JP2024083052A - 血圧計 - Google Patents
血圧計 Download PDFInfo
- Publication number
- JP2024083052A JP2024083052A JP2022197343A JP2022197343A JP2024083052A JP 2024083052 A JP2024083052 A JP 2024083052A JP 2022197343 A JP2022197343 A JP 2022197343A JP 2022197343 A JP2022197343 A JP 2022197343A JP 2024083052 A JP2024083052 A JP 2024083052A
- Authority
- JP
- Japan
- Prior art keywords
- pulse wave
- blood pressure
- data group
- user
- cluster
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000036772 blood pressure Effects 0.000 claims abstract description 82
- 206010003658 Atrial Fibrillation Diseases 0.000 claims abstract description 67
- 238000000034 method Methods 0.000 claims abstract description 62
- 230000008569 process Effects 0.000 claims abstract description 46
- 238000005259 measurement Methods 0.000 claims abstract description 26
- 238000004364 calculation method Methods 0.000 claims abstract description 15
- 230000006793 arrhythmia Effects 0.000 claims description 12
- 206010003119 arrhythmia Diseases 0.000 claims description 11
- 230000007423 decrease Effects 0.000 claims description 6
- 230000003247 decreasing effect Effects 0.000 claims description 4
- 238000009530 blood pressure measurement Methods 0.000 description 47
- 239000012530 fluid Substances 0.000 description 17
- 238000010586 diagram Methods 0.000 description 15
- 238000000691 measurement method Methods 0.000 description 15
- 230000035488 systolic blood pressure Effects 0.000 description 10
- 230000008602 contraction Effects 0.000 description 7
- 238000012545 processing Methods 0.000 description 7
- 230000035487 diastolic blood pressure Effects 0.000 description 6
- 230000006870 function Effects 0.000 description 6
- 230000002028 premature Effects 0.000 description 6
- 230000033764 rhythmic process Effects 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 5
- 208000009729 Ventricular Premature Complexes Diseases 0.000 description 4
- 238000004891 communication Methods 0.000 description 4
- 239000000284 extract Substances 0.000 description 4
- 206010047289 Ventricular extrasystoles Diseases 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 230000001746 atrial effect Effects 0.000 description 2
- 230000006837 decompression Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 210000000707 wrist Anatomy 0.000 description 2
- 206010003130 Arrhythmia supraventricular Diseases 0.000 description 1
- 210000001367 artery Anatomy 0.000 description 1
- 230000001174 ascending effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 208000019622 heart disease Diseases 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000011946 reduction process Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/02—Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/02—Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
- A61B5/0205—Simultaneously evaluating both cardiovascular conditions and different types of body conditions, e.g. heart and respiratory condition
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/02—Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
- A61B5/021—Measuring pressure in heart or blood vessels
- A61B5/022—Measuring pressure in heart or blood vessels by applying pressure to close blood vessels, e.g. against the skin; Ophthalmodynamometers
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Cardiology (AREA)
- Physiology (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Veterinary Medicine (AREA)
- Biophysics (AREA)
