferable to use a combination that has a sufficient difference in the temperature range in which the curing reaction proceeds, in order to utilize them in the two-stage curing described below. When using two types of curing agents, it is preferable that the temperature ranges in which the reaction of each curing agent starts are separated by 30°C or more, and more preferably by 50°C or more.
低温側で反応させる硬化剤は常温~100℃までの温度範囲で硬化出来ることが好まし
い。
It is preferable that the curing agent that reacts at a low temperature can be cured in the temperature range from room temperature to 100°C.
一方、高温側で反応させる硬化剤は、製造効率上の観点から、特定の温度以上の領域で反応する潜在性硬化剤が好ましい。潜在性硬化剤は、イオン反応、加熱溶解、モレキュラーシーブ、マイクロカプセル、又はUV硬化の一群から選ばれる少なくとも1つを利用することが好ましい。未硬化の熱硬化性樹脂材料と連続繊維とを複合化したものに、潜在性硬化剤を添加し、複合材料Bとすると良い。潜在性硬化剤として、モレキュラーシーブやマイクロカプセルなどに封入しておけば、特定のトリガーで硬化剤を溶出できる。また、エポキシ樹脂硬化剤においてはイオン反応を利用したルイス酸錯体、加熱による溶解を利用したジシアンジアミドやイミダゾール化合物などが挙げられる。 On the other hand, from the viewpoint of manufacturing efficiency, the curing agent reacted on the high temperature side is preferably a latent curing agent that reacts at a temperature above a specific temperature. The latent curing agent is preferably at least one selected from the group consisting of ionic reaction, heat dissolution, molecular sieves, microcapsules, and UV curing. A latent curing agent may be added to a composite of uncured thermosetting resin material and continuous fibers to form composite material B. If the latent curing agent is encapsulated in a molecular sieve or microcapsules, the curing agent can be eluted by a specific trigger. Examples of epoxy resin curing agents include Lewis acid complexes that utilize ionic reaction, and dicyandiamide and imidazole compounds that utilize dissolution by heating.
1.4 2段階硬化
複合材料Bの作製過程で1段階目の硬化を行うことで半硬化樹脂とし、その後、複合材料Aと複合材料Bとを積層して成形体を製造する際に2段階目の硬化を行うことが好ましい(2段階硬化)。
1.4 Two-stage curing It is preferable to carry out a first stage of curing during the production process of composite material B to produce a semi-cured resin, and then carry out a second stage of curing when composite material A and composite material B are laminated to produce a molded product (two-stage curing).
複合材料Bとして、一軸配向した連続繊維を用いた場合、複合材料Bは引抜成形によって作成され、半硬化させたものが好ましい。引抜成形であればダイ内で未反応の熱硬化性樹脂を含浸させながら半硬化させることが可能であり、繊維目付や樹脂割合も所望のものを製造することが容易である。この時、半硬化させるための温度に特に制限はなく、使用する硬化剤の特性に合わせた温度とすれば良い。半硬化させるための好ましい温度範囲は100℃以下である。100℃以下とすることで2段階目の硬化加熱温度のプロセスウィンドウ(加工の条件幅)を広く保つことができる。複合材料Bに含まれる半硬化した熱硬化性樹脂は、複合材料Aと積層して成形する際に硬化を完了させることができる。すなわち、成形の時に樹脂M2を完全硬化して成形体を製造することができる。言い換えると半硬化状態の複合材料Bは、成形工程で賦形可能である。樹脂M2を成形する際に硬化を完了させる場合、前記潜在性硬化剤を用いると良い。 When uniaxially oriented continuous fibers are used as the composite material B, it is preferable that the composite material B is made by pultrusion molding and semi-cured. With pultrusion molding, it is possible to semi-cure while impregnating the unreacted thermosetting resin in the die, and it is easy to manufacture the desired fiber basis weight and resin ratio. At this time, there is no particular limit to the temperature for semi-curing, and it is sufficient to set the temperature according to the characteristics of the curing agent used. The preferred temperature range for semi-curing is 100°C or less. By setting the temperature at 100°C or less, the process window (processing condition range) of the second stage curing heating temperature can be kept wide. The semi-cured thermosetting resin contained in the composite material B can be completely cured when laminated with the composite material A and molded. In other words, the resin M2 can be completely cured during molding to produce a molded body. In other words, the composite material B in a semi-cured state can be shaped in the molding process. When completing the curing when molding the resin M2, it is recommended to use the latent curing agent.
1.5 複合材料Bに含まれるマイクロカプセル硬化剤
複合材料Bには、マイクロカプセル型の硬化剤を含んでいても良い。マイクロカプセル硬化剤は、特定の温度領域においてカプセルが崩壊し、中に含まれる硬化成分がマトリクス中に溶出する機構を持つ。
1.5 Microcapsulated hardener contained in composite material B Composite material B may contain a microcapsulated hardener. The microcapsulated hardener has a mechanism in which the capsules collapse in a specific temperature range and the hardening component contained therein is eluted into the matrix.
(1)2段階硬化のうち1段階目の硬化での使用
樹脂M2を2段階で硬化させる場合、マイクロカプセル硬化剤を1段階目の硬化に用いても良い。この場合、室温ではマイクロカプセルは崩壊せず、複合材料Bの製造時の温度領域でマイクロカプセルを崩壊させればよい。
(1) Use in the first stage of two-stage curing When resin M2 is cured in two stages, the microcapsule curing agent may be used in the first stage of curing. In this case, the microcapsules do not collapse at room temperature, and the microcapsules can be collapsed in the temperature range during the production of composite material B.
(2)2段階硬化のうち2段階目の硬化での使用
樹脂M2を2段階で硬化させる場合、マイクロカプセル硬化剤を2段階目の硬化に用いても良い。この場合、複合材料Bの製造工程ではマイクロカプセルが崩壊しないことが好ましく、言い換えるとマイクロカプセルは120度以上の温度領域で崩壊することが好ましい。
(2) Use in the second stage of two-stage curing When resin M2 is cured in two stages, the microcapsule curing agent may be used in the second stage of curing. In this case, it is preferable that the microcapsules do not collapse in the manufacturing process of composite material B, in other words, it is preferable that the microcapsules collapse in a temperature range of 120 degrees or more.
一方、プレス成形する際には半硬化樹脂を完全硬化させることが好ましい。プレス成形の際にマイクロカプセルが崩壊し、マイクロカプセル中に含まれる硬化剤が溶出し、成形型内で硬化が進んで完全硬化させることが好ましい。この場合、完全硬化させる温度は、プレス成形の成形型温となる。 On the other hand, it is preferable to completely cure the semi-cured resin when press molding. It is preferable that the microcapsules collapse during press molding, the curing agent contained in the microcapsules dissolves, and curing proceeds within the mold to completely cure. In this case, the temperature at which complete curing occurs is the mold temperature for press molding.
(3)2段階硬化のうち1段階目及び2段階目での使用
2種類のマイクロカプセル硬化剤を用いることで、(1)一段階目の硬化と、(2)二段階目の双方において、樹脂M2をマイクロカプセル硬化剤によって硬化させることができる。
(3) Use in the first and second stages of two-stage curing By using two types of microcapsule hardeners, resin M2 can be hardened by the microcapsule hardeners in both (1) the first stage curing and (2) the second stage.
1.6 樹脂M2の複素粘度(η2(Pa・s))
本発明における樹脂M2は、樹脂M2が半硬化した熱硬化性樹脂であって、複素粘度η2が8000Pa・s以上30000Pa・s以下であることが好ましい。この範囲を満たすことで、複合材料Aと複合材料Bとを積層して成形した際に、成形型の形状(特に曲面を含んだ三次元形状)に沿うように複合材料Bを賦形しやすくなるし、成形する時に複合材料Bに含まれる連続繊維の直進性も担保できるため、賦形性と高い機械物性とを両立できる製造方法を提供できる。
1.6 Complex viscosity of resin M2 (η2 (Pa s))
Resin M2 in the present invention is preferably a semi-cured thermosetting resin having a complex viscosity η2 of 8000 Pa·s or more and 30000 Pa·s or less. By satisfying this range, when composite material A and composite material B are laminated and molded, composite material B can be easily shaped to conform to the shape of a molding die (particularly a three-dimensional shape including a curved surface), and the straightness of the continuous fibers contained in composite material B during molding can be ensured, so that a manufacturing method that can achieve both shaping ability and high mechanical properties can be provided.
