JP2024088297A - Wastewater treatment/water production system using fo membrane - Google Patents
Wastewater treatment/water production system using fo membrane Download PDFInfo
- Publication number
- JP2024088297A JP2024088297A JP2022203393A JP2022203393A JP2024088297A JP 2024088297 A JP2024088297 A JP 2024088297A JP 2022203393 A JP2022203393 A JP 2022203393A JP 2022203393 A JP2022203393 A JP 2022203393A JP 2024088297 A JP2024088297 A JP 2024088297A
- Authority
- JP
- Japan
- Prior art keywords
- wastewater
- treatment
- seawater
- water
- anaerobic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 53
- 239000012528 membrane Substances 0.000 title claims abstract description 29
- 238000004065 wastewater treatment Methods 0.000 title claims abstract description 25
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 17
- 239000013535 sea water Substances 0.000 claims abstract description 54
- 238000000034 method Methods 0.000 claims abstract description 50
- 239000002351 wastewater Substances 0.000 claims abstract description 48
- 230000008569 process Effects 0.000 claims abstract description 44
- 239000010840 domestic wastewater Substances 0.000 claims abstract description 21
- 238000009292 forward osmosis Methods 0.000 claims description 36
- 238000001223 reverse osmosis Methods 0.000 claims description 24
- 239000013505 freshwater Substances 0.000 claims description 16
- 239000007787 solid Substances 0.000 claims description 13
- 239000006228 supernatant Substances 0.000 claims description 13
- 239000005416 organic matter Substances 0.000 claims description 11
- 244000005700 microbiome Species 0.000 claims description 9
- 238000001914 filtration Methods 0.000 claims description 6
- 238000007599 discharging Methods 0.000 claims description 2
- 239000010802 sludge Substances 0.000 abstract description 24
- 230000009467 reduction Effects 0.000 abstract description 8
- 238000010612 desalination reaction Methods 0.000 abstract description 7
- 238000011084 recovery Methods 0.000 abstract description 6
- 230000001580 bacterial effect Effects 0.000 abstract description 2
- 239000008187 granular material Substances 0.000 abstract description 2
- 239000012141 concentrate Substances 0.000 abstract 1
- 238000004062 sedimentation Methods 0.000 description 17
- 238000006243 chemical reaction Methods 0.000 description 15
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 15
- 230000003204 osmotic effect Effects 0.000 description 14
- 239000007789 gas Substances 0.000 description 9
- 239000013049 sediment Substances 0.000 description 9
- 230000000694 effects Effects 0.000 description 6
- 239000007788 liquid Substances 0.000 description 6
- 238000010586 diagram Methods 0.000 description 4
- 238000000926 separation method Methods 0.000 description 4
- 238000005273 aeration Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 230000008719 thickening Effects 0.000 description 3
- 238000010276 construction Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000000855 fermentation Methods 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- 238000013019 agitation Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000029087 digestion Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 230000004151 fermentation Effects 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 239000010842 industrial wastewater Substances 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Images
Landscapes
- Activated Sludge Processes (AREA)
- Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
Description
本発明は、FO膜を用いた排水処理・造水システムに関するものである。 The present invention relates to a wastewater treatment and water production system using FO membranes.
従来から、生活排水の処理方法として、例えば、活性汚泥法が知られている(以下の特許文献1を参照)。生活排水の処理は、嫌気性処理(60~80%のCOD((Chemical Oxygen Demand:化学的酸素要求量))除去)に比べ、好気性処理(80~95%のCOD除去)の方が効率が良いため、一般的には好気性処理で行われている。 For example, the activated sludge process has been known as a method for treating domestic wastewater (see Patent Document 1 below). Domestic wastewater is generally treated using aerobic treatment, which is more efficient (removing 80-95% of COD (Chemical Oxygen Demand)) than anaerobic treatment (removing 60-80% of COD).