- Pathology (AREA)
- Engineering & Computer Science (AREA)
- Public Health (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Physics & Mathematics (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Vascular Medicine (AREA)
- Ophthalmology & Optometry (AREA)
- Pulmonology (AREA)
- Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
Abstract
【課題】血圧測定時において、ユーザに与える負担を軽減しつつ、精度よく心房細動の有無を判定することが可能な血圧計を提供する。【解決手段】血圧計は、ユーザの被測定部位に装着されたカフの内圧を示すカフ圧を加圧または減圧する過程において検出されたカフ圧信号に重畳される脈波信号に基づいて、ユーザの血圧を測定する血圧測定部と、脈波信号に基づいて、ユーザの脈波数を測定する脈波数測定部と、脈波信号に基づいて、脈波間隔のデータ群を算出する間隔算出部と、閾値を用いて、脈波間隔のデータ群を1以上のクラスタにクラスタリングするクラスタリング部と、クラスタに属するデータ群のばらつきの大きさを示す指標値に基づいて、ユーザにおいて心房細動が発生したか否かを判定する判定部とを備える。クラスタリング部は、脈波数に基づいて閾値を設定する。【選択図】図3
Description
本開示は、血圧計に関し、特に、心房細動を判定する機能を有する血圧計に関する。
心疾患を引き起こす原因となる心房細動(Atrial fibrillation)は早期の発見が望まれている。従来、血圧計で取得された脈波情報から心房細動を推定する技術が提案されている。具体的には、血圧計を用いた1測定機会において、複数回の血圧測定が実施されることにより、各回の血圧測定において取得された脈波信号の間隔である脈波間隔が取得され、脈波間隔に基づいて心房細動が検出される。
例えば、米国特許出願公開第2016/0228017号明細書(特許文献1)は、心房細動の有無を示すことができる血圧測定装置を開示している。
特許文献1に開示される装置では、心房細動の有無を判定するために、1測定機会において、所定のパルス拍数等によって定義されるシーケンスを複数回(例えば、3回)連続して繰り返す必要がある。そのため、測定に要する時間が長くなり、測定部位がカフで圧迫されてユーザに拘束感を与えるなど、ユーザにとって負担となる。
本開示は、ある局面では、血圧測定時において、ユーザに与える負担を軽減しつつ、精度よく心房細動の有無を判定することが可能な血圧計を提供することである。
本開示の一例では、血圧計は、ユーザの被測定部位に装着されたカフの内圧を示すカフ圧を加圧または減圧する過程において検出されたカフ圧信号に重畳される脈波信号に基づいて、ユーザの血圧を測定する血圧測定部と、脈波信号に基づいて、ユーザの脈波数を測定する脈波数測定部と、脈波信号に基づいて、脈波間隔のデータ群を算出する間隔算出部と、閾値を用いて、脈波間隔のデータ群を1以上のクラスタにクラスタリングするクラスタリング部と、クラスタに属するデータ群のばらつきの大きさを示す指標値に基づいて、ユーザにおいて心房細動が発生したか否かを判定する判定部とを備える。クラスタリング部は、脈波数に基づいて閾値を設定する。
上記構成によれば、血圧測定時において、ユーザに与える負担を軽減しつつ、精度よく心房細動の有無を判定することができる。
本開示の他の例では、クラスタリング部は、脈波数が少ないほど閾値を大きくする。
上記構成によれば、脈波数に応じて閾値が適切に設定されるため、ユーザごとに適切な心房細動判定を実行することができる。
本開示の他の例では、閾値は、脈波間隔のデータ群の平均値以下に設定される。
上記構成によれば、心房細動以外の不整脈(例えば、期外収縮)を心房細動と誤判定する可能性を低減することができる。
本開示の他の例では、脈波間隔のデータ群が1つのクラスタにクラスタリングされたとき、判定部は、1つのクラスタに属するデータ群のばらつきの大きさを示す第1指標値が所定値以上である場合にユーザにおいて心房細動が発生したと判定する。
上記構成によれば、心房再度判定をより精度よく実行することができる。
本開示の他の例では、脈波間隔のデータ群が複数のクラスタにクラスタリングされたとき、判定部は、複数のクラスタに属するデータ群のばらつきの大きさを示す第2指標値が所定値以上である場合にユーザにおいて心房細動が発生したと判定する。
上記構成によれば、心房再度判定をより精度よく実行することができる。
本開示の他の例では、判定部は、第2指標値が所定値未満である場合、ユーザに心房細動以外の不整脈が発生したと判定する。
上記構成によれば、心房細動以外の不整脈の発生の有無も判定することができる。
本開示によると、血圧測定時において、ユーザに与える負担を軽減しつつ、精度よく心房細動の有無を判定することができる。
以下、図面を参照しつつ、本発明の実施の形態について説明する。以下の説明では、同一の部品には同一の符号を付してある。それらの名称および機能も同じである。したがって、それらについての詳細な説明は繰り返さない。
[適用例]
図1を参照して、本発明の適用例について説明する。図1は、本実施の形態に従う血圧計100を示す図である。
図1を参照して、本発明の適用例について説明する。図1は、本実施の形態に従う血圧計100を示す図である。
図1を参照して、血圧計100は、ユーザである被験者の血圧を測定する上腕式血圧計である。血圧計100は、主要な構成部品として、本体およびカフ(腕帯)を有する。なお、血圧計100は、本体とカフ(腕帯)とが一体となった手首式血圧計であってもよい。以下、図1を参照しながら処理内容について説明する。
図1においては、ユーザが血圧計100を用いて自身の血圧を測定する場面を想定する。血圧計100は、ユーザの血圧測定指示に従って、血圧測定を開始する(図1の(1)に対応)。具体的には、血圧計100は、ユーザの被測定部位(例えば、腕)に装着されたカフの内圧を示すカフ圧に重畳されている脈波信号(変動成分)を抽出し、当該脈波信号に基づいて、オシロメトリック法により血圧値を算出する。例えば、血圧計100は、カフ圧の加圧過程において血圧を測定する加圧測定方式、あるいは、カフ圧の加圧過程の後の減圧過程において血圧を測定する減圧測定方式を用いて血圧測定を実行する。
血圧計100は、血圧測定時に得られた(加圧測定方式の場合には加圧過程、減圧測定方式の場合には減圧過程において得られた)脈波信号に基づいて、脈波数を測定(カウント)する(図1の(2)に対応)とともに、脈波間隔のデータ群を算出する(図1の(3)に対応)。典型的には、脈波間隔は、脈波のピーク・ツゥ・ピークの間隔(または、それに相当するボトム・ツゥ・ボトムの間隔)である。
例えば、図1中の脈波信号Paが得られた場合、脈波間隔ta1~ta5のデータ群が算出される。同様に、脈波信号Pbが得られた場合、脈波間隔tb1~tb5のデータ群が算出され、脈波信号Pcが得られた場合、脈波間隔tc1~tc5のデータ群が算出される。
脈波信号Paは、心房細動を示す脈波信号の一例である。脈波信号Paにおける脈波間隔ta1~ta5は全体的に不規則にばらついており、脈波がランダムに発生している。脈波信号Pbは、正常洞調律を示す脈波信号の一例である。脈波信号Pbにおける脈波間隔tb1~tb5は概ね同一であり、脈波が規則的に発生している。脈波信号Pcは、心房細動以外の不整脈(例えば、期外収縮)を示す脈波信号の一例である。脈波信号Pcにおける脈波間隔tc1~tc3,tc5は概ね同一であるが、脈波間隔tc4のみ大きさが異なっており、脈波が部分的に抜けている。