より好ましくは、樹脂M2が半硬化した熱硬化性樹脂であって、複素粘度η2は、8000Pa・s以上20000Pa・s以下がより好ましく、10000Pa・s以上16000Pa・s以下が更に好ましい。 More preferably, resin M2 is a semi-cured thermosetting resin, and the complex viscosity η2 is more preferably 8000 Pa·s or more and 20000 Pa·s or less, and even more preferably 10000 Pa·s or more and 16000 Pa·s or less.
2.熱可塑性樹脂
樹脂M2は熱可塑性樹脂であっても良い。より具体的には、樹脂M1、及び樹脂M2が熱可塑性樹脂であって、樹脂M1と樹脂M2の複素粘度が下記の関係を満たすと、より好ましい。
3×η1<η2<30000(Pa・s) かつ η1<500(Pa・s)
ただし、
η1(Pa・s):せん断速度2(1/s)のときの、樹脂M1の複素粘度
η2(Pa・s):せん断速度2(1/s)のときの、樹脂M2の複素粘度
である。
2. Thermoplastic Resin The resin M2 may be a thermoplastic resin. More specifically, it is more preferable that the resins M1 and M2 are thermoplastic resins, and the complex viscosities of the resins M1 and M2 satisfy the following relationship:
3×η1<η2<30000 (Pa·s) and η1<500 (Pa·s)
however,
η1 (Pa·s): Complex viscosity of resin M1 at a shear rate of 2 (1/s) η2 (Pa·s): Complex viscosity of resin M2 at a shear rate of 2 (1/s).
複合材料Aは成形体の端部に欠け(ショートショットと呼ぶ場合がある)を発生させないために流動し易い材料であることが好ましく、一方、複合材料Bは部分補強するため、複合材料Aに比べて流動しにくいことが好ましい。 Composite material A is preferably a material that flows easily to prevent chipping (sometimes called short shots) at the ends of the molded body, while composite material B is preferably less flowable than composite material A to provide partial reinforcement.
3×η1<η2<30000(Pa・s)かつη1<500(Pa・s) を満たすことで、複合材料Aと、複合材料Bとの間で、成形時の流動性に大きな差を設けることができ、樹脂M1は樹脂M2に比べて大きな流動性を確保できる。3×η1<η2あれば、複合材料Aに比べて複合材料Bの樹脂M2は流動し難くなり、成形体における連続繊維による補強が容易になる。 By satisfying 3 x η1 < η2 < 30,000 (Pa·s) and η1 < 500 (Pa·s), a large difference in fluidity during molding can be achieved between composite material A and composite material B, ensuring that resin M1 has greater fluidity than resin M2. If 3 x η1 < η2, resin M2 of composite material B will flow less easily than composite material A, making it easier to reinforce the molded body with continuous fibers.
樹脂M1がナイロン6(融点:約225℃、PA6と呼ぶ場合がある)の場合、複素粘度は245℃で500Pa・sであり、これ以上の温度に加熱した状態で成形することが好ましい。 When resin M1 is nylon 6 (melting point: approximately 225°C, sometimes called PA6), the complex viscosity is 500 Pa·s at 245°C, and it is preferable to mold it while heating to a temperature higher than this.
樹脂M2が、PA66(ポリヘキサメチレンアジパミド、融点:約260℃)の場合、複素粘度は263℃で1550Pa・sである。融点付近では粘度が大きく変化するため、厳格な温度管理のもと成形する必要がある。また、PA66以外にも、樹脂M2はMXD6-PA(融点:約240℃)、PA410(ポリテトラメチレンセバカミド、融点:約240℃)、なども用いることが可能である。 When resin M2 is PA66 (polyhexamethylene adipamide, melting point: approximately 260°C), the complex viscosity is 1550 Pa·s at 263°C. As the viscosity changes significantly near the melting point, molding must be done under strict temperature control. In addition to PA66, resin M2 can also be made from MXD6-PA (melting point: approximately 240°C), PA410 (polytetramethylene sebacamide, melting point: approximately 240°C), etc.
3.紫外線硬化樹脂
温度上昇による影響を受けにくくするためには、紫外線硬化性樹脂を、複合材料Bに含まれる樹脂M2として用いても良い。
3. UV-curable resin In order to reduce the influence of temperature rise, a UV-curable resin may be used as the resin M2 contained in the composite material B.
[圧縮成形]
本発明の成形体は、複合材料Aと複合材料Bとを積層して圧縮成形して製造する。
圧縮成形はプレス成形と呼ばれることが多いが、プレス成形には主にコールドプレス成形とホットプレス成形の2種類がある。
[Compression molding]
The molded article of the present invention is produced by laminating composite material A and composite material B and compression molding the laminate.
Compression molding is often called press molding, but there are two main types of press molding: cold press molding and hot press molding.
1.コールドプレス成形
コールドプレス成形は、樹脂M1が熱可塑性樹脂である場合に適用される方法である。このとき、樹脂M2は熱可塑性樹脂であっても、熱硬化性樹脂であっても良い。
1. Cold press molding Cold press molding is a method applied when the resin M1 is a thermoplastic resin. In this case, the resin M2 may be a thermoplastic resin or a thermosetting resin.
樹脂M1を賦形可能な温度以上に予備加熱し(工程A1)、成形型は樹脂M1が固化する温度で一定温度に制御し成形する。複合材料Aは予備加熱された状態における温度が最も高く、(工程A2)では温度が一方的に下がっていく。すなわち、複合材料Aは成形型内では加熱されずに冷却され続ける。コールドプレス成形は少なくとも以下の(工程A1)~(工程A3)を含んでいる。 Resin M1 is preheated to a temperature above which it can be shaped (step A1), and the mold is controlled to a constant temperature at which resin M1 solidifies and molded. Composite material A is at its highest temperature in the preheated state, and in (step A2) its temperature drops steadily. In other words, composite material A continues to cool without being heated within the mold. Cold press molding includes at least the following steps (step A1) to (step A3).
(工程A1)
複合材料Aを、第1の所定温度に加熱する工程である。例えば樹脂M1の成形可能な温度以上(軟化点以上)に加熱すると良い。
複合材料Bに含まれる樹脂M2が熱可塑性樹脂の場合、複合材料Bは加熱しても加熱しなくても良い。複合材料Bを加熱する場合、成形可能な温度以上に加熱することが好ましい。複合材料Bを加熱しない場合、複合材料Aと複合材料Bを積層したときに、複合材料Aから熱を受けることで、複合材料Bを加熱すれば良い。
複合材料Bに含まれる樹脂M2が熱硬化性樹脂の場合、加熱しても加熱しなくても良い。
(Step A1)
This is a step of heating the composite material A to a first predetermined temperature. For example, it is preferable to heat the composite material A to a moldable temperature or higher (above the softening point) of the resin M1.
When the resin M2 contained in the composite material B is a thermoplastic resin, the composite material B may or may not be heated. When the composite material B is heated, it is preferable to heat it to a moldable temperature or higher. When the composite material B is not heated, the composite material B may be heated by receiving heat from the composite material A when the composite materials A and B are laminated.
When the resin M2 contained in the composite material B is a thermosetting resin, it may or may not be heated.
(工程A2)
複合材料Aと、複合材料Bを、第2の所定温度に調節された成形型に配置し加圧する工程。
このときの成形圧力については特に限定はしないが、成形型キャビティ投影面積に対して20MPa未満が好ましく、10MPa以下であるとより好ましい。20MPa未満とすることで、大きな成形体の製造においても大規模な成形設備をもたなくてよい。成形型キャビティ投影面積に対して20MPa未満であれば、成形の時に複合材料Bの連続繊維の直進性を維持しやすくなる。
(Step A2)
A step of placing and pressing composite material A and composite material B in a mold adjusted to a second predetermined temperature.
The molding pressure at this time is not particularly limited, but is preferably less than 20 MPa relative to the mold cavity projected area, and more preferably 10 MPa or less. By setting the pressure to less than 20 MPa, it is not necessary to have a large-scale molding facility even in the production of a large molded body. If the pressure is less than 20 MPa relative to the mold cavity projected area, it is easier to maintain the straightness of the continuous fibers of the composite material B during molding.