上述した好気性処理を行うシステムは、図2に示すように流入してきた排水を沈殿処理する最初沈殿池129、反応タンク127、反応タンク127からの排水を沈殿処理する最終沈殿池131を有する。最初沈殿池129は排水125を沈澱処理し、最初沈殿池129の中は、上澄み水(沈澱処理された排水)136と沈殿物(汚泥)141に分離される。上澄み水136は、反応タンク127に送られる。反応タンク127には、ブロワー(図示せず)にて空気が送られる。
The above-mentioned aerobic treatment system has a
ここで、反応タンクは、フロック(綿状の浮遊物:活性汚泥)を高濃度に浮遊させ、そこに上澄み水136を投入(流入)して曝気して微生物を含む活性汚泥を混合し、好気処理が行われる。上澄み水136と活性汚泥の混合物は最終沈殿池131に送られ、そこで沈殿されて上澄み水を分離して消毒後に処理水143として排出される。一方、沈殿した活性汚泥134は、その一部137を反応タンク127にフィードバック(矢印137参照)して再利用され、残りは最初沈殿池129の中の沈殿物(汚泥)141とともに濃縮タンク(図示せず)に送られ、固形分は有効利用あるいは汚泥処理・処分される。
Here, the reaction tank suspends a high concentration of flocs (cotton-like floating matter: activated sludge), and then
ところで、好気性処理は安定して良好な処理水を得ることが出来るが曝気に膨大なエネルギーを必要とするので、メタン発酵等によるエネルギー回収が可能な嫌気性処理と併用することも考えられる。ここで、前段で嫌気性処理、後段で好気性処理を組み合わせた場合、例えば嫌気性処理に利用される嫌気性UASB(Upflow Anaerobic Sludge Blanket:上向流嫌気性)システムは高濃度排水の処理に一般的で実施されているが、低濃度の排水を処理するには有機物分解速度が遅いため処理効率が悪いので、低濃度の排水は濃縮して処理効率を向上させた上で嫌気性処理を実施し、後段の好気性処理で残った有機物を分解処理すれば安定して良好な処理水質を得ることが可能と考えられる。 By the way, aerobic treatment can produce stable and good treated water, but it requires a huge amount of energy for aeration, so it is also possible to use it in combination with anaerobic treatment, which allows energy recovery through methane fermentation, etc. Here, when combining anaerobic treatment in the first stage and aerobic treatment in the second stage, for example, the anaerobic UASB (Upflow Anaerobic Sludge Blanket) system used for anaerobic treatment is generally used to treat high-concentration wastewater, but the treatment efficiency is poor when treating low-concentration wastewater because the organic matter decomposition rate is slow. Therefore, it is thought that it is possible to obtain stable and good treated water quality by concentrating low-concentration wastewater to improve the treatment efficiency and then performing anaerobic treatment, and decomposing the remaining organic matter in the second stage of aerobic treatment.
排水のような液体を濃縮する手法として、先行技術文献に示すようなFO(Foward Osmosis:正浸透)現象を利用する方法があり、同時に排水水量の減少が可能になる。 As a method for concentrating liquids such as wastewater, there is a method that utilizes the FO (Forward Osmosis) phenomenon, as shown in prior art documents, which also makes it possible to reduce the amount of wastewater.
本発明は、海水と生活排水を引き込み液とするFO現象および海水を引き込み液とするRO(Reverse Osmosis:逆浸透)現象を利用し、排水処理コストの抑制、排水処理効率の向上およびエネルギー回収効率の向上、更に海水淡水化エネルギーの削減を提供することを目的とする。 The present invention aims to utilize the FO phenomenon, in which seawater and domestic wastewater are used as the input liquid, and the RO (Reverse Osmosis) phenomenon, in which seawater is used as the input liquid, to reduce wastewater treatment costs, improve wastewater treatment efficiency, improve energy recovery efficiency, and reduce the energy required to desalinate seawater.
本発明は、流入された排水中の固形物が除去した排水と海水を引き込むFO処理工程と、海水の淡水化処理を行うRO処理工程を実行する手段と、嫌気処理工程を実行する手段と、好気処理工程を実行する手段を有し、FO処理工程は引き込まれた排水から水が除去された濃縮排水を嫌気処理工程に供給することを特徴とする。 The present invention has a FO treatment process that draws in wastewater from which solids have been removed from the inflowing wastewater and seawater, a means for performing an RO treatment process that desalinates seawater, a means for performing an anaerobic treatment process, and a means for performing an aerobic treatment process, and is characterized in that the FO treatment process supplies concentrated wastewater from which water has been removed from the drawn-in wastewater to the anaerobic treatment process.
本発明において、FO処理工程を実行する手段は引き込まれた排水中の水は半透膜を介して海水引き込み水に移動させ、希釈された海水引き込み水をRO処理工程に供給することが好ましい。 In the present invention, the means for carrying out the FO treatment process preferably transfers the water in the drawn-in wastewater to the drawn-in seawater via a semipermeable membrane, and supplies the diluted drawn-in seawater to the RO treatment process.
本発明において、嫌気処理工程を実行する手段は、濃縮排水を流入する濃縮排水流入部を備え、濃縮排水を嫌気発酵させることによりバイオガスを発生させることが好ましい。 In the present invention, it is preferable that the means for carrying out the anaerobic treatment process includes a concentrated wastewater inlet portion into which the concentrated wastewater flows, and that biogas is generated by anaerobic fermentation of the concentrated wastewater.