本実施の形態では、心房細動を示す脈波信号における脈波間隔が全体的に不規則にばらついている点に着目し、ばらつきの大きさを示す指標値(以下、「ばらつき指標値」とも称する。)の一例であるCstd(Clustered Standard Deviation)とも称される指標値を用いて、心房細動の有無が判定される。
血圧計100は、算出した脈波間隔のデータ群を閾値Thを用いてクラスタリングして、1以上のクラスタを生成する(図1の(4)に対応)。例えば、血圧計100は、脈波間隔のデータ群に含まれる各脈波間隔の差分と閾値Thとを比較することにより、脈波間隔のデータ群をクラスタリングする。
例えば、脈波間隔ta1~ta5のデータ群は、各データ間のばらつきが大きい1つのクラスタに分類される。脈波間隔tb1~tb5のデータ群は、各データ間のばらつきが小さい1つのクラスタが生成される。脈波間隔tc1~tc5のデータ群は、脈波間隔tc1~tc3,tc5が属する、各データのばらつきが小さいクラスタと、脈波間隔tc4が属するクラスタとに分類される。
血圧計100は、クラスタに属するデータ群のばらつき指標値に基づいて、心房細動の有無を判定する(図1の(5)に対応)。心房細動に対応する脈波間隔ta1~ta5のデータ群では、各データ間のばらつきが大きいため、当該データ群のばらつき指標値は大きい。一方、正常洞調律に対応する脈波間隔tb1~tb5のデータ群、および期外収縮に対応する脈波間隔tc1~tc5のデータ群では、クラスタに属する各データ間のばらつきが小さいため、当該データ群のばらつき指標値は小さい。これを利用して、血圧計100は、クラスタに属するデータ群のばらつき指標値が所定値以上である場合に、心房細動が発生したと判定する。
そして、血圧計100は、測定された血圧値と、心房細動の判定結果とをディスプレイに表示する(図1の(6)に対応)。
上記の適用例によると、1測定機会において、血圧測定および心房細動判定が同時に行われるとともに、心房細動判定のために複数回の血圧測定の実施を必要としない。その結果、血圧測定において、ユーザの測定部位が複数回繰り返し圧迫される、血圧測定時間が長くなるなどのユーザに与える負担を軽減しつつ血圧測定と心房細動判定の両方を実現できる。さらに、ばらつき指標値(例えば、Cstd)を用いることにより、心房細動と、心房細動以外の不整脈とを区別することができるため、心房細動判定の精度を向上させることができる。
[構成例]
<ハードウェア構成>
図2は、血圧計100のハードウェア構成の一例を表わすブロック図である。図2を参照して、血圧計100は、主たる構成要素として、本体10と、カフ20とを含む。カフ20には、流体袋22が内包されている。本体10は、プロセッサ110と、血圧測定用のエア系コンポーネント30と、A/D変換回路310と、ポンプ駆動回路320と、弁駆動回路330と、ディスプレイ50と、メモリ51と、操作部52と、通信インターフェイス53と、電源部54とを含む。
<ハードウェア構成>
図2は、血圧計100のハードウェア構成の一例を表わすブロック図である。図2を参照して、血圧計100は、主たる構成要素として、本体10と、カフ20とを含む。カフ20には、流体袋22が内包されている。本体10は、プロセッサ110と、血圧測定用のエア系コンポーネント30と、A/D変換回路310と、ポンプ駆動回路320と、弁駆動回路330と、ディスプレイ50と、メモリ51と、操作部52と、通信インターフェイス53と、電源部54とを含む。
プロセッサ110は、CPU(Central Processing Unit)やMPU(Multi Processing Unit)といった演算処理部である。プロセッサ110は、メモリ51に記憶されたプログラムを読み出して実行することで、後述する血圧計100の処理(ステップ)の各々を実現する。例えば、プロセッサ110は、操作部52からの操作信号に応じて、ポンプ32および弁33を駆動する制御を行なう。また、プロセッサ110は、オシロメトリック法による血圧算出のためのアルゴリズムを使用して血圧値を算出し、ディスプレイ50に表示する。
メモリ51は、RAM(Random Access Memory)、ROM(Read-Only Memory)、フラッシュメモリなどによって実現される。メモリ51は、血圧計100を制御するためのプログラム、血圧計100を制御するために用いられるデータ、血圧計100の各種機能を設定するための設定データ、および血圧値の測定結果のデータ、脈波数、脈派間隔等を記憶する。また、メモリ51は、プログラムが実行されるときのワークメモリ等として用いられる。
エア系コンポーネント30は、カフ20に内包された流体袋22にエア配管を通じて空気を供給または排出する。エア系コンポーネント30は、流体袋22内の圧力を検出するための圧力センサ31と、流体袋22を膨縮させるための膨縮機構部としてのポンプ32および弁33とを含む。
圧力センサ31は、流体袋22内の圧力(カフ圧)を検出し、検出した圧力に応じた信号(カフ圧信号)をA/D変換回路310に出力する。圧力センサ31は、例えば、ピエゾ抵抗式圧力センサであり、エア配管を介して、ポンプ32、弁33およびカフ20に内包されている流体袋22に接続されている。ポンプ32は、カフ圧を加圧するために、エア配管を通じて流体袋22に流体としての空気を供給する。弁33は、エア配管を通して流体袋22内の空気を排出し、または流体袋22に空気を封入して、カフ圧を制御するために開閉される。
A/D変換回路310は、圧力センサ31の出力値(例えば、ピエゾ抵抗効果による電気抵抗の変化に応じた電圧値)をアナログ信号からデジタル信号へ変換してプロセッサ110に出力する。プロセッサ110は、A/D変換回路310の出力値に応じて、カフ圧を表わす信号を取得する。ポンプ駆動回路320は、プロセッサ110から与えられる制御信号に基づいて、ポンプ32の駆動を制御する。弁駆動回路330は、プロセッサ110から与えられる制御信号に基づいて、弁33の開閉を制御する。
プロセッサ110は、カフ圧を加圧する加圧過程における脈波信号に基づいてユーザの血圧を測定する加圧測定方式、または、カフ圧を規定圧力(例えば、後述の「推定収縮期血圧」)よりも大きい圧力まで加圧する加圧過程の後、カフ圧を減圧する減圧過程における脈波信号に基づいてユーザの血圧を測定する減圧測定方式により血圧測定を実行する。
例えば、減圧測定方式による測定時には、概ね、次のような動作が行なわれる。ユーザの被測定部位(手首、腕等)に予めカフを巻き付けておき、測定時には、ポンプ32および弁33を制御して、カフ圧を推定収縮期血圧より高く加圧し、その後徐々に減圧していく。この減圧する過程において、カフ圧を圧力センサ31で検出し、被測定部位の動脈で発生する動脈容積の変動を脈波信号として取り出す。その時のカフ圧の変化に伴う脈波信号の振幅の変化(主に立ち上がりと立ち下がり)に基づいて、収縮期血圧(最高血圧)と拡張期血圧(最低血圧)とを算出する。
ディスプレイ50は、プロセッサ110からの制御信号に基づいて、血圧測定結果および心房細動判定結果等を含む各種情報を表示する。通信インターフェイス53は、外部装置と各種情報をやり取りする。電源部54は、プロセッサ110および各ハードウェアに電力を供給する。
操作部52は、ユーザによる指示に応じた操作信号をプロセッサ110に入力する。例えば、操作部52は、ユーザによる血圧測定の開始指示を受け付けるための測定スイッチ52Aを含む。
(機能構成)
図3は、血圧計100の機能構成を示すブロック図である。図3を参照して、血圧計100は、主な機能構成として、血圧測定部210と、脈波数測定部220と、間隔算出部230と、クラスタリング部240と、判定部250と、出力制御部260とを含む。これらの各機能は、例えば、血圧計100のプロセッサ110がメモリ51に格納されたプログラムを実行することによって実現される。なお、これらの機能の一部または全部はハードウェアで実現されるように構成されていてもよい。