(工程A3)
保圧し、複合材料Aおよび複合材料Bが十分に固化させる工程。樹脂M2が半硬化した熱硬化性樹脂である場合、成形型や複合材料Aの熱を受けことで硬化が進み、半硬化状態から完全硬化状態とすることが出来る。
(Step A3)
This is a process in which pressure is maintained to fully solidify composite material A and composite material B. If resin M2 is a semi-cured thermosetting resin, it will harden when exposed to heat from the molding die and composite material A, and can be made to go from a semi-cured state to a fully cured state.
(工程A1)~(工程A3)の工程を行うことで、成形体を製造する。 A molded body is manufactured by carrying out steps (Step A1) to (Step A3).
(他の工程)
上記の(工程A1)~(工程A3)の各工程は、上記の順番で行う必要があるが、各工程間に他の工程を含んでもよい。
(i)他の工程とは、例えば、(工程A2)の前に(工程A2)で利用される成形型と別の賦形型を利用して、成形型のキャビティの形状に予め賦形する賦形工程がある。
(ii)(工程A2)において、真空にしながら圧縮成形する真空プレス成形を用いてもよい。
(Other processes)
The above steps (Step A1) to (Step A3) must be performed in the order mentioned above, but other steps may be included between each step.
(i) The other step is, for example, a shaping step performed before (step A2) in which a shaping mold different from the mold used in (step A2) is used to pre-shape the product into the shape of the cavity of the mold.
(ii) In step A2, vacuum press molding may be used, in which compression molding is performed under vacuum.
2.ホットプレス成形
ホットプレス成形は、成形型内で樹脂M1が加熱される成形方法である。
例えば、樹脂M1と樹脂M2とが、熱硬化性樹脂の場合について、(工程B1)~(工程B4)を説明する。
(工程B1) 複合材料A、及び複合材料Bを積層し、成形型へ配置する工程。
(工程B2) 成形型上に載置された複合材料A、及び複合材料Bを加熱し、加圧する工程。
成形型上に載置された複合材料A、及び複合材料Bとを、硬化が開始される温度以上に加熱する。成形型内で樹脂M1と樹脂M2は型締めされて加圧され、賦形される。加熱されることで硬化が進められ、同時に賦形が完了する。 樹脂M2が半硬化した熱硬化性樹脂である場合、工程B2で硬化が進み、半硬化状態から完全硬化状態とすることができる。
(工程B3) 目標圧力で保圧する工程。目標圧力は0.1MPa~20MPaであり、好ましくは0.2MPa~10MPaである。保圧する時間の目安は1~20分である。(工程B4) 冷却する工程。
2. Hot Press Molding Hot press molding is a molding method in which the resin M1 is heated in a molding die.
For example, (Step B1) to (Step B4) will be described for the case where the resin M1 and the resin M2 are thermosetting resins.
(Step B1) A step of stacking composite material A and composite material B and placing them in a molding die.
(Step B2) A step of heating and pressurizing the composite material A and the composite material B placed on the molding die.
Composite material A and composite material B placed on the mold are heated to a temperature above the temperature at which curing begins. Resin M1 and resin M2 are clamped in the mold, pressurized, and shaped. The curing proceeds as they are heated, and the shaping is completed at the same time. If resin M2 is a semi-cured thermosetting resin, curing proceeds in step B2, and the resin can be changed from a semi-cured state to a fully cured state.
(Step B3) A step of maintaining the pressure at a target pressure. The target pressure is 0.1 MPa to 20 MPa, and preferably 0.2 MPa to 10 MPa. The estimated time for maintaining the pressure is 1 to 20 minutes. (Step B4) A step of cooling.
(工程B1)から(工程B2)の工程を行うことで、成形を完結できる。
上記の各工程は、上記の順番で行う必要があるが、他の工程を含んでもよい。
Molding can be completed by carrying out steps (Step B1) and (Step B2).
The above steps must be performed in the order listed above, but may include other steps.
[配置面X]
1.形状
本発明の成形体の製造方法は、不連続繊維と樹脂M1を含む複合材料Aと、連続繊維と樹脂M2を含む複合材料Bとを積層して圧縮成形し、成形体を製造する方法であって、
複合材料Bの成形型への配置面Xは、曲面を含んだ三次元形状であって、前記連続繊維の束幅方向に向かって曲がっている。複合材料Aと複合材料Bとが積層された後は、複合材料Bは積層体の表層に存在していても良いし、複合材料Aに挟まれて複合材料Bが積層体の中央に存在していても良い。
[Placement surface X]
1. Shape The method for producing a molded article of the present invention is a method for producing a molded article by laminating a composite material A containing discontinuous fibers and a resin M1 and a composite material B containing continuous fibers and a resin M2, and compression molding the laminate, comprising the steps of:
The surface X of the composite material B placed on the mold has a three-dimensional shape including a curved surface and is curved toward the bundle width direction of the continuous fibers. After the composite materials A and B are laminated, the composite material B may be present on the surface of the laminate, or may be sandwiched between the composite materials A and present in the center of the laminate.
1.1 三次元形状
配置面Xとは、複合材料Bが成形型へ配置される面であり、必ずしも成形型への接触面ではない。すなわち複合材料Aと複合材料Bとが積層された後、複合材料Bが積層体の表層に存在している場合は、複合材料Bの成形型への配置面は、成形型への接触面となる。一方、複合材料Aに挟まれて複合材料Bが積層体の中央に存在している場合、複合材料Bは複合材料Aを介して成形型に配置されるため、複合材料Bは成形型に接触しない。成形型に配置後、複合材料Bは成形されるため、成形型の配置面の形状は、そのまま成形体の形状となる。配置面は、例えば図1の103に示される。
1.1 Three-dimensional shape The placement surface X is the surface on which composite material B is placed in the mold, and is not necessarily the contact surface with the mold. In other words, after composite material A and composite material B are laminated, if composite material B exists on the surface of the laminate, the placement surface of composite material B in the mold becomes the contact surface with the mold. On the other hand, if composite material B exists in the center of the laminate sandwiched between composite materials A, composite material B is placed in the mold via composite material A, so composite material B does not come into contact with the mold. After being placed in the mold, composite material B is molded, so the shape of the placement surface of the mold becomes the shape of the molded product as it is. The placement surface is shown, for example, at 103 in FIG. 1.
三次元形状は、屈曲した面(折れ曲がっている面)や、湾曲した面(弓なりに曲がった面)を含んでいても良い。三次元形状は、平面の領域を含んでいても良い。 The three-dimensional shape may include bent or curved surfaces. The three-dimensional shape may also include planar regions.
屈曲した面の場合、例えば図3の301で示された面が挙げられる。屈曲は角度が3°以上であることが好ましく、5°以上であることがより好ましく、7°以上が更に好ましい。3°以上の傾きがあることで圧縮力の5%以上が複合材料Bに含まれる連続繊維の束幅方向に加わるため本発明の課題がより顕著になる。屈曲の角度は、図3のθ1で示される。 An example of a curved surface is the surface shown by 301 in Figure 3. The angle of curvature is preferably 3° or more, more preferably 5° or more, and even more preferably 7° or more. With an inclination of 3° or more, 5% or more of the compressive force is applied in the bundle width direction of the continuous fibers contained in composite material B, making the problem of the present invention more pronounced. The angle of curvature is shown by θ1 in Figure 3.
湾曲した面の場合、例えば半球状面、球状面が挙げられる。より詳しくは、例えば、球体や楕円体の表面を構成する曲面の一部分が挙げられ、具体的には図2の201で示される。 曲率の半径や長さには特に制限はないが、配置面Xの接線と、水平面とのなす角が3度以上あると、繊維束が乱れる課題が顕著になる。これは、圧縮力の一部が、複合材料Bに含まれる連続繊維の束方向に加わってしまうためである。配置面Xの接線と、水平面
とのなす角は、3度以上が好ましく、5度以上がより好ましく、7度以上が更に好ましい。
In the case of a curved surface, for example, a hemispherical surface or a spherical surface can be mentioned. More specifically, for example, a part of a curved surface constituting the surface of a sphere or an ellipsoid can be mentioned, specifically shown as 201 in FIG. 2. There is no particular limit to the radius or length of the curvature, but if the angle between the tangent of the arrangement surface X and the horizontal plane is 3 degrees or more, the problem of the fiber bundle being disturbed becomes significant. This is because a part of the compression force is applied in the bundle direction of the continuous fibers contained in the composite material B. The angle between the tangent of the arrangement surface X and the horizontal plane is preferably 3 degrees or more, more preferably 5 degrees or more, and even more preferably 7 degrees or more.