本発明において、さらに、流入された排水を最初沈殿池に接続され、沈殿処理された上澄み水中の固形物を物理的に除去し濾過された排水を排出する濾過装置であって濾過された排水をFO処理工程を実行する手段に供給する前処理部を有することが好ましい。 In the present invention, it is preferable to further have a pretreatment unit that is connected to a first settling tank for receiving the inflowing wastewater, physically removes solids from the supernatant water after settling, and discharges the filtered wastewater, and supplies the filtered wastewater to a means for carrying out the FO treatment process.
本発明によれば、排水処理コストの抑制、排水処理効率の向上およびエネルギー回収の向上、更に海水淡水化エネルギーの削減を図ることができる。 The present invention makes it possible to reduce wastewater treatment costs, improve wastewater treatment efficiency, improve energy recovery, and reduce the energy required for desalinating seawater.
以下、本発明の実施形態(実施例)の一例について図面を参照しながら詳細に説明する。本実施の形態は本発明を実現するための一例に過ぎず、本発明の技術的範囲を限定するものではない。例えば、本実施の形態では水処理の対象を生活排水として説明しているが、生活排水に限らず産業排水等(例えば、工場排水)でも適用できる。 Below, an example of an embodiment (example) of the present invention will be described in detail with reference to the drawings. This embodiment is merely one example for realizing the present invention, and does not limit the technical scope of the present invention. For example, in this embodiment, the subject of water treatment is described as domestic wastewater, but it can also be applied to industrial wastewater (e.g., factory wastewater) without being limited to domestic wastewater.
以下、本実施形態にかかる排水処理・造水システム1の構成について図1を参照して説明する。図1は、実施例に係る排水処理・造水システムの概略構成図を示す。排水処理・造水システム1は、最初沈殿池2、前処理施設3、FO処理工程を実行する手段9、RO処理工程を実行する手段10、嫌気処理部21、好気処理部27、最終沈殿池31を有して構成されている。最初沈殿池2、前処理施設3、FO処理工程を実行する手段9、嫌気処理部21、好気処理部27および最終沈殿池31は、生活排水の流れる方向に向かって順に接続されている。FO処理工程を実行する手段9およびRO処理工程を実行する手段10は海水の流れる方向に向かって順に接続されている。 The configuration of the wastewater treatment and freshwater production system 1 according to this embodiment will be described below with reference to FIG. 1. FIG. 1 shows a schematic diagram of the wastewater treatment and freshwater production system according to the embodiment. The wastewater treatment and freshwater production system 1 is configured to have a primary sedimentation tank 2, a pretreatment facility 3, a means 9 for performing an FO treatment process, a means 10 for performing an RO treatment process, an anaerobic treatment unit 21, an aerobic treatment unit 27, and a final sedimentation tank 31. The primary sedimentation tank 2, the pretreatment facility 3, the means 9 for performing an FO treatment process, the anaerobic treatment unit 21, the aerobic treatment unit 27, and the final sedimentation tank 31 are connected in order in the direction in which the domestic wastewater flows. The means 9 for performing an FO treatment process and the means 10 for performing an RO treatment process are connected in order in the direction in which the seawater flows.
[最初沈殿池]
最初沈殿池2は、流入された生活排水4を沈澱処理する槽であり、主に上澄み水8と沈殿物6を分離(沈殿分離)する機能を有する。上澄み水8は後述する前処理施設3に排出される。沈殿物6は後述する最終沈殿池31から排出された活性汚泥の一部とともに排水され、濃縮タンク(図示せず)に送られ、固形分は有効利用あるいは汚泥処理・処分される。
[First settling tank]
The primary sedimentation tank 2 is a tank for sedimentation treatment of the inflowing domestic wastewater 4, and has the main function of separating (sedimentation separation) into supernatant water 8 and sediment 6. The supernatant water 8 is discharged to a pretreatment facility 3 described below. The sediment 6 is discharged together with a portion of the activated sludge discharged from a final sedimentation tank 31 described below, and sent to a thickening tank (not shown), and the solid content is effectively utilized or subjected to sludge treatment and disposal.