図3は、血圧計100の機能構成を示すブロック図である。図3を参照して、血圧計100は、主な機能構成として、血圧測定部210と、脈波数測定部220と、間隔算出部230と、クラスタリング部240と、判定部250と、出力制御部260とを含む。これらの各機能は、例えば、血圧計100のプロセッサ110がメモリ51に格納されたプログラムを実行することによって実現される。なお、これらの機能の一部または全部はハードウェアで実現されるように構成されていてもよい。
血圧測定部210は、操作部52を介したユーザからの測定開始指示(例えば、測定スイッチ52Aを押下)に従って、カフ圧を制御する。具体的には、血圧測定部210は、ポンプ駆動回路320を介してポンプ32を駆動するとともに、弁駆動回路330を介して弁33を駆動する制御を行なう。弁33は、流体袋22の空気を排出し、または封入してカフ圧を制御するために開閉される。
血圧測定部210は、圧力センサ31によって検出されたカフ圧信号を受けて、カフ圧信号に重畳された被測定部位の脈波を表す脈波信号を取り出す。すなわち、血圧測定部210は、カフ圧信号から、ユーザの心臓の拍動に同期してカフ圧信号に重畳される圧力成分である脈波を検出する。
血圧測定部210は、カフ圧を加圧または減圧する過程において検出されたカフ圧信号に重畳される脈波信号に基づいて、ユーザの血圧を測定する。具体的には、血圧測定部210は、オシロメトリック法に従って、加圧測定方式または減圧測定方式によりユーザの血圧を測定する。例えば、流体袋22の減圧時に脈波を検出する減圧測定方式が採用される場合、血圧測定部210は、脈波信号の振幅が急激に大きくなったとき(立ち上がり時)のカフ圧に基づく収縮期血圧と、急激に小さくなったとき(立ち下がり時)のカフ圧に基づく拡張期血圧とを算出する。なお、血圧測定部210は、流体袋22の加圧時に脈波を検出するいわゆる加圧測定方式を採用してもよい。
脈波数測定部220は、血圧測定部210による血圧測定時に得られる脈波信号に基づいてユーザの脈波数Nを測定する。具体的には、脈波数測定部220は、加圧測定方式により血圧測定が行われる場合にはカフ圧の加圧過程における脈波信号に基づいて、脈波数Nを測定する。脈波数測定部220は、減圧測定方式により血圧測定が行われる場合にはカフ圧の減圧過程における脈波信号に基づいて、脈波数Nを測定する。
間隔算出部230は、脈波信号に基づいて、脈波間隔のデータ群を算出する。具体的には、間隔算出部230は、加圧測定方式により血圧測定が行われる場合にはカフ圧の加圧過程における脈波信号に基づいて、当該脈波信号が示す脈波間隔のデータ群を算出する。間隔算出部230は、減圧測定方式により血圧測定が行われる場合にはカフ圧の減圧過程における脈波信号に基づいて、当該脈波信号が示す脈波間隔のデータ群を算出する。例えば、図1中の脈波信号Paが得られた場合、脈波間隔のデータ群は、脈波間隔ta1~ta5である。
クラスタリング部240は、閾値Thを用いて脈波間隔のデータ群を1以上のクラスタにクラスタリングする。具体的には、クラスタリング部240は、脈波間隔のデータ群を昇順または降順にソートし、各データ(脈波間隔)の前後の差分と閾値Thとを比較することにより、脈波間隔のデータ群をクラスタリングして、1以上のクラスタを生成する。
また、クラスタリング部240は、脈波数Nに基づいて閾値Thを設定する。具体的には、クラスタリング部240は、脈波数Nが少ないほど閾値Thを大きくする。ただし、閾値Thは、脈波間隔のデータ群の平均値以下に設定される。脈波間隔のデータ群のクラスタリング方式の詳細については後述する。
判定部250は、クラスタリング部240によるクラスタ情報の入力を受け付ける。クラスタ情報は、クラスタ数、各クラスタに属するデータ群を示す情報等を含む。判定部250は、クラスタ情報に基づいてクラスタに属するデータ群のばらつき指標値を算出し、当該ばらつき指標値に基づいて、ユーザにおいて心房細動が発生したか否かを判定する。
ある局面では、脈波間隔のデータ群が1つのクラスタにクラスタリングされたとき、判定部250は、当該1つのクラスタに属するデータ群のばらつき指標値が所定値以上である場合にユーザにおいて心房細動が発生したと判定する。
クラスタ数が1つである場合、ばらつき指標値として、標準偏差、分散、平均絶対偏差、および中央絶対偏差のいずれかが用いられる。具体的には、判定部250は、当該1つのクラスタに属するデータ群の標準偏差、分散、平均絶対偏差、および中央絶対偏差のいずれかを、ばらつき指標値として算出する。
他の局面では、脈波間隔のデータ群が複数のクラスタにクラスタリングされたとき、判定部250は、複数のクラスタに属するデータ群のばらつき指標値が所定値以上である場合にユーザにおいて心房細動が発生したと判定する。さらに、判定部250は、当該ばらつき指標値が所定値未満である場合、ユーザに心房細動以外の不整脈が発生したと判定する。
クラスタ数が複数である場合、ばらつき指標値として、Cstd、“Clustered Variance(便宜上、「CVar」とも称する。)”、“Clustered Absolute Deviation(便宜上、「CAD」とも称する。)”、標準偏差の平均値、分散の平均値、平均絶対偏差の平均値、および中央絶対偏差の平均値のいずれかが用いられる。具体的には、判定部250は、Cstd、CVar、CAD、標準偏差の平均値、分散の平均値、平均絶対偏差の平均値、および中央絶対偏差の平均値のいずれかを、複数のクラスタに属するデータ群のばらつき指標値として算出する。
ばらつき指標値としてCstdが用いられるとする。この場合、判定部250は、各クラスタに属するデータ群の偏差平方和を算出し、各偏差平方和の合計値を脈波間隔の全データ数で除した値の平方根をCstdとして算出する。より具体的には、脈波間隔の全データ数をN、クラスタ数をmとし、さらに、クラスタ内のデータ群の平均値をxav、当該データ群のデータ数をn、当該データ群に含まれるデータ値をxi(ただし、i=1~n)、当該データ群の偏差平方和をSk(ただし、k=1~m)とする。この場合、Cstdは、以下の式(1)および式(2)を用いて算出される。
ばらつき指標値としてCVarが用いられるとする。この場合、判定部250は、各クラスタに属するデータ群の偏差平方和を算出し、各偏差平方和の合計値を脈波間隔の全データ数で除した値をCvarとして算出する。より具体的には、Cvarは、式(1)および以下の式(3)を用いて算出される。
ばらつき指標値としてCADが用いられるとする。この場合、判定部250は、各クラスタに属するデータ群の絶対偏差和を算出し、各絶対偏差和の合計値を脈波間隔の全データ数で除した値をCADとして算出する。より具体的には、クラスタ内のデータ群の絶対偏差和をTk(ただし、k=1~m)とすると、CADは、以下の式(4)および式(5)を用いて算出される。なお、他の変数(例えば、xav等)ついては式(1)で用いられる変数と同様である。
ばらつき指標値として用いられる標準偏差の平均値、分散の平均値、平均絶対偏差の平均値、および中央絶対偏差の平均値は次のように算出される。具体的には、判定部250は、各クラスタに属するデータ群の標準偏差を算出し、各標準偏差の合計値をクラスタ数mで除した値を、「標準偏差の平均値」として算出する。判定部250は、各クラスタに属するデータ群の分散を算出し、各分散の合計値をクラスタ数mで除した値を、「分散の平均値」として算出する。
判定部250は、各クラスタに属するデータ群の平均絶対偏差(絶対偏差和をデータ数nで除した値)を算出し、各平均絶対偏差の合計値をクラスタ数mで除した値を、「平均絶対偏差の平均値」として算出する。判定部250は、各クラスタに属するデータ群の中央絶対偏差を算出し、各中央絶対偏差の合計値をクラスタ数mで除した値を、「中央絶対偏差の平均値」として算出する。なお、心房細動の判定方式の詳細については後述する。