1.2 配置面Xは連続繊維の束幅方向に向かって曲がる
配置面Xは、曲面を含んだ三次元形状であって、複合材料Bに含まれる連続繊維の束幅方向に向かって曲がっている。言い換えると、配置面Xは、曲面を含んだ三次元形状であって、前記連続繊維の束幅方向に向かって前記曲面は曲がっている(図1の103)。 複合材料Bは、予め加熱するか、又は成形型内で加熱し、連続繊維の束幅方向に向かって曲がった形状である三次元形状の状態に変形させる。加熱前の複合材料Bは平板形状であり、成形後に三次元形状となるのが好ましい。連続繊維の束幅方向とは、例えば図1、図2、図3でいうX軸方向である。
1.2 The arrangement surface X is curved toward the bundle width direction of the continuous fibers The arrangement surface X is a three-dimensional shape including a curved surface, and is curved toward the bundle width direction of the continuous fibers contained in the composite material B. In other words, the arrangement surface X is a three-dimensional shape including a curved surface, and the curved surface is curved toward the bundle width direction of the continuous fibers (103 in FIG. 1). The composite material B is heated in advance or heated in a molding die, and is deformed into a three-dimensional shape that is a shape curved toward the bundle width direction of the continuous fibers. It is preferable that the composite material B before heating has a flat plate shape and becomes a three-dimensional shape after molding. The bundle width direction of the continuous fibers is, for example, the X-axis direction in FIG. 1, FIG. 2, and FIG. 3.
配置面Xは、連続繊維の束幅方向に向かって、弧を描いた状態、又は折れた状態で曲がっていることが好ましい。図2では、連続繊維の束幅方向に向かって弧を描いた状態が描かれており、図3では、連続繊維の束幅方向に向かって折れた状態が描かれている。 It is preferable that the arrangement surface X bends in an arc or bent state toward the bundle width direction of the continuous fibers. In FIG. 2, an arc is depicted in the bundle width direction of the continuous fibers, and in FIG. 3, a bent state is depicted toward the bundle width direction of the continuous fibers.
連続繊維として、例えば特許文献1(特開2008-230236号)に記載のものを使用すると、配置面Xで、連続繊維の配向が乱れやすい。これは、特許文献1(特開2008-230236号)に記載の連続繊維が含まれた熱硬化性樹脂プリプレグの硬化度は10%以下と低く、成形時の粘度が低すぎるためである。例えば図2の201や図3の301に示される場所に、特許文献1(特開2008-230236号)に記載の連続繊維を含んだ熱硬化性樹脂プリプレグを配置した場合、圧縮成形したとき、連続繊維が束幅方向へ圧縮力を受けることに加え、不連続繊維を含む複合材料Aの成形流動に引き摺られてしまい、連続繊維の配向が乱れが発生する。 When the continuous fibers described in Patent Document 1 (JP 2008-230236 A) are used, for example, the orientation of the continuous fibers is easily disturbed at the arrangement surface X. This is because the degree of cure of the thermosetting resin prepreg containing the continuous fibers described in Patent Document 1 (JP 2008-230236 A) is low at 10% or less, and the viscosity during molding is too low. For example, if a thermosetting resin prepreg containing the continuous fibers described in Patent Document 1 (JP 2008-230236 A) is arranged at the location shown in 201 in Figure 2 or 301 in Figure 3, the continuous fibers will be subjected to a compressive force in the bundle width direction during compression molding, and will also be dragged by the molding flow of the composite material A containing discontinuous fibers, causing the orientation of the continuous fibers to become disturbed.
配置面Xは、連続繊維の束幅方向に向かって、弧を描いた状態、又は折れた状態で曲がっている場合、従来の課題はより顕著になる。このような形状を持つ場合、複合材料Bに含まれる連続繊維の束幅方向に、成形の圧縮力が加わるため連続繊維がより乱れやすくなる。本発明の製造方法では連続繊維は乱れず、安定して高い機械物性を有する成形体を製造することができる。 The conventional problems become more pronounced when the arrangement surface X is curved in an arc or folded state toward the bundle width direction of the continuous fibers. When it has such a shape, the compression force of molding is applied in the bundle width direction of the continuous fibers contained in the composite material B, making it easier for the continuous fibers to become disordered. With the manufacturing method of the present invention, the continuous fibers are not disordered, and a molded product with stable high mechanical properties can be manufactured.
1.3 配置面Xと積層面
成形体を製造するための、複合材料Aと複合材料Bの具体例としては、例えば図1のような場合が挙げられる。図1は大きな曲率を持つ成形型に、平板形状の複合材料Aと複合材料Bを積層して配置する場合である。
1.3 Placement surface X and lamination surface A specific example of composite material A and composite material B for producing a molded product is shown in Figure 1. Figure 1 shows a case where flat-plate-shaped composite material A and composite material B are placed and laminated in a mold with a large curvature.
複合材料Aと複合材料Bを成形型に配置したとき、複合材料Aと複合材料Bとの積層面と、配置面Xとは一致していても良い。言い換えると、複合材料Bは複合材料Aと、部分的な積層ではなく、完全に積層されていても良い。 When composite material A and composite material B are placed in a mold, the lamination surface of composite material A and composite material B may coincide with placement surface X. In other words, composite material B may be completely laminated with composite material A, rather than being partially laminated.
複合材料Aと複合材料Bとをそれぞれ成形して両者を接合すれば、三次元形状へ連続繊維を配置させた成形体を製造できるが、製造プロセスが長くなって製造コストが増加してしまう。本発明によれば、複合材料Aと複合材料Bを一体成形できるため、製造コストを低減できる。 By molding composite material A and composite material B separately and joining the two, it is possible to produce a molded body with continuous fibers arranged in a three-dimensional shape, but this lengthens the manufacturing process and increases manufacturing costs. According to the present invention, composite material A and composite material B can be molded as a single unit, reducing manufacturing costs.
[成形体に含まれる連続繊維の最大厚みと最小厚み]
本発明の成形体に含まれる連続繊維の最大厚みTmaxと、最小厚みTminの関係は、1≦Tmax/Tmin≦1.5である。ここで、成形体に含まれる連続繊維とは、複合材料Bに含まれていた連続繊維と同一の繊維であって、成形された状態にあるものをいう。
[Maximum and minimum thicknesses of continuous fibers contained in molded product]
The relationship between the maximum thickness Tmax and the minimum thickness Tmin of the continuous fibers contained in the molded product of the present invention is 1≦Tmax/Tmin≦1.5. Here, the continuous fibers contained in the molded product refer to the same fibers as the continuous fibers contained in composite material B, which are in a molded state.
すなわち、本発明は、
不連続繊維と樹脂M1を含む複合材料Aと、連続繊維と樹脂M2を含む複合材料Bとを積層して圧縮成形し、成形体を製造する方法であって、
複合材料Bの成形型への配置面Xは、曲面を含んだ三次元形状であって、前記連続繊維の束幅方向に向かって曲がっており、
成形体に含まれる前記連続繊維の最大厚みTmaxと、最小厚みTminの関係が、1≦Tmax/Tmin≦1.5である。
ともいえる。
That is, the present invention provides
A method for producing a molded body by laminating and compression molding a composite material A containing discontinuous fibers and a resin M1 and a composite material B containing continuous fibers and a resin M2, comprising the steps of:
The surface X of the composite material B placed on the molding die has a three-dimensional shape including a curved surface and is curved toward the bundle width direction of the continuous fibers,
The relationship between the maximum thickness Tmax and the minimum thickness Tmin of the continuous fibers contained in the molded body is 1≦Tmax/Tmin≦1.5.
It can also be said that.