[前処理施設]
前処理施設3は、最初沈殿池2に接続され、流入された上澄み水8中の固形物を物理的に除去し濾過された生活排水5を排出する濾過装置であって前濾過された生活排水5をFO処理工程を実行する手段9に供給する。前処理施設3は、例えば、複数枚のフィルタを備え、上澄み水8から浮遊性物質を分離除去する濾過装置を使用してもよい。この濾過装置は、従来の急速濾過と同等の浮遊性物質除去性能・処理速度を有する。
[Pretreatment facility]
The pretreatment facility 3 is a filtration device connected to the primary sedimentation tank 2, which physically removes solids in the supernatant water 8 that flows in and discharges the filtered domestic wastewater 5. The pretreatment facility 3 supplies the prefiltered domestic wastewater 5 to a means 9 for carrying out an FO treatment process. The pretreatment facility 3 may be, for example, a filtration device equipped with a plurality of filters that separates and removes floatable matter from the supernatant water 8. This filtration device has the same floatable matter removal performance and treatment speed as conventional rapid filtration.
この濾過装置は、以下のような方法で実現される。FO処理工程の前段で、フィルタ機能と洗浄機能を備え、大きな粒径の固形物を除去することで正浸透膜(FO膜)20の閉塞を防ぐ機能を有する。 This filtration device is realized in the following way. It is equipped with a filter function and a cleaning function at the front end of the FO treatment process, and has the function of preventing clogging of the forward osmosis membrane (FO membrane) 20 by removing solid particles with large particle sizes.
[FO処理工程]
FO処理工程を実行する手段9は、FO膜20を挟んで、高浸透圧溶液領域と低浸透圧溶液領域が存在し、浸透圧を駆動力として低浸透圧溶液の側から高浸透圧溶液の側に水を移動させる機能を有する。本実施の形態ではFO処理工程を実行する手段9は、FO膜20を挟んで低浸透圧溶液領域としての排水領域19と、高浸透圧溶液領域としての海水領域28の2つの領域(区画)が存在する。排水領域19では、FO膜20を介して引き込まれた生活排水5の水を海水領域28に移動させるので濃度が高くなると同時に水量が減少し濃縮排水24として流出し、海水領域28では、引き込まれた海水7は排水領域19から移動した水で希釈されるので濃度が低くなると同時に水量が増加し低濃度海水22として流出する。
[FO processing step]
The means 9 for performing the FO treatment process has a high osmotic pressure solution region and a low osmotic pressure solution region sandwiched between the FO membrane 20, and has the function of moving water from the low osmotic pressure solution side to the high osmotic pressure solution side using osmotic pressure as a driving force. In this embodiment, the means 9 for performing the FO treatment process has two regions (compartments) sandwiched between the FO membrane 20: a drainage region 19 as a low osmotic pressure solution region and a seawater region 28 as a high osmotic pressure solution region. In the drainage region 19, the water of the domestic wastewater 5 drawn in through the FO membrane 20 is moved to the seawater region 28, so that the concentration increases and the amount of water decreases at the same time and flows out as concentrated wastewater 24, and in the seawater region 28, the drawn in seawater 7 is diluted with the water moved from the drainage region 19, so that the concentration decreases and the amount of water increases at the same time and flows out as low-concentration seawater 22.
FO膜処理工程を実行する手段9の排水領域19から流出した濃縮排水24は嫌気処理部21へ供給され、海水領域28から流出した低濃度海水22はRO処理工程を実行する手段10へ供給される。 The concentrated wastewater 24 flowing out from the drainage area 19 of the means 9 that performs the FO membrane treatment process is supplied to the anaerobic treatment section 21, and the low-concentration seawater 22 flowing out from the seawater area 28 is supplied to the means 10 that performs the RO treatment process.
[RO処理工程]
RO処理工程を実行する手段10は、逆浸透膜14を挟んで、高浸透圧溶液領域と低浸透圧溶液領域が存在し、ポンプ圧を駆動力として高浸透圧溶液の側から低浸透圧溶液の側に水を移動させる一般的な海水淡水化装置として普及している機能を有する。本実施形態でのRO処理工程を実行する手段10は、逆浸透膜14を挟んで高浸透圧溶液領域としての低濃度海水領域12と低浸透圧溶液領域としての淡水領域11の2つの領域(区画)が存在する。低濃度海水領域12では、逆浸透膜14を介して引き込まれた低濃度海水22から水を淡水領域11に移動させるので低濃度海水22の濃度は高くなり通常濃度海水17として流出し、淡水領域11では、低濃度海水領域から水が移動して淡水15として流出する。
[RO treatment process]
The means 10 for performing the RO treatment process has a function common to a general seawater desalination device in which a high osmotic pressure solution region and a low osmotic pressure solution region are present on either side of the reverse osmosis membrane 14, and water is moved from the high osmotic pressure solution side to the low osmotic pressure solution side using pump pressure as a driving force. The means 10 for performing the RO treatment process in this embodiment has two regions (compartments) on either side of the reverse osmosis membrane 14: a low concentration seawater region 12 as a high osmotic pressure solution region and a freshwater region 11 as a low osmotic pressure solution region. In the low concentration seawater region 12, water is moved from the low concentration seawater 22 drawn in through the reverse osmosis membrane 14 to the freshwater region 11, so that the concentration of the low concentration seawater 22 becomes high and flows out as normal concentration seawater 17, and in the freshwater region 11, water moves from the low concentration seawater region and flows out as freshwater 15.