出力制御部260は、血圧測定部210の測定結果(例えば、収縮期血圧および拡張期血圧値)および判定部250の判定結果(例えば、心房細動の発生の有無の判定結果)をディスプレイ50に表示する。なお、出力制御部260は、通信インターフェイス53を介して、測定結果および判定結果を外部装置に送信してもよいし、スピーカ(図示しない)を介して音声出力する構成であってもよい。
(クラスタリングおよび心房細動の判定)
図4は、脈波間隔のデータ群の一例を示す図である。具体的には、図4(a)は、心房細動を示す脈波信号における脈波間隔のデータ群の一例である。図4(b)は、正常洞調律を示す脈波信号における脈波間隔のデータ群の一例である。図4(c)は、期外収縮を示す脈波信号における脈波間隔のデータ群の一例である。図4(a)~図4(c)の縦軸は脈波間隔を規格化した値を示しており、横軸は、発生した脈の順番を示している。
図4は、脈波間隔のデータ群の一例を示す図である。具体的には、図4(a)は、心房細動を示す脈波信号における脈波間隔のデータ群の一例である。図4(b)は、正常洞調律を示す脈波信号における脈波間隔のデータ群の一例である。図4(c)は、期外収縮を示す脈波信号における脈波間隔のデータ群の一例である。図4(a)~図4(c)の縦軸は脈波間隔を規格化した値を示しており、横軸は、発生した脈の順番を示している。
図4の縦軸で示される値は、脈波間隔のデータ群に含まれる各脈波間隔の値を各脈波間隔の平均値で除することにより規格化された値である。したがって、脈波間隔Tが当該平均値と同一である場合、当該脈波間隔Tを規格化した値は“1”となる。
図4(a)を参照して、脈波間隔のデータ群は、約0.6~1.5までの間で、不規則にばらついている。これは、図1中の脈波信号Paにおける脈波間隔のデータ群ta1~ta5と同様な傾向である。
図4(b)を参照して、脈波間隔のデータ群には、ばらつきが存在せず、各データが1.0近傍に存在している。これは、図1中の脈波信号Pbにおける脈波間隔のデータ群tb1~tb5と同様な傾向である。
図4(c)を参照して、脈波間隔のデータ群には、一部のデータについてばらつきが存在する。具体的には、多くのデータが1.0近傍に存在しているが、一部のデータ(例えば、2,3,15,16,22,23番目のデータ)は、やや異なる値となっている。これは、図1中の脈波信号Pcにおける脈波間隔のデータ群tc1~tc5と同様な傾向である。
血圧計100(クラスタリング部240)は、図4に示す脈波間隔のデータ群をクラスタリングして1以上のクラスタを生成する。まず、図5を用いて、クラスタリング方式について説明する。
図5は、クラスタリング方式を説明するための図である。図5を参照して、データ群D1~D15をクラスタリングする場面を想定する。データ群D1~D15は、脈波信号における脈波間隔のデータ群を降順に並べ替えたものである。すなわち、データD1が最も大きく、データD15が最も小さい。
各データの前後の差分と閾値Thとを比較することにより、クラスタリングが実行される。例えば、血圧計100(例えば、クラスタリング部240)は、データD1と、データD1の後の(隣接する)データD2との差分が閾値Th以上であるか否かを判断する。当該差分が閾値Th以上であるため、データD1はデータD2とは別のクラスタに分類される。図5の例では、データD1はクラスタC1に属する。
同様に、クラスタリング部240は、データD2とデータD3との差分が閾値Th未満であるため、データD2とデータD3とは同じクラスタに分類される。続いて、クラスタリング部240は、データD3とデータD4との差分が閾値Th以上であるため、データD3はデータD4とは別のクラスタに分類される。そのため、図5の例では、データD2およびデータD3はクラスタC2に属する。
上記処理を繰り返すことにより、データD1はクラスタC1に属し、データD2,D3はクラスタC2に属し、データD4~D6はクラスタC3に属し、データD7~D15はクラスタC4に属している。図5の例では、クラスタリング部240は、閾値Thを用いて脈波間隔のデータ群D1~D15を、4つのクラスタC1~C4にクラスタリングしている。
図6は、クラスタリング結果を示す図である。具体的には、図4(a)~図4(c)に示す脈波間隔のデータ群の各々を、閾値Thを用いてクラスタリングした結果を示している。図5で説明したクラスタリング方式により、図4(a)に示す心房細動に関する脈波間隔のデータ群は、1つのクラスタX1にクラスタリングされる。図4(b)に示す正常洞調律に関する脈波間隔のデータ群は、1つのクラスタY1にクラスタリングされる。図4(c)に示す期外収縮に関する脈波間隔のデータ群は、3つのクラスタZ1~Z3にクラスタリングされる。
心房細動に関する脈波間隔のデータ群は、1つのクラスタX1にクラスタリングされるため、当該データ群のばらつき指標値Sdxとしては、4つの指標値(すなわち、標準偏差、分散、平均絶対偏差、および中央絶対偏差)のいずれかが用いられる。図6に示すように、クラスタX1に属するデータ群は、ばらつきが大きいため、当該データ群のばらつき指標値Sdxは大きくなる。同様に、正常洞調律に関する脈波間隔のデータ群は、1つのクラスタY1にクラスタリングされるため、当該データ群のばらつき指標値Sdyとしては、上記4つの指標値のいずれかが用いられる。ただし、ばらつき指標値Sdx,Sdyには、同じ種類の指標値が用いられるものとする。図6に示すように、クラスタY1に属するデータ群は、ばらつきが小さいため、当該データ群のばらつき指標値Sdyは小さくなる。
期外収縮に対応する脈波間隔のデータ群は、3つのクラスタZ1~Z3にクラスタリングされるため、当該データ群のばらつき指標値Sdzとしては、Cstd、CVar、CAD、標準偏差の平均値、分散の平均値、平均絶対偏差の平均値、および中央絶対偏差の平均値のいずれかが用いられる。図6に示すように、各クラスタZ1~Z3に属するデータ群は、ばらつきが小さい。そのため、期外収縮に対応する脈波間隔のデータ群のばらつき指標値Sdzは小さくなる。
このことから、心房細動が発生している場合、上記方式により算出されるばらつき指標値は大きくなる。したがって、血圧計100(判定部250)は、クラスタリングされたクラスタに属するデータ群のばらつき指標値を算出し、当該ばらつき指標値が所定値よりも大きい場合には、心房細動が発生したと判定する。
なお、脈波間隔のデータ群が複数のクラスタにクラスタリングされた場合には、血圧計100(判定部250)は、複数のクラスタに属するデータ群のばらつき指標値が所定値以上である場合に心房細動が発生したと判定する。これは、複数のクラスタが生成されているものの、各クラスタに属するデータ群のばらつきが大きく、脈波間隔のデータ群が全体的に不規則にばらついている(すなわち、ばらつき指標値が大きい)と考えられるためである。
一方、複数のクラスタに属するデータ群のばらつき指標値が所定値未満である場合には、血圧計100(判定部250)は、心房細動以外の不整脈(例えば、期外収縮)が発生したと判定する。
さらに、脈波間隔のデータ群が1つのクラスタにクラスタリングされた場合であって、かつ当該クラスタに属するデータ群のばらつき指標値が所定値未満である場合には、血圧計100(判定部250)は、ユーザの脈は正常である(例えば、正常洞調律を示す)と判定してもよい。
上記のように心房細動の有無を適切に判定するためには、適切な閾値Thを用いてクラスタリングを実行する必要がある。以下、閾値Thの設定方式について説明する。
図7は、閾値の設定方式を説明するための図である。図7(a)および図7(b)は、いずれも心房細動に関する脈波間隔のデータ群を閾値Thでクラスタリングした結果を示している。ただし、図7(a)は、脈波数が多い場合のクラスタリング結果を示しており、図7(b)は脈波数が少ない場合のクラスタリング結果を示している。
図7(a)では、1つのクラスタCaが生成され、クラスタCaに属する脈波間隔のデータ群は大きくばらついているため、当該データ群のばらつき指標値(例えば、標準偏差、分散、平均絶対偏差、または中央絶対偏差)は大きくなる。そのため、心房細動が発生したと正しく判定される。