好ましくは、1≦Tmax/Tmin<1.3であり、より好ましくは1≦Tmax/Tmin<1.2であり、更に好ましくは1≦Tmax/Tmin<1.1である。 Preferably, 1≦Tmax/Tmin<1.3, more preferably, 1≦Tmax/Tmin<1.2, and even more preferably, 1≦Tmax/Tmin<1.1.
Tmax/Tmin≦1.5であれば、連続繊維が配向方向へ乱れることなく揃っていることを意味し、高い機械物性を有する成形体を得ることができる。 If Tmax/Tmin≦1.5, this means that the continuous fibers are aligned in the direction of orientation without any disturbance, and a molded product with high mechanical properties can be obtained.
成形体に含まれる連続繊維は、成形前の複合材料Bに含まれていた連続繊維であり、連続繊維の最大厚みTmaxと、最小厚みTminの測定は、成形後の成形体を観察して行う。成形前の複合材料Bに含まれる連続繊維に対して測定するものではない。 The continuous fibers contained in the molded body are the continuous fibers contained in composite material B before molding, and the maximum thickness Tmax and minimum thickness Tmin of the continuous fibers are measured by observing the molded body after molding. Measurements are not made of the continuous fibers contained in composite material B before molding.
連続繊維の最大厚みTmaxと、最小厚みTminの測定は後述するが、繊維方向100mm以内の場所を測定することが好ましい。 The maximum thickness Tmax and minimum thickness Tmin of the continuous fibers are measured as described below, but it is preferable to measure at a location within 100 mm in the fiber direction.
[複合材料Aと複合材料Bとの層間せん断強度]
成形体における複合材料Aと複合材料Bとの層間せん断強度が30MPa以上であることが好ましい。「成形体における」とは、成形した後の、複合材料Aと複合材料Bの層間せん断強度を意味する。成形前に複合材料Aと複合材料Bであった箇所を見分けるには、成形体に含まれる繊維を観察すれば良い。不連続繊維が含まれている箇所は複合材料Aであった場所であり、連続繊維が含まれている箇所は複合材料Bであった場所である。層間せん断強度が30MPa以上であれば、複合材料Bの補強効果を高く発現することができる。樹脂M1と樹脂M2が共に熱可塑性樹脂である場合、樹脂M1と樹脂M2の相溶性を高くすることで、層間せん断強度を高くできる。
[Interlaminar shear strength between composite material A and composite material B]
The interlaminar shear strength between composite material A and composite material B in the molded body is preferably 30 MPa or more. "In the molded body" means the interlaminar shear strength between composite material A and composite material B after molding. To distinguish the parts that were composite material A and composite material B before molding, it is sufficient to observe the fibers contained in the molded body. The parts containing discontinuous fibers are the parts that were composite material A, and the parts containing continuous fibers are the parts that were composite material B. If the interlaminar shear strength is 30 MPa or more, the reinforcing effect of composite material B can be highly expressed. When resin M1 and resin M2 are both thermoplastic resins, the interlaminar shear strength can be increased by increasing the compatibility of resin M1 and resin M2.
樹脂M2が熱硬化性樹脂である場合、樹脂M2が半硬化した熱硬化性樹脂を用いることで、成形の時に、樹脂M2は樹脂M1と架橋して層間せん断強度を高くできる。つまり、樹脂M2が半硬化した熱硬化性樹脂であれば、圧縮成形による連続繊維の乱れを防ぐとともに複合材料Aとの層間せん断強度を高めることができる。 When resin M2 is a thermosetting resin, by using a semi-cured thermosetting resin as resin M2, resin M2 can crosslink with resin M1 during molding, increasing the interlaminar shear strength. In other words, if resin M2 is a semi-cured thermosetting resin, it is possible to prevent the continuous fibers from being disturbed by compression molding and to increase the interlaminar shear strength with composite material A.
なお、成形体における複合材料Aと複合材料Bとの層間せん断強度は、平面となって積層されている部分を測定すれば良い。 The interlaminar shear strength between composite material A and composite material B in the molded body can be measured at the part where they are laminated in a flat plane.
[繊維束幅の変動率]
複合材料Bの連続繊維の乱れは、連続繊維束の束幅を計測し、下記式で評価できる。
(繊維束の最大幅Wmax-繊維束の最小幅Wmin)/繊維束の平均幅Wave
本発明においては、繊維束幅の変動率は0.25未満とすることが好ましい。繊維束幅の変動率を0.25未満とすることで繊維幅が安定し、成形体に含まれる連続繊維の乱れを抑制できていることを意味する。この場合、高い機械物性を維持できる。
(繊維束の最大幅Wmax-繊維束の最小幅Wmin)/繊維束の平均幅Waveは、0.20未満が好ましく、0.15未満がより好ましく、0.10未満が更に好ましい。
[Fluctuation rate of fiber bundle width]
The disorder of the continuous fibers of the composite material B can be evaluated by measuring the bundle width of the continuous fiber bundle and using the following formula.
(Maximum width of fiber bundle Wmax - Minimum width of fiber bundle Wmin) / Average width of fiber bundle Wave
In the present invention, the fluctuation rate of the fiber bundle width is preferably less than 0.25. By making the fluctuation rate of the fiber bundle width less than 0.25, the fiber width is stabilized, which means that the disorder of the continuous fibers contained in the molded product can be suppressed. In this case, high mechanical properties can be maintained.
(Maximum width Wmax of fiber bundle - Minimum width Wmin of fiber bundle)/Average width Wave of fiber bundle is preferably less than 0.20, more preferably less than 0.15, and even more preferably less than 0.10.
以下、本発明について実施例を用いて具体的に説明するが、本発明はこれらに限定されるものではない。 The present invention will be described in detail below using examples, but the present invention is not limited to these.
1.材料
1.1 炭素繊維
帝人社製の炭素繊維“テナックス”(登録商標)STS40-24K(平均繊維径7μm、単繊維数24,000本)
1.2 熱可塑性樹脂
・ポリアミド6(ユニチカ株式会社製A1030、PA6と略する場合がある)。
1.3 熱硬化性樹脂組成物
・エポキシ樹脂(コニシ株式会社製エポキシ樹脂E206S)
・硬化剤
三菱ケミカル社製硬化剤ST15(1段階目の硬化剤)
四国化成工業製硬化剤2E4MZ-CN(2段階目の硬化剤)
1. Materials 1.1 Carbon fiber Teijin carbon fiber "Tenax" (registered trademark) STS40-24K (average fiber diameter 7 μm, number of single fibers 24,000)
1.2 Thermoplastic resin Polyamide 6 (A1030 manufactured by Unitika Ltd., sometimes abbreviated as PA6).
1.3 Thermosetting resin composition Epoxy resin (epoxy resin E206S manufactured by Konishi Co., Ltd.)
Hardener: Mitsubishi Chemical Corporation hardener ST15 (first stage hardener)
Shikoku Chemical Industry Co., Ltd. hardener 2E4MZ-CN (second stage hardener)
2.各種測定
本実施例における各値は、以下の方法に従って求めた。
(1)複合材料に含まれる繊維体積割合(VfA、VfB)の測定
複合材料A(又は複合材料B)から100mm×100mmのサンプルを切り出し、サンプルを550℃に加熱した電気炉(ヤマト科学株式会社製FP410)の中で窒素雰囲気下で、1時間加熱してマトリクス樹脂等の有機物を焼き飛ばした。
焼き飛ばし前後のサンプルの重量を秤量することによって強化繊維と熱可塑性樹脂の重量を算出した。次に、各成分の比重を用いて、強化繊維の体積割合を算出した。
繊維体積割合(VfA)=100×繊維体積/(繊維体積+複合材料Aの樹脂体積) ・・・ 式(c)
繊維体積割合(VfB)=100×繊維体積/(繊維体積+複合材料Bの樹脂体積) ・・・ 式(d)
2. Various Measurements The values in the present examples were determined according to the following methods.
(1) Measurement of fiber volume fraction (VfA, VfB) contained in composite material A sample of 100 mm × 100 mm was cut out from composite material A (or composite material B), and the sample was heated in an electric furnace (FP410 manufactured by Yamato Scientific Co., Ltd.) heated to 550°C under a nitrogen atmosphere for 1 hour to burn off organic substances such as the matrix resin.
The weights of the reinforcing fibers and the thermoplastic resin were calculated by weighing the samples before and after the burn-off. The volume fraction of the reinforcing fibers was then calculated using the specific gravity of each component.