RO処理工程を実行する手段10へ供給した低濃度海水22は通常海水濃度より低浸透圧溶液であるため、通常海水を供給する場合より駆動力として必要なポンプ圧力が低くなるために消費電力量を削減できるので、従来の通常海水を供給する海水淡水化装置に比較してエネルギー消費量削減が可能となる。また、流出した通常濃度海水17はそのまま沿岸放流が可能となるので、従来の通常海水を供給する海水淡水化装置から流出する高濃度海水の沖合放流等の特別な放流設備が不要となり、RO処理工程を実行する手段10からの海水放流設備建設コストの削減が可能となる。 The low-concentration seawater 22 supplied to the means 10 for carrying out the RO treatment process is a solution with a lower osmotic pressure than normal seawater, so the pump pressure required as a driving force is lower than when normal seawater is supplied, and power consumption can be reduced, making it possible to reduce energy consumption compared to a conventional seawater desalination device that supplies normal seawater. In addition, the discharged normal-concentration seawater 17 can be discharged directly to the coast, eliminating the need for special discharge equipment such as offshore discharge of high-concentration seawater discharged from a conventional seawater desalination device that supplies normal seawater, and making it possible to reduce the construction costs of seawater discharge equipment from the means 10 for carrying out the RO treatment process.
[嫌気処理部]
嫌気処理部21は、例えばUASB方式を利用したリアクターであり、微生物の自己造粒の性質を利用し、造粒化菌体(グラニュール)を形成させる。嫌気処理部21の反応槽内に高濃度微生物の保持を可能としており非常に高い有機物負荷での処理が可能である。嫌気処理部21の反応槽内には、下部に濃縮排水24を流入させ、上向流で濃縮排水を流入し、汚泥を膨張させることにより有機物と微生物を効率よく接触させる。嫌気処理部21の反応槽の上部に気固液分離部(GSS:Gas Solid Separator)23が設けられている。発生したバイオガス(例えばメタンガス(CH4)25は嫌気処理部21の上部に位置するガス捕集管30により集められ、嫌気処理部21の反応槽の下部(沈殿部)では懸濁性固形物(SS)の分離が行われる。
[Anaerobic treatment section]
The anaerobic treatment unit 21 is, for example, a reactor using the UASB method, and forms granulated bacterial cells (granules) by utilizing the self-granulating property of microorganisms. It is possible to hold high-concentration microorganisms in the reaction tank of the anaerobic treatment unit 21, and it is possible to treat a very high organic matter load. In the reaction tank of the anaerobic treatment unit 21, concentrated wastewater 24 is introduced into the lower part, and concentrated wastewater is introduced in an upward flow, and sludge is expanded, so that organic matter and microorganisms are efficiently contacted. A gas solid liquid separation unit (GSS: Gas Solid Separator) 23 is provided at the upper part of the reaction tank of the anaerobic treatment unit 21. The generated biogas (e.g., methane gas (CH 4 ) 25 is collected by a gas collection pipe 30 located at the upper part of the anaerobic treatment unit 21, and suspended solids (SS) are separated at the lower part (sedimentation part) of the reaction tank of the anaerobic treatment unit 21.
嫌気性処理は、好気性処理に比べて曝気が不要なため、電力消費量が少なく、余剰汚泥の発生量が少ないうえ、発生するメタンガス等を収集して発電やボイラー等に利用でき、省エネルギー型処理システムである。従来の嫌気性処理において処理対象は汚泥や高濃度排水であるが、本実施形態では前段のFO膜20により生活排水5を濃縮し、高濃度化と減量化した濃縮排水24として嫌気処理部21に供給しており、生活排水等から直接メタンガス等のエネルギー回収が可能となる。 Compared to aerobic treatment, anaerobic treatment does not require aeration, so it consumes less electricity, produces less excess sludge, and can collect the methane gas and other wastewater generated for use in power generation and boilers, making it an energy-saving treatment system. In conventional anaerobic treatment, the objects to be treated are sludge and high-concentration wastewater, but in this embodiment, the domestic wastewater 5 is concentrated by the FO membrane 20 in the front stage and supplied to the anaerobic treatment unit 21 as concentrated wastewater 24 with a high concentration and reduced volume, making it possible to recover energy such as methane gas directly from domestic wastewater, etc.