一方、図7(b)では、3つのクラスタCb1~Cb3が生成され、クラスタCb1~Cb3の各々に属する脈波間隔のデータ群のばらつきは小さい。したがって、複数のクラスタCb1~Cb3におけるデータ群のばらつき指標値(例えば、Cstd、CVar、CAD、標準偏差の平均値、分散の平均値、平均絶対偏差の平均値、または中央絶対偏差の平均値)も小さくなる。そのため、心房細動以外の不整脈が発生したと誤判定されてしまう。
上記のような誤判定を防ぐため、血圧計100(クラスタリング部240)は、脈波数に応じて閾値Thを変更する。具体的には、クラスタリング部240は、脈波数が少ないほど閾値Thを大きくする。当該構成によると、図7(b)のように脈波数が少ない場合には閾値Thが大きくなるため、クラスタリング部240は、3つのクラスタCb1~Cb3を生成するのではなく、1つのクラスタCbを生成する。クラスタCbに属する脈波間隔のデータ群は大きくばらついているため、当該データ群のばらつき指標値は大きくなる。そのため、心房細動が発生したと正しく判定される。
なお、図8を用いて、閾値Thの上限値については次のように考えることができる。
図8は、閾値の上限値を説明するための図である。図8を参照して、脈波信号Pdでは脈が1つ抜けている例を示している。上述したように、脈波間隔が、脈波間隔のデータ群の平均値と同一であれば、当該脈波間隔を規格化した値は“1”となる。図8の例では、脈波間隔Ta,Tcは“1”である。次に、1つ脈が抜けた場合に、その前後の脈波間隔Tbは“2”となる。そのため、隣接する脈波間隔の差分は“1”(すなわち、2-1=1)であり、これは脈波間隔のデータ群の平均値と一致する。
脈が抜ける現象は、心房細動以外の不整脈(例えば、期外収縮)で多く見られる現象である。そのため、閾値Thを“1”以上にした場合、期外収縮に関するデータ群を複数のクラスタではなく単一のクラスタとしてクラスタリングする可能性がある。この場合、心房細動以外の不整脈を“心房細動”と誤判定してしまう可能性がある。したがって、閾値Thの上限値は、脈波間隔のデータ群の平均値に設定される。
(処理手順)
図9は、血圧計100により実行される処理手順を説明するためのフローチャートである。図9を参照して、この処理の開始において、カフ20はユーザの被測定部位に装着されている。
図9は、血圧計100により実行される処理手順を説明するためのフローチャートである。図9を参照して、この処理の開始において、カフ20はユーザの被測定部位に装着されている。
図9を参照して、血圧計100のプロセッサ110は、操作部52から、測定スイッチ52Aのユーザ操作に基づく操作信号を受付ける(ステップS10)。プロセッサ110は、当該操作信号に応答して血圧測定処理(ステップS20)を開始する。血圧測定処理では、脈波信号に基づいて、血圧値、脈波数N、および脈波間隔のデータ群が算出される。血圧測定処理の詳細は後述する。
プロセッサ110は、脈波数Nおよび脈波間隔のデータ群に基づいて、心房細動判定処理を実行する(ステップS30)。具体的には、プロセッサ110は、脈波数Nに基づいてクラスタリングに利用される閾値Thを設定し、当該閾値Thを用いて、脈波間隔のデータ群を1以上のクラスタにクラスタリングする。続いて、プロセッサ110は、クラスタに属するデータ群のばらつき指標値に基づいて、心房細動が発生したか否かを判定する。
プロセッサ110は、血圧測定結果(例えば、収縮期血圧および拡張期血圧)と、心房細動判定処理の結果とをディスプレイ50に表示する(ステップS40)。
図10は、血圧計100の血圧測定処理の一例を示すフローチャートである。図10に示す血圧測定処理(図9のステップS20に対応)は、加圧測定方式により血圧を測定する処理である。
図10を参照して、血圧計100のプロセッサ110は、圧力センサ31を初期化する(ステップS102)。具体的には、プロセッサ110は、処理用メモリ領域を初期化するとともに、ポンプ32をオフ(停止)し、弁33を開いた状態で、圧力センサ31の0mmHg調整(大気圧を0mmHgに設定)を行なう。
次に、プロセッサ110は、弁駆動回路330を介して弁33を閉じ(ステップS104)、ポンプ駆動回路320を介してポンプ32をオンして、カフ20(流体袋22)の加圧を開始する(ステップS106)。このとき、プロセッサ110は、ポンプ32からエア配管を通して流体袋22に空気を供給しながら、圧力センサ31の出力に基づいて、流体袋22内の圧力であるカフ圧の加圧速度を制御する。これにより、加圧過程が開始される。
次に、プロセッサ110は、圧力センサ31によって検出されたカフ圧信号から脈波信号を抽出し、当該脈波信号に基づいて、収縮期血圧および拡張期血圧の算出を試みて、血圧算出が完了したか否かを判断する(ステップS108)。
データ不足のために未だ血圧算出を完了できない場合(ステップS108においてNO)、プロセッサ110は、カフ圧が予め定められた上限圧力(例えば、300mmHg)に達していない限り、ステップS106,S108の処理を繰り返す。血圧算出が完了した場合(ステップS108においてYES)、プロセッサ110は、ポンプ32を停止(すなわち、加圧過程を停止)して(ステップS110)、弁33を開いて(ステップS112)、カフ20内の空気を排気する制御を行なう。
プロセッサ110は、加圧過程において得られた脈波信号に基づいて、脈波数Nおよび脈波間隔のデータ群を算出する(ステップS114)。プロセッサ110は、算出した脈波数Nおよび脈波間隔のデータ群をメモリ51に記憶する。
図11は、血圧計100の血圧測定処理の他の例を示すフローチャートである。図11に示す血圧測定処理(図9のステップS20に対応)は、減圧測定方式により血圧を測定する処理である。
図11を参照して、ステップS122~S126の処理は、それぞれ図10のステップS102~S106の処理と同様であるため、その詳細な説明は行なわない。
プロセッサ110は、加圧時に得られる脈波信号に基づいて収縮期血圧を推定する(ステップS128)。プロセッサ110は、カフ圧が圧力P以上に到達したか否かを判断する(ステップS130)。典型的には、圧力Pは、推定された収縮期血圧値よりも固定値(例えば、40mmHg)だけ高い値に設定される。
カフ圧が圧力P未満である場合(ステップS130においてNO)、プロセッサ110はステップS126に戻る。カフ圧が圧力P以上である場合(ステップS130においてYES)、プロセッサ110は、ポンプ32を停止し(ステップS132)、弁33を徐々に開放するように制御する(ステップS134)。これにより、加圧過程から減圧過程に移行して(すなわち、減圧過程が開始されて)、カフ圧は徐々に減圧していく。
この減圧過程において、プロセッサ110は、圧力センサ31によって検出されたカフ圧信号から脈波信号を抽出し、当該脈波信号に基づいて、収縮期血圧および拡張期血圧の算出を試みて、血圧算出が完了したか否かを判断する(ステップS136)。血圧算出が完了しない場合(ステップS136においてNO)、プロセッサ110は、ステップS134,S136の処理を繰り返す。血圧算出が完了した場合(ステップS136においてYES)、プロセッサ110は、弁33を全開にして(ステップS138)、カフ20内の空気を急速排気する制御を行なう。
プロセッサ110は、減圧過程において得られた脈波信号に基づいて、脈波数Nおよび脈波間隔のデータ群を算出する(ステップS140)。プロセッサ110は、算出した脈波数Nおよび脈波間隔のデータ群をメモリ51に記憶する。
<その他の実施の形態>