Fiber volume ratio (VfA)=100×fiber volume/(fiber volume+resin volume of composite material A) Formula (c)
Fiber volume ratio (VfB)=100×fiber volume/(fiber volume+resin volume of composite material B) Formula (d)
(2)最大厚みTmaxと、最小厚みTmin
作成した成形体から、連続繊維の繊維方向の断面を観察できるように、複合材料Bの断面を観察した。繊維方向に100mmの範囲で、均等に10カ所の断面を観察することによって、成形体となった後の、複合材料Bに含まれていた連続繊維の厚みの最小厚みと最大厚みを測定した。
Tmin: 複合材料Bに含まれていた、成形後の連続繊維の最小厚み
Tmax: 複合材料Bに含まれていた、成形後の連続繊維の最大厚み
得られたTminとTmaxから、連続繊維の形状維持力を下記式で評価した。
Tmax/Tmin: 連続繊維の形状維持力
Tmax/Tminの値が1に近いほど形状維持力が高く、数字が大きくなるほど形状維持力が小さいことを表している。
(2) Maximum thickness Tmax and minimum thickness Tmin
The cross section of the composite material B was observed so that the cross section of the continuous fibers in the fiber direction of the produced molded product could be observed. The minimum and maximum thicknesses of the continuous fibers contained in the composite material B after the molded product were measured by observing 10 cross sections evenly spaced within a range of 100 mm in the fiber direction.
Tmin: minimum thickness of the continuous fibers contained in composite material B after molding. Tmax: maximum thickness of the continuous fibers contained in composite material B after molding. From the obtained Tmin and Tmax, the shape retention of the continuous fibers was evaluated by the following formula.
Tmax/Tmin: Shape retention of continuous fibers The closer the Tmax/Tmin value is to 1, the higher the shape retention, and the larger the number, the lower the shape retention.
(3)複合材料Aと複合材料Bの層間におけるせん断強度
複合材料Aと複合材料Bの層間せん断強度の指標として層間せん断強度を用いた。層間せん断試験方法はJIS K7078に基づいて行い下記式(e)により算出した。層間せん断強度は複合材料Aと複合材料Bとが積層されて、平面を形成している箇所を測定した。
τ = 3P/4bh ・・・式(e)
τ: 層間せん断強度(MPa)
P: 破壊荷重(N)
b: 試験片の幅(mm)
h: 試験片n厚さ(mm)
(3) Shear strength between composite materials A and B Interlaminar shear strength was used as an index of the interlaminar shear strength between composite materials A and B. The interlaminar shear test method was based on JIS K7078 and was calculated using the following formula (e). The interlaminar shear strength was measured at a location where composite materials A and B were laminated to form a plane.
τ = 3P / 4bh ... formula (e)
τ: Interlaminar shear strength (MPa)
P: Breaking load (N)
b: Width of test piece (mm)
h: thickness of test piece n (mm)
(4)複合材料Bの樹脂M2の複素粘度
複合材料Bに含まれる樹脂M2の複素粘度の測定には、レオメータ(TAインスツルメンツ製、DiscoveryHR30)を使用した。
樹脂M2が熱硬化性樹脂である場合、加熱による粘度低下と、硬化による粘度上昇とが、どちらも起こりえるため、樹脂M2を周波数2Hzで常温から200℃まで5℃毎分の昇温速度で加熱して複素粘度を測定し、昇温測定の間で最も低かった複素粘度の値を、樹脂M2の複素粘度とした。
(4) Complex Viscosity of Resin M2 in Composite Material B The complex viscosity of Resin M2 contained in Composite Material B was measured using a rheometer (Discovery HR30, manufactured by TA Instruments).
When resin M2 is a thermosetting resin, both a decrease in viscosity due to heating and an increase in viscosity due to curing can occur. Therefore, resin M2 was heated from room temperature to 200°C at a temperature increase rate of 5°C per minute at a frequency of 2 Hz to measure the complex viscosity, and the lowest complex viscosity value during the temperature increase measurement was determined as the complex viscosity of resin M2.
(5)繊維束幅の変動率
複合材料Bに含まれていた、成形後の連続繊維の乱れを評価するため、連続繊維の繊維束幅の変動係数を測定した。
複合材料Bに含まれていた、成形体となった連続繊維を観察し、連続繊維に沿って100mm長さを対象エリアとした。
(5) Coefficient of Variation of Fiber Bundle Width In order to evaluate the disorder of the continuous fibers contained in composite material B after molding, the coefficient of variation of the fiber bundle width of the continuous fibers was measured.
The continuous fibers contained in the composite material B that had formed a molded body were observed, and a target area was set to a length of 100 mm along the continuous fibers.
対象エリアでの繊維束の最大幅、最小幅、繊維束の平均幅を用いて下記式(f)により算出した。
(Wmax-Wmin)/Wave ・・・式(f)
Wmax:繊維束の最大幅
Wmin:繊維束の最小幅
Wave:繊維束の平均幅
The maximum width, minimum width, and average width of the fiber bundle in the target area were used to calculate the width according to the following formula (f).
(Wmax-Wmin)/Wave ... formula (f)
Wmax: Maximum width of fiber bundle Wmin: Minimum width of fiber bundle Wave: Average width of fiber bundle
[実施例1]
1.複合材料Aの準備
炭素繊維として、繊維長20mmにカットした帝人社製の炭素繊維“テナックス”(登録商標)STS40-24K(平均繊維径7μm、単繊維数24,000本)を使用し、樹脂として、ユニチカ社製のナイロン6樹脂A1030を用いて、米国特許第8946342号に記載された方法に基づき二次元ランダムに炭素繊維が配向した炭素繊維およびナイロン6樹脂の複合材料を作成した。得られた複合材料を270℃に加熱したプレス装置にて、2.0MPaにて5分間加熱し、幅250mm×長さ250mm×平均厚み2.5mmの板状の複合材料Aを得た。
板状の複合材料Aに含まれる炭素繊維の解析を行ったところ、炭素繊維体積割合(Vf)は35%、炭素繊維の繊維長は一定長であり、重量平均繊維長は20mmであった。
[Example 1]
1. Preparation of Composite Material A Teijin's carbon fiber "Tenax" (registered trademark) STS40-24K (average fiber diameter 7 μm, number of single fibers 24,000) cut to a fiber length of 20 mm was used as the carbon fiber, and Unitika's nylon 6 resin A1030 was used as the resin to prepare a composite material of carbon fiber and nylon 6 resin in which the carbon fibers were oriented two-dimensionally randomly based on the method described in U.S. Patent No. 8,946,342. The obtained composite material was heated at 2.0 MPa for 5 minutes in a press machine heated to 270°C, to obtain a plate-shaped composite material A with a width of 250 mm, length of 250 mm, and average thickness of 2.5 mm.
Analysis of the carbon fibers contained in the plate-shaped composite material A revealed that the carbon fiber volume fraction (Vf) was 35%, the fiber length of the carbon fibers was a constant length, and the weight average fiber length was 20 mm.
2.複合材料Bの準備
2.1 熱硬化性樹脂組成物の準備
熱硬化性樹として、コニシ株式会社製エポキシ樹脂E206Sを準備し、これに対して三菱ケミカル社製硬化剤ST15を14.7phr、四国化成工業製硬化剤2E4MZ-CNを5.0phrの割合で混合した。硬化剤ST15の配合割合は、硬化剤ST15単独でエポキシ樹脂E206Sを完全硬化するのに必要な量に対して50%となる添加量であった。硬化剤2E4MZ-CNの配合割合は、硬化剤2E4MZ-CN単独でエポキシ樹脂E206Sを完全硬化するのに必要な量に対して50%以上となる添加量であった。なお、phr(per hundred resin)は、樹脂混合物中におけるエポキシ樹脂の重量を100としたときの重量の割合を示す。
2. Preparation of composite material B 2.1 Preparation of thermosetting resin composition As a thermosetting resin, epoxy resin E206S manufactured by Konishi Co., Ltd. was prepared, and 14.7 phr of hardener ST15 manufactured by Mitsubishi Chemical Corporation and 5.0 phr of hardener 2E4MZ-CN manufactured by Shikoku Kasei Kogyo Co., Ltd. were mixed with this. The blending ratio of hardener ST15 was 50% of the amount required to completely cure epoxy resin E206S with hardener ST15 alone. The blending ratio of hardener 2E4MZ-CN was 50% or more of the amount required to completely cure epoxy resin E206S with hardener 2E4MZ-CN alone. Note that phr (per hundred resin) indicates the weight ratio when the weight of epoxy resin in the resin mixture is 100.