[好気処理部]
好気処理部27は排水処理プラントであり、排水処理プラントで処理された好気性処理排水29を最終沈殿池31に送る。好気処理部27は、嫌気処理部21から排水された嫌気性処理水26が供給され、供給された嫌気性処理水26が排水処理プラント内部の反応タンクに送られる。反応タンクには、ブロワー(図示せず)にて空気が送られる。
[Aerobic treatment section]
The aerobic treatment unit 27 is a wastewater treatment plant, and sends aerobically treated wastewater 29 treated in the wastewater treatment plant to a final sedimentation tank 31. The aerobic treatment unit 27 is supplied with anaerobically treated water 26 discharged from the anaerobic treatment unit 21, and the supplied anaerobically treated water 26 is sent to a reaction tank inside the wastewater treatment plant. Air is sent to the reaction tank by a blower (not shown).
ここで、反応タンクは、例えば活性汚泥を高濃度に浮遊させ、そこに嫌気性処理水26を流入して曝気して微生物を含む活性汚泥を混合し、好気処理が行われるが、活性汚泥の代りに微生物を担体固定した好気性処理方法でも良い。嫌気性処理水26と活性汚泥の混合物(好気性処理排水29)は反応タンク内で空気撹拌により微生物浄化作用を受けた後に最終沈殿池31に送られ、そこで固液分離されて上澄み水を分離して消毒後に放流水33として排出される。一方、沈殿した余剰汚泥35は、その一部を好気処理部27に返送汚泥37として送泥され、残りは最初沈殿池2の中の沈殿物6とともに濃縮タンク(図示せず)および消化タンク(図示せず)に送られ、固形分は有効利用あるいは汚泥処理・処分される。 Here, the reaction tank is used to suspend activated sludge in high concentration, and then anaerobically treated water 26 is introduced into the reaction tank, which is aerated to mix the activated sludge containing microorganisms, and aerobic treatment is performed. However, an aerobic treatment method in which microorganisms are fixed on a carrier instead of activated sludge may also be used. The mixture of anaerobically treated water 26 and activated sludge (aerobic treatment wastewater 29) is subjected to microbial purification by air agitation in the reaction tank and then sent to the final settling tank 31, where solid-liquid separation is performed, the supernatant water is separated, and the mixture is disinfected and discharged as effluent 33. On the other hand, part of the settled excess sludge 35 is sent to the aerobic treatment unit 27 as returned sludge 37, and the remainder is sent to a thickening tank (not shown) and a digestion tank (not shown) together with the sediment 6 in the primary settling tank 2, where the solids are effectively utilized or treated and disposed of.
好気処理部27の本実施の形態では、処理対象水量は生活排水5と比較すると、前段FO処理工程での濃縮作用によって大きく減少することになり、処理施設規模の大幅な縮小や曝気によるエネルギーを大幅に削減できる。また、前段の嫌気処理部21で処理できない有機物を低濃度迄処理することが出来、安定した放流水質を得ることが可能となる。 In this embodiment of the aerobic treatment unit 27, the amount of water to be treated is significantly reduced compared to the amount of domestic wastewater 5 due to the concentration effect in the upstream FO treatment process, allowing for a significant reduction in the scale of the treatment facility and a significant reduction in the energy required for aeration. In addition, organic matter that cannot be treated in the upstream anaerobic treatment unit 21 can be treated to a low concentration, making it possible to obtain stable effluent quality.
<効果のまとめ>
生活排水5の一般的処理工程の考え方として、好気性処理方式による水処理工程よって良好な処理水を得ながら、発生する汚泥を嫌気性処理方式による汚泥処理工程でメタンガス等の生成よりエネルギーを回収する工程が知られている。
本実施の形態では、生活排水5をFO膜処理部を実行する手段9で濃縮して高濃度化と水量減量化された濃縮排水24を、嫌気処理部21で有機物分解をしながらメタンガス等を生成回収して、後段の好気処理部27で残った有機物を分解する水処理を実施して良好な処理水質を得る工程であり、嫌気処理部21からエネルギー回収効果があり、好気処理部27では水量減量化によるエネルギー削減効果を得ることができる。また、同時にFO膜処理工程を実行する手段9より流出する低濃度海水22をRO膜処理工程を実行する手段10へ供給することで海水淡水化処理に必要なポンプ圧が低減されてエネルギー削減効果を得ることが出来る。更にRO膜処理工程を実行する手段10から通常濃度海水17が流出するので、海水放流を沖合にするなどの特別な放流設備建設コストの削減が可能となる。
以上の効果により、エネルギー削減型排水処理による良好な処理水質とメタン生成及び、エネルギー削減型海水淡水化処理を同時に行うことができるため、排水処理コストの抑制、造水コストの削減、排水処理効率の向上およびエネルギー回収効率の向上のすべてを同時に図ることができる。
<Summary of effects>
A commonly known concept for the treatment process of domestic wastewater 5 is to obtain good quality treated water through an aerobic water treatment process, while recovering energy from the production of methane gas and the like through an anaerobic sludge treatment process for the sludge generated.