(1)上述した実施の形態において、コンピュータを機能させて、上述のフローチャートで説明したような制御を実行させるプログラムを提供することもできる。このようなプログラムは、コンピュータに付属するフレキシブルディスク、CD-ROM(Compact Disk Read Only Memory)、二次記憶装置、主記憶装置およびメモリカードなどの一時的でないコンピュータ読取り可能な記録媒体にて記録させて、プログラム製品として提供することもできる。あるいは、コンピュータに内蔵するハードディスクなどの記録媒体にて記録させて、プログラムを提供することもできる。また、ネットワークを介したダウンロードによって、プログラムを提供することもできる。
(1)上述した実施の形態において、コンピュータを機能させて、上述のフローチャートで説明したような制御を実行させるプログラムを提供することもできる。このようなプログラムは、コンピュータに付属するフレキシブルディスク、CD-ROM(Compact Disk Read Only Memory)、二次記憶装置、主記憶装置およびメモリカードなどの一時的でないコンピュータ読取り可能な記録媒体にて記録させて、プログラム製品として提供することもできる。あるいは、コンピュータに内蔵するハードディスクなどの記録媒体にて記録させて、プログラムを提供することもできる。また、ネットワークを介したダウンロードによって、プログラムを提供することもできる。
(2)上述の実施の形態として例示した構成は、本発明の構成の一例であり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、一部を省略する等、変更して構成することも可能である。また、上述した実施の形態において、その他の実施の形態で説明した処理や構成を適宜採用して実施する場合であってもよい。
[付記]
以上のように、本実施形態は以下のような開示を含む。
以上のように、本実施形態は以下のような開示を含む。
[構成1]
ユーザの被測定部位に装着されたカフ(20)の内圧を示すカフ圧を加圧または減圧する過程において検出されたカフ圧信号に重畳される脈波信号に基づいて、前記ユーザの血圧を測定する血圧測定部(210)と、前記脈波信号に基づいて、前記ユーザの脈波数を測定する脈波数測定部(220)と、前記脈波信号に基づいて、脈波間隔のデータ群を算出する間隔算出部(230)と、閾値を用いて、前記脈波間隔のデータ群を1以上のクラスタにクラスタリングするクラスタリング部(240)と、前記クラスタに属するデータ群のばらつきの大きさを示す指標値に基づいて、前記ユーザにおいて心房細動が発生したか否かを判定する判定部(250)とを備え、前記クラスタリング部は、前記脈波数に基づいて前記閾値を設定する、血圧計(100)。
ユーザの被測定部位に装着されたカフ(20)の内圧を示すカフ圧を加圧または減圧する過程において検出されたカフ圧信号に重畳される脈波信号に基づいて、前記ユーザの血圧を測定する血圧測定部(210)と、前記脈波信号に基づいて、前記ユーザの脈波数を測定する脈波数測定部(220)と、前記脈波信号に基づいて、脈波間隔のデータ群を算出する間隔算出部(230)と、閾値を用いて、前記脈波間隔のデータ群を1以上のクラスタにクラスタリングするクラスタリング部(240)と、前記クラスタに属するデータ群のばらつきの大きさを示す指標値に基づいて、前記ユーザにおいて心房細動が発生したか否かを判定する判定部(250)とを備え、前記クラスタリング部は、前記脈波数に基づいて前記閾値を設定する、血圧計(100)。
[構成2]
前記クラスタリング部(240)は、前記脈波数が少ないほど前記閾値を大きくする、構成1に記載の血圧計(100)。
前記クラスタリング部(240)は、前記脈波数が少ないほど前記閾値を大きくする、構成1に記載の血圧計(100)。
[構成3]
前記閾値は、前記脈波間隔のデータ群の平均値以下に設定される、構成1または2に記載の血圧計(100)。
前記閾値は、前記脈波間隔のデータ群の平均値以下に設定される、構成1または2に記載の血圧計(100)。
[構成4]
前記脈波間隔のデータ群が1つのクラスタにクラスタリングされたとき、前記判定部(250)は、前記1つのクラスタに属するデータ群のばらつきの大きさを示す第1指標値が所定値以上である場合に前記ユーザにおいて心房細動が発生したと判定する、構成1~3のいずれかに記載の血圧計(100)。
前記脈波間隔のデータ群が1つのクラスタにクラスタリングされたとき、前記判定部(250)は、前記1つのクラスタに属するデータ群のばらつきの大きさを示す第1指標値が所定値以上である場合に前記ユーザにおいて心房細動が発生したと判定する、構成1~3のいずれかに記載の血圧計(100)。
[構成5]
前記脈波間隔のデータ群が複数のクラスタにクラスタリングされたとき、前記判定部(250)は、前記複数のクラスタに属するデータ群のばらつきの大きさを示す第2指標値が所定値以上である場合に前記ユーザにおいて心房細動が発生したと判定する、構成1~4のいずれかに記載の血圧計(100)。
前記脈波間隔のデータ群が複数のクラスタにクラスタリングされたとき、前記判定部(250)は、前記複数のクラスタに属するデータ群のばらつきの大きさを示す第2指標値が所定値以上である場合に前記ユーザにおいて心房細動が発生したと判定する、構成1~4のいずれかに記載の血圧計(100)。
[構成6]
前記判定部(250)は、前記第2指標値が前記所定値未満である場合、前記ユーザに心房細動以外の不整脈が発生したと判定する、構成5に記載の血圧計(100)。
前記判定部(250)は、前記第2指標値が前記所定値未満である場合、前記ユーザに心房細動以外の不整脈が発生したと判定する、構成5に記載の血圧計(100)。
今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した説明ではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
10 本体、20 カフ、22 流体袋、30 エア系コンポーネント、31 圧力センサ、32 ポンプ、33 弁、50 ディスプレイ、51 メモリ、52 操作部、52A 測定スイッチ、53 通信インターフェイス、54 電源部、100 血圧計、110 プロセッサ、210 血圧測定部、220 脈波数測定部、230 間隔算出部、240 クラスタリング部、250 判定部、260 出力制御部、310 A/D変換回路、320 ポンプ駆動回路、330 弁駆動回路。
Claims (6)
- ユーザの被測定部位に装着されたカフの内圧を示すカフ圧を加圧または減圧する過程において検出されたカフ圧信号に重畳される脈波信号に基づいて、前記ユーザの血圧を測定する血圧測定部と、
前記脈波信号に基づいて、前記ユーザの脈波数を測定する脈波数測定部と、
前記脈波信号に基づいて、脈波間隔のデータ群を算出する間隔算出部と、
閾値を用いて、前記脈波間隔のデータ群を1以上のクラスタにクラスタリングするクラスタリング部と、
前記クラスタに属するデータ群のばらつきの大きさを示す指標値に基づいて、前記ユーザにおいて心房細動が発生したか否かを判定する判定部とを備え、
前記クラスタリング部は、前記脈波数に基づいて前記閾値を設定する、血圧計。 - 前記クラスタリング部は、前記脈波数が少ないほど前記閾値を大きくする、請求項1に記載の血圧計。
- 前記閾値は、前記脈波間隔のデータ群の平均値以下に設定される、請求項1または2に記載の血圧計。
- 前記脈波間隔のデータ群が1つのクラスタにクラスタリングされたとき、前記判定部は、前記1つのクラスタに属するデータ群のばらつきの大きさを示す第1指標値が所定値以上である場合に前記ユーザにおいて心房細動が発生したと判定する、請求項1または2に記載の血圧計。
- 前記脈波間隔のデータ群が複数のクラスタにクラスタリングされたとき、前記判定部は、前記複数のクラスタに属するデータ群のばらつきの大きさを示す第2指標値が所定値以上である場合に前記ユーザにおいて心房細動が発生したと判定する、請求項1または2に記載の血圧計。
- 前記判定部は、前記第2指標値が前記所定値未満である場合、前記ユーザに心房細動以外の不整脈が発生したと判定する、請求項5に記載の血圧計。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022197343A JP2024083052A (ja) | 2022-12-09 | 2022-12-09 | 血圧計 |