ここで、完全硬化に必要な硬化剤の添加量とは、エポキシ樹脂に対して硬化剤の添加量を様々な配合比で加えたサンプルを作製しDSC(SIIナノテクノロジー社製X-DSC7000)で硬化時の反応熱量を測定した際、硬化剤をある配合比以上で添加すると反応熱量が一定となり、反応熱量が一定となった時の硬化剤の添加量を指す。 The amount of hardener required for complete curing is determined by preparing samples with various amounts of hardener added to the epoxy resin in various mixing ratios, measuring the amount of reaction heat during curing with a DSC (X-DSC7000 manufactured by SII Nano Technology), and finding that when the hardener is added at a certain mixing ratio or above, the amount of reaction heat becomes constant, and this refers to the amount of hardener to be added when the amount of reaction heat becomes constant.
2.2 複合材料Bの作製
炭素繊維として帝人株式会社製の炭素繊維“テナックス”(登録商標)STS40-48K(平均繊維径7μm、繊度3200tex、密度1.77g/cm3)を使用し、20mm×0.5mmの断面積を有する引抜ダイを通過させ、引抜ダイ内で熱硬化性樹脂を含浸させた。得られた熱硬化性樹脂を含浸させた炭素繊維を100mm長さにカットし、オーブンで20分間80℃で加熱し、硬化剤ST15のみを反応させることで、樹脂M2が半硬化した熱硬化性樹脂を含む幅20mm×長さ100mm×厚み0.5mm複合材料Bを得た。硬化剤ST15のみを反応させたため、樹脂M2の硬化度は50%であった。
2.2 Preparation of Composite Material B Carbon fiber "Tenax" (registered trademark) STS40-48K (average fiber diameter 7 μm, fineness 3200 tex, density 1.77 g/cm 3 ) manufactured by Teijin Limited was used as the carbon fiber, and it was passed through a drawing die having a cross-sectional area of 20 mm x 0.5 mm, and impregnated with a thermosetting resin in the drawing die. The obtained carbon fiber impregnated with the thermosetting resin was cut to a length of 100 mm, heated in an oven at 80°C for 20 minutes, and only the curing agent ST15 was reacted to obtain a composite material B having a width of 20 mm x length of 100 mm x thickness of 0.5 mm containing a thermosetting resin with a semi-cured resin M2. Since only the curing agent ST15 was reacted, the degree of cure of the resin M2 was 50%.
3.成形型および成形条件
複合材料Bの成形型への配置面Xは、曲面を含んだ三次元形状であり、連続繊維の束幅方向に向かって曲がっているときの連続繊維の繊維乱れを評価できるよう、半径75mmの半球状の金型を準備した(図1)。
3. Mold and molding conditions The surface X of the mold on which composite material B was placed had a three-dimensional shape including a curved surface, and a hemispherical mold with a radius of 75 mm was prepared so that fiber disorder of the continuous fibers when the surface was curved toward the bundle width direction of the continuous fibers could be evaluated (Figure 1).
150℃に加熱した金型に、270℃に加熱した複合材料Aを載置し、半球の頂点に室温(25℃)状態の複合材料Bを積層した後に型締めし、20MPaの圧力で3分間保持した後に成形体を採取した。結果を表1に示す。 Composite material A heated to 270°C was placed in a mold heated to 150°C, and composite material B at room temperature (25°C) was layered on the apex of the hemisphere, after which the mold was clamped and held at a pressure of 20 MPa for 3 minutes before the molded body was taken. The results are shown in Table 1.
なお、層間せん断強度測定用として、図1で作成した成形体とは別にサンプルを準備した。具体的には、幅250mm×長さ250mm×平均厚み2.5mmの板状の複合材料Aと、幅20mm×長さ100mm×厚み0.5mm複合材料Bとを、積層して平面形状の成形体を作製した。複合材料Aと複合材料Bが積層された平面部分を切り出し、層間せん断強度を測定した。 For measuring the interlaminar shear strength, a sample was prepared in addition to the molded product created in Figure 1. Specifically, a plate-shaped composite material A measuring 250 mm wide x 250 mm long x 2.5 mm in average thickness was laminated with composite material B measuring 20 mm wide x 100 mm long x 0.5 mm in thickness to create a planar molded product. The planar portion where composite material A and composite material B were laminated was cut out, and the interlaminar shear strength was measured.
[実施例2乃至6]
表1に記載されたように、硬化剤の添加量を変えることで、硬化度を変更した以外は、実施例1と同様にして成形体を製造した。結果を表1に示す。
[Examples 2 to 6]
Molded articles were produced in the same manner as in Example 1, except that the degree of curing was changed by changing the amount of curing agent added as shown in Table 1. The results are shown in Table 1.
[実施例7]
複合材料Bとして、一軸配向した連続繊維(配向方向が一つのみであり、他の方向には配向していない)と、PA66をマトリックス樹脂とした材料(DSMエンジニアリングマテリアル株式会社製Akulon(登録商標) PA66-HC12)を使用こと以外は、実施例1と同様にして成形体を作製した。結果を表1に示す。
[Example 7]
A molded article was produced in the same manner as in Example 1, except that uniaxially oriented continuous fibers (oriented in only one direction, not in any other direction) and a material containing PA66 as the matrix resin (Akulon (registered trademark) PA66-HC12 manufactured by DSM Engineering Materials Co., Ltd.) were used as composite material B. The results are shown in Table 1.
[実施例8]
複合材料Bとして、一軸配向した連続繊維(配向方向が一つのみであり、他の方向には配向していない)と、PA6をマトリクス樹脂とした材料(DSMエンジニアリングマテリアル株式会社製Akulon(登録商標) PA6-HC10UD)を用い、複合材料Bの長手方向及び、長手方向と直交した方向に連続繊維が配向するようにした。また、当該材料(DSMエンジニアリングマテリアル株式会社製Akulon(登録商標) PA6-HC10UD)は厚み0.25mmであり、長手方向に二層、長手方向と直交する方向に一層を積層し、複合材料Bとした。これ以外は、実施例1と同様にして成形体を作製した。結果を表1に示す。
[Example 8]
Composite material B was prepared by using a material (Akulon (registered trademark) PA6-HC10UD manufactured by DSM Engineering Materials Co., Ltd.) containing uniaxially oriented continuous fibers (oriented in only one direction, not in other directions) and PA6 as the matrix resin, so that the continuous fibers were oriented in the longitudinal direction of composite material B and in a direction perpendicular to the longitudinal direction. The material (Akulon (registered trademark) PA6-HC10UD manufactured by DSM Engineering Materials Co., Ltd.) had a thickness of 0.25 mm, and two layers were laminated in the longitudinal direction and one layer was laminated in a direction perpendicular to the longitudinal direction to prepare composite material B. Except for this, a molded body was prepared in the same manner as in Example 1. The results are shown in Table 1.
[比較例1乃至2]
表1に記載されたように、硬化度を変更した以外は、実施例1と同様にして成形体を製造した。結果を表1に示す。
[Comparative Examples 1 and 2]
Molded articles were produced in the same manner as in Example 1, except that the degree of cure was changed as shown in Table 1. The results are shown in Table 1.
[参考例1]
複合材料Bとして、一軸配向した連続繊維(配向方向が一つのみであり、他の方向には配向していない)と、PA6をマトリクス樹脂とした材料(DSMエンジニアリングマテリアル株式会社製Akulon(登録商標) PA6-HC10UD)を用いたこと以外
は、実施例1と同様にして成形体を作製した。結果を表2に示す。
[Reference Example 1]
A molded article was produced in the same manner as in Example 1, except that uniaxially oriented continuous fibers (oriented in only one direction, not in any other direction) and a material containing PA6 as the matrix resin (Akulon (registered trademark) PA6-HC10UD manufactured by DSM Engineering Materials Co., Ltd.) were used as composite material B. The results are shown in Table 2.