In this embodiment, the domestic wastewater 5 is concentrated by the means 9 performing the FO membrane treatment process to obtain a concentrated wastewater 24 with a high concentration and reduced water volume, and the concentrated wastewater 24 is decomposed in the anaerobic treatment section 21 to generate and recover methane gas, etc., while decomposing organic matter, and the remaining organic matter is decomposed in the subsequent aerobic treatment section 27 to obtain good treated water quality. The anaerobic treatment section 21 has an energy recovery effect, and the aerobic treatment section 27 can obtain an energy reduction effect by reducing the water volume. At the same time, the low-concentration seawater 22 flowing out from the means 9 performing the FO membrane treatment process is supplied to the means 10 performing the RO membrane treatment process, thereby reducing the pump pressure required for seawater desalination, and obtaining an energy reduction effect. Furthermore, since the normal concentration seawater 17 flows out from the means 10 performing the RO membrane treatment process, it is possible to reduce the construction costs of special discharge facilities, such as discharging seawater offshore.
As a result of the above-mentioned effects, it is possible to simultaneously achieve good treated water quality and methane production through energy-saving wastewater treatment, and energy-saving seawater desalination, thereby simultaneously achieving reductions in wastewater treatment costs, reductions in freshwater production costs, improvements in wastewater treatment efficiency, and improvements in energy recovery efficiency.
なお、本発明の実施の形態は、上述した実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において種々の変更が可能である。 The present invention is not limited to the above-described embodiment, and various modifications are possible without departing from the spirit of the present invention.
1 排水処理・造水システム
2 最初沈殿池
3 前処理施設(前処理部)
4 生活排水(最初沈殿池2に供給される生活排水)
5 生活排水(FO膜20に供給される生活排水)
6 沈殿物
7 海水
8 上澄み水
9 FO処理工程を実行する手段(正浸透処理工程を実行する手段)
10 RO処理工程を実行する手段(逆透処理工程を実行する手段)
11 淡水領域
12 低濃度海水領域
14 逆浸透膜(RO膜)
15 淡水
17 通常濃度海水
19 排水領域
20 正浸透膜(FO膜、半透膜)
21 嫌気処理部
22 低濃度海水
23 気固液分離部
24 濃縮排水
25 バイオガス(CH4)
26 嫌気性処理水
27 好気処理部
28 海水領域
29 好気性処理水
30 ガス捕集管
31 最終沈殿池
33 放流水
35 余剰汚泥
37 返送汚泥
1 Wastewater treatment and water production system 2 Primary sedimentation tank 3 Pretreatment facility (pretreatment section)
4. Domestic wastewater (domestic wastewater supplied to primary sedimentation tank 2)
5 Domestic wastewater (domestic wastewater supplied to the FO membrane 20)
6 Sediment 7 Seawater 8 Supernatant 9 Means for performing FO treatment process (means for performing forward osmosis treatment process)
10 Means for performing RO treatment process (means for performing reverse osmosis treatment process)
11 freshwater area 12 low concentration seawater area 14 reverse osmosis membrane (RO membrane)
15 Fresh water 17 Normal concentration seawater 19 Drainage area 20 Forward osmosis membrane (FO membrane, semipermeable membrane)
21 Anaerobic treatment section 22 Low concentration seawater 23 Gas-solid-liquid separation section 24 Concentrated wastewater 25 Biogas ( CH4 )
26 Anaerobic treated water 27 Aerobic treatment section 28 Seawater area 29 Aerobic treated water 30 Gas collection pipe 31 Final settling tank 33 Discharge water 35 Excess sludge 37 Return sludge
Claims (4)
希釈海水を加圧供給し半透膜を通して淡水を得る逆浸透処理工程を実行する手段と、
濃縮排水を嫌気性微生物により有機物分解しながらバイオガスを発生させる嫌気処理部と、
有機物含有排水を好気性微生物により有機物等を処理する好気処理部とを有する、
ことを特徴とする排水処理・造水システム。 a means for carrying out a forward osmosis treatment process in which solid matter-removed domestic wastewater is supplied, and the water in the wastewater is transferred to seawater through a semipermeable membrane to obtain concentrated wastewater, while seawater is supplied and diluted with the water in the wastewater that has transferred through the semipermeable membrane to obtain low-concentration seawater;
A means for carrying out a reverse osmosis treatment process in which diluted seawater is supplied under pressure and passed through a semipermeable membrane to obtain fresh water;
an anaerobic treatment section that generates biogas while decomposing organic matter in the concentrated wastewater using anaerobic microorganisms;
and an aerobic treatment unit that treats organic matter and the like in organic matter-containing wastewater using aerobic microorganisms.