PCT/JP2023/028436 WO2024122104A1 (ja) | 2022-12-09 | 2023-08-03 | 血圧計 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022197343A JP2024083052A (ja) | 2022-12-09 | 2022-12-09 | 血圧計 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2024083052A true JP2024083052A (ja) | 2024-06-20 |
Family
ID=91379140
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2022197343A Pending JP2024083052A (ja) | 2022-12-09 | 2022-12-09 | 血圧計 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2024083052A (ja) |
WO (1) | WO2024122104A1 (ja) |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0642760B1 (en) * | 1993-04-02 | 1999-02-10 | Osachi Co., Ltd | Electronic blood pressure measuring instrument |
CN1155332C (zh) * | 1996-04-17 | 2004-06-30 | 精工爱普生株式会社 | 心律失常检测设备 |
KR101081659B1 (ko) * | 2010-01-29 | 2011-11-09 | 이병훈 | 병명이 표시되는 혈압기 |
AU2016353346B2 (en) * | 2015-11-11 | 2021-09-09 | Inspire Medical Systems, Inc. | Cardiac and sleep monitoring |
CN105943003B (zh) * | 2016-04-18 | 2019-07-19 | 广东乐心医疗电子股份有限公司 | 一种具有房颤检测功能的电子血压计 |
WO2020012793A1 (ja) * | 2018-07-10 | 2020-01-16 | 国立大学法人香川大学 | 脈波信号の解析装置、脈波信号の解析方法およびコンピュータプログラム |
JP2022099105A (ja) * | 2020-12-22 | 2022-07-04 | オムロンヘルスケア株式会社 | 電子血圧計、および、電子血圧計における心房細動判定方法 |
-
2022
- 2022-12-09 JP JP2022197343A patent/JP2024083052A/ja active Pending
-
2023
- 2023-08-03 WO PCT/JP2023/028436 patent/WO2024122104A1/ja unknown
Also Published As
Publication number | Publication date |
---|---|
WO2024122104A1 (ja) | 2024-06-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6423010B1 (en) | Oscillometric blood pressure monitor with improved performance in the presence of arrhythmias | |
US9131859B2 (en) | Blood pressure measurement apparatus, recording medium that records blood pressure derivation program, and blood pressure derivation method | |
US7232412B2 (en) | Blood pressure measuring apparatus | |
US7074192B2 (en) | Method and apparatus for measuring blood pressure using relaxed matching criteria | |
JP5363795B2 (ja) | 血管内皮機能評価装置及び血管内皮機能評価方法 | |
US8348851B2 (en) | Blood pressure measurement device and control method of the same | |
GB2362954A (en) | Blood pressure measurement | |
TW534807B (en) | Augmentation-index determining apparatus and arteriosclerosis inspecting apparatus | |
US20230172517A1 (en) | Sensor apparatuses, methods of operating same, and systems including same, and methods and systems for sensing and analyzing electromechanical characteristics of a heart | |
JP6766710B2 (ja) | 血圧測定装置、方法及びプログラム | |
JP7043247B2 (ja) | 血圧計およびその制御方法 | |
WO2024122104A1 (ja) | 血圧計 | |
WO2018168808A1 (ja) | 血圧データ処理装置、血圧データ処理方法、およびプログラム | |
US20060074327A1 (en) | Pulse wave information display apparatus, program product for controlling pulse wave information display apparatus, and method of displaying pulse wave information | |
EP0955873A1 (en) | Coherent pattern identification in non-stationary periodic data and blood pressure measurement using same | |
WO2022196144A1 (ja) | 動脈圧推定装置、動脈圧推定システム、及び動脈圧推定方法 | |
WO2024057619A1 (ja) | 血圧計、および血圧測定方法 | |
WO2024053164A1 (ja) | 血圧計、および血圧測定方法 | |
WO2024057618A1 (ja) | 血圧計、および血圧測定方法 | |
WO2024057620A1 (ja) | 血圧計、および血圧測定方法 | |
WO2024053165A1 (ja) | 血圧計、および血圧計の制御方法 | |
WO2024053166A1 (ja) | 血圧計 | |
JPH07265274A (ja) | 血圧測定装置 | |
US20200008692A1 (en) | Blood pressure data processing apparatus, blood pressure data processing method, and program | |
JP2024104059A (ja) | 生体測定システム |