[参考例2]
複合材料Bとして、一軸配向した連続繊維(配向方向が一つのみであり、他の方向には配向していない)と、PA-MXD6をマトリックス樹脂とした材料(三菱エンジニアリングプラスチック株式会社製レニーテープ)を用いたこと以外は、実施例1と同様にして成形体を作製した。結果を表2に示す。
[Reference Example 2]
A molded article was produced in the same manner as in Example 1, except that uniaxially oriented continuous fibers (oriented in only one direction, not in any other direction) and a material containing PA-MXD6 as a matrix resin (Reny Tape manufactured by Mitsubishi Engineering Plastics Corporation) were used as composite material B. The results are shown in Table 2.
[参考例3]
複合材料Bとして、一軸配向した連続繊維(配向方向が一つのみであり、他の方向には配向していない)と、PA410をマトリックス樹脂とした材料(DSMエンジニアリングマテリアル株式会社製Eco-Paxx(登録商標) PA410-HC12UD)を用いたこと以外は、実施例1と同様にして成形体を作製した。結果を表2に示す。
[Reference Example 3]
A molded article was produced in the same manner as in Example 1, except that uniaxially oriented continuous fibers (oriented in only one direction, not in any other direction) and a material containing PA410 as the matrix resin (Eco-Paxx (registered trademark) PA410-HC12UD manufactured by DSM Engineering Materials Co., Ltd.) were used as the composite material B. The results are shown in Table 2.
本発明の成形体及びこれを成形して得られた成形体は、各種構成部材、例えば自動車の構造部材、また各種電気製品、機械のフレームや筐体等、衝撃吸収が望まれるあらゆる部位に用いられる。特に好ましくは、自動車部品として利用できる。 The molded article of the present invention and the molded articles obtained by molding the same can be used in various components, such as structural members of automobiles, various electrical products, machine frames and housings, and any other location where shock absorption is desired. It is particularly suitable for use as automobile parts.
101:成形型(上型)
102:成形型(下型)
103:配置面X
A:複合材料A
B:複合材料B
201:湾曲した面
301:屈曲した面
θ1:屈曲の角度
101: Molding mold (upper mold)
102: Molding mold (lower mold)
103: Placement surface X
A: Composite material A
B: Composite material B
201: curved surface 301: bent surface θ1: angle of bending
Claims (12)
複合材料Bの成形型への配置面Xは、曲面を含んだ三次元形状であって、前記連続繊維の束幅方向に向かって曲がっており、
成形体に含まれる連続繊維の最大厚みTmaxと、最小厚みTminの関係が、1≦Tmax/Tmin≦1.5である。 A method for producing a molded body by laminating and compression molding a composite material A containing discontinuous fibers and a resin M1 and a composite material B containing continuous fibers and a resin M2, comprising the steps of:
The surface X of the composite material B placed on the molding die has a three-dimensional shape including a curved surface and is curved toward the bundle width direction of the continuous fibers,
The relationship between the maximum thickness Tmax and the minimum thickness Tmin of the continuous fibers contained in the molded body is 1≦Tmax/Tmin≦1.5.
3×η1<η2<30000(Pa・s) かつ η1<500(Pa・s)
ただし、
η1(Pa・s):せん断速度2(1/s)のときの、樹脂M1の複素粘度
η2(Pa・s):せん断速度2(1/s)のときの、樹脂M2の複素粘度
である。 The method for producing a molded product according to claim 8 , wherein the complex viscosities of the resins M1 and M2 satisfy the following relationship:
3×η1<η2<30000 (Pa·s) and η1<500 (Pa·s)
however,
η1 (Pa·s): Complex viscosity of resin M1 at a shear rate of 2 (1/s) η2 (Pa·s): Complex viscosity of resin M2 at a shear rate of 2 (1/s).
(繊維束の最大幅Wmax-繊維束の最小幅Wmin)/繊維束の平均幅Wave<0.25 The method for producing a molded article according to claim 1 , which satisfies the following formula:
(Maximum width of fiber bundle Wmax-minimum width of fiber bundle Wmin)/average width of fiber bundle Wave<0.25
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021037498A JP2024088819A (en) | 2021-03-09 | 2021-03-09 | Method of manufacturing molded body |
PCT/JP2022/002284 WO2022190669A1 (en) | 2021-03-09 | 2022-01-21 | Method for producing molded body |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021037498A JP2024088819A (en) | 2021-03-09 | 2021-03-09 | Method of manufacturing molded body |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2024088819A true JP2024088819A (en) | 2024-07-03 |
Family
ID=83226661
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2021037498A Pending JP2024088819A (en) | 2021-03-09 | 2021-03-09 | Method of manufacturing molded body |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2024088819A (en) |
WO (1) | WO2022190669A1 (en) |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6044328A (en) * | 1983-08-22 | 1985-03-09 | Tsunehiko Tsuboi | Method of molding reinforced plastic plate |
JPH0858026A (en) * | 1993-12-28 | 1996-03-05 | Kotobuki:Kk | Plastic molded object and production thereof |
JP2002248694A (en) * | 2001-02-26 | 2002-09-03 | Toray Ind Inc | Method for molding fiber reinforced composite material |
EP3251819B1 (en) * | 2016-06-03 | 2021-09-29 | Airbus Operations GmbH | A method for manufacturing an overhead storage compartment for an aircraft cabin |
DE102016118437A1 (en) * | 2016-09-29 | 2018-03-29 | Thyssenkrupp Ag | Process for producing a molded part |
-
2021
- 2021-03-09 JP JP2021037498A patent/JP2024088819A/en active Pending
-
2022
- 2022-01-21 WO PCT/JP2022/002284 patent/WO2022190669A1/en active Application Filing
Also Published As
Publication number | Publication date |
---|---|
WO2022190669A1 (en) | 2022-09-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9447260B2 (en) | Methods for preparing nanoparticle-containing thermoplastic composite laminates | |
JP4789940B2 (en) | Isotropic fiber reinforced thermoplastic resin sheet, method for producing the same and molded plate | |
TWI601771B (en) | Conductive fiber reinforced polymer composite and multifunctional composite | |
KR101630219B1 (en) | Method for producing metal composite, and chassis for electronic equipment | |
JP5706402B2 (en) | Method for delivering a thermoplastic resin and / or a crosslinkable resin to a composite laminate structure | |
EP2430079B1 (en) | Polyamide composite structures and processes for their preparation | |
US10494496B2 (en) | Fibre-matrix semifinished product | |
JP5090701B2 (en) | Partially impregnated prepreg and method for producing fiber reinforced composite material using the same | |
JP5115675B2 (en) | Prepreg and fiber reinforced composite materials | |
JP2016522305A (en) | Glass fiber carbon fiber hybrid thermoplastic composite | |
US11746445B2 (en) | Carbon fiber bundle, prepreg, and fiber-reinforced composite material | |
WO2021153366A1 (en) | Cold press molded body containing carbon fiber and glass fiber, and manufacturing method thereof | |
JP5966969B2 (en) | Manufacturing method of prepreg | |
WO2022190669A1 (en) | Method for producing molded body | |
JP6637503B2 (en) | Epoxy resin composition for composite materials | |
KR101263976B1 (en) | Method For Preparing Composite Sheet Having Excellent Ecomomical Efficiency And Physical Property, Apparatus Thereof And Composite Sheet Prepared Therefrom | |
KR20190061662A (en) | Preparation method of quasi-isotropic chopped prepreg sheet and composite materials formed using the same for shock absorption and damping effect | |
JP2011246595A (en) | Glass fiber-reinforced composite material and production method therefor | |
JP5601487B2 (en) | Prepreg and fiber-reinforced composite material cured from the same | |
CN115135474B (en) | Sheet molding compound and method for producing molded article | |
KR101746026B1 (en) | Multilayer hybrid prepreg and its manufacturing method | |
JP7467906B2 (en) | Fiber-reinforced resin molded body and composite molded body | |
JP2023142070A (en) | Fiber-reinforced composite material and manufacturing method | |
Prame | Fracture properties of thermoplastic composites manufactured using additive manufacturing | |
JP6493633B1 (en) | Thermosetting resin composition for fiber reinforced composite material, preform, fiber reinforced composite material and method for producing fiber reinforced composite material |