A wastewater treatment and water production system comprising:
ことを特徴とする請求項1に記載の排水処理・造水システム。 The means for carrying out the forward osmosis treatment step supplies the concentrated wastewater obtained from the forward osmosis treatment step to the anaerobic treatment unit, and brings organic matter into contact with microorganisms to generate the biogas.
2. The wastewater treatment and freshwater production system according to claim 1 .
ことを特徴とする請求項1に記載の排水処理・造水システム。 The reverse osmosis treatment step is to obtain fresh water by pressurizing and supplying the diluted seawater obtained in the forward osmosis treatment step.
2. The wastewater treatment and freshwater production system according to claim 1 .
ことを特徴とする請求項1に記載の排水処理・造水システム。
The method further comprises a primary filtration device connected to a storage tank for storing the inflowing wastewater, physically removing solids in the inflowing supernatant water and discharging the filtered wastewater, and a pretreatment device for supplying the prefiltered wastewater to a means for carrying out the forward osmosis treatment step.
2. The wastewater treatment and freshwater production system according to claim 1 .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022203393A JP2024088297A (en) | 2022-12-20 | 2022-12-20 | Wastewater treatment/water production system using fo membrane |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022203393A JP2024088297A (en) | 2022-12-20 | 2022-12-20 | Wastewater treatment/water production system using fo membrane |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2024088297A true JP2024088297A (en) | 2024-07-02 |
Family
ID=91672990
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2022203393A Pending JP2024088297A (en) | 2022-12-20 | 2022-12-20 | Wastewater treatment/water production system using fo membrane |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2024088297A (en) |
-
2022
- 2022-12-20 JP JP2022203393A patent/JP2024088297A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11001517B2 (en) | Bioreactor for treating sewage and sewage treatment system comprising the same | |
CN109592785B (en) | Anaerobic membrane reactor-partial nitrosation-anaerobic ammonia oxidation combined device and method | |
AU2009320741B2 (en) | Generation of fresh water | |
CN101219842A (en) | Technique and equipment for recycling leachate of garbage | |
AU2017286249B2 (en) | Method of combining recuperative digestion with a contact tank and dissolved air flotation | |
CN102603128A (en) | Method for advanced treatment and recycling of landfill leachate | |
CN211847584U (en) | Device for carrying out cooperative treatment on kitchen waste and household garbage leachate | |
KR20180116806A (en) | Bio-reactor for sewage treatment and sewage treatment system comprising the same | |
WO2018237151A1 (en) | System and method for continuous processing of organic waste with undigested solids recirculation | |
JP3887581B2 (en) | Sewage treatment equipment | |
KR20180116805A (en) | Bio-reactor for sewage treatment and sewage treatment system comprising the same | |
CN201553670U (en) | Equipment for recycling garbage percolate through reverse osmosis desalination multistage pretreatment | |
JP2024088297A (en) | Wastewater treatment/water production system using fo membrane | |
KR100911443B1 (en) | System for treatment of wastewater and method for treatment of wastewater using the same | |
KR20200000056A (en) | The method and apparatus for treatment of livestock manure, livestock wastewater or livestock washing water using ceramic membrane | |
KR20180068518A (en) | Hybrid water treatment system of new concept wastewater reuse and desalination methods for using low energy | |
CN112707593A (en) | Synthetic ammonia wastewater treatment system and treatment method | |
KR20190134583A (en) | Bio-reactor for sewage treatment and sewage treatment system comprising the same | |
CN110818177A (en) | Landfill leachate treatment system | |
KR20200087397A (en) | Treatment system of waste water using oxidation preprocess | |
CN103253836A (en) | Deep purification and treatment device and method of landfill leachate | |
CN217297601U (en) | Treatment device for garbage leachate of transfer station | |
CN210915761U (en) | Anaerobic and aerobic composite biological treatment desalting device | |
KR20190001090A (en) | Bio-reactor for sewage treatment and sewage treatment system comprising the same | |
AU2011253905B2 (en) | Generation of fresh water |