Nothing Special   »   [go: up one dir, main page]

JP2024069730A - Composition for preventing retinal degeneration - Google Patents

Composition for preventing retinal degeneration Download PDF

Info

Publication number
JP2024069730A
JP2024069730A JP2021042005A JP2021042005A JP2024069730A JP 2024069730 A JP2024069730 A JP 2024069730A JP 2021042005 A JP2021042005 A JP 2021042005A JP 2021042005 A JP2021042005 A JP 2021042005A JP 2024069730 A JP2024069730 A JP 2024069730A
Authority
JP
Japan
Prior art keywords
pharmaceutical composition
pba
salt
retinal
mitochondrial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021042005A
Other languages
Japanese (ja)
Inventor
洋子 小澤
Yoko Ozawa
栄之 岡野
Hideyuki Okano
一男 坪田
Kazuo Tsubota
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Keio University
Original Assignee
Keio University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Keio University filed Critical Keio University
Priority to JP2021042005A priority Critical patent/JP2024069730A/en
Priority to PCT/JP2022/011209 priority patent/WO2022196609A1/en
Publication of JP2024069730A publication Critical patent/JP2024069730A/en
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/185Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
    • A61K31/19Carboxylic acids, e.g. valproic acid
    • A61K31/192Carboxylic acids, e.g. valproic acid having aromatic groups, e.g. sulindac, 2-aryl-propionic acids, ethacrynic acid 
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00

Landscapes

  • Health & Medical Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Chemical & Material Sciences (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Epidemiology (AREA)
  • Ophthalmology & Optometry (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)

Abstract

To provide a pharmaceutical composition for preventing retinal degeneration including retinitis pigmentosa.SOLUTION: It has been found that phenylbutyric acid (PBA) prevents progressive retinal photoreceptor cell death and also prevents a deterioration in visual function. On the basis of these findings, a pharmaceutical composition for preventing retinal degeneration including retinitis pigmentosa can be provided.SELECTED DRAWING: Figure 1

Description

本発明は、網膜色素変性をはじめとする網膜変性を抑制するための医薬組成物に関する。 The present invention relates to a pharmaceutical composition for suppressing retinal degeneration, including retinitis pigmentosa.

網膜色素変性は遺伝性の網膜疾患で、光の明暗を認識する視細胞である杆体視細胞が遺伝子変異により変性することで、初期症状として夜盲症や視野狭窄、視力低下などを呈し、最終的には失明をきたす恐れがある疾患である。
現時点では有効な治療法が無く、これまで臨床的には神経保護目的でビタミン剤を投与することがあったが、効果は乏しい。またこれまでにウイルスを用いた遺伝子導入治療に関する研究が進められており、世界的に臨床試験が行われている。また、薬物療法として視覚サイクルモジュレータ(Visual Cycle Modulator)の研究が行われているが(非特許文献1)、これは視機能を使わないようにして網膜を保護するものであり、視機能を維持しながら網膜を保護する治療が求められている。
網膜色素変性のほか、糖尿病網膜症、加齢黄斑変性、もしくはそれ以外の原因に伴う網膜変性に対する網膜を保護する治療法もなく、同様に治療法が求められている。
Retinitis pigmentosa is a hereditary retinal disease in which genetic mutations cause the rod photoreceptor cells, which detect light brightness, to degenerate. Initial symptoms include night blindness, narrowing of the visual field, and decreased vision, and can ultimately lead to blindness.
At present, there is no effective treatment, and vitamins have been administered clinically for neuroprotection, but they are not very effective. Research on gene transfer therapy using viruses has been conducted, and clinical trials are being conducted worldwide. Research on visual cycle modulators as a drug therapy has been conducted (Non-Patent Document 1), but this protects the retina by preventing the use of visual function, and there is a need for a treatment that protects the retina while maintaining visual function.
There is a similar need for treatments that protect the retina from retinitis pigmentosa, diabetic retinopathy, age-related macular degeneration, or other causes of retinal degeneration.

また尿素サイクル異常症の特効薬として既に使用されているフェニル酪酸(phenylbutyric acid(以下、PBAとも言う))が、角膜内皮における小胞体ストレスを抑制する作用があることがこれまでに示されている(特許文献1、2)。しかしながら、眼領域において、角膜内皮以外でのPBAの作用については不明であり、特に網膜におけるPBAの作用は不明であった。 Furthermore, phenylbutyric acid (hereinafter, also referred to as PBA), which is already used as a specific drug for urea cycle disorders, has been shown to have the effect of suppressing endoplasmic reticulum stress in the corneal endothelium (Patent Documents 1 and 2). However, the effect of PBA in the ocular region other than the corneal endothelium is unknown, and the effect of PBA in the retina in particular is unknown.

国際公開2015/064768号International Publication No. 2015/064768 国際公開2018/164113号International Publication No. 2018/164113

PLoS One, 2015 May 13;10(5):e0124940PLoS One, 2015 May 13;10(5):e0124940 J Biol Chem., 2011;286(12):10551-10567J Biol Chem., 2011;286(12):10551-10567 FASEB J., 2020;34(4):5016-5026FASEB J., 2020;34(4):5016-5026 PLoS One, 2017;12(6):e0178627PLoS One, 2017;12(6):e0178627 Free Radic Biol Med., 2014;71:176-185Free Radic Biol Med., 2014;71:176-185 Clin Exp Ophthalmol., 2014;42(6):555-563Clin Exp Ophthalmol., 2014;42(6):555-563 Commun Biol., 2020;3(1):767Commun Biol., 2020;3(1):767 Mol Neurobiol., 2019;56(12):8124-8135Mol Neurobiol., 2019;56(12):8124-8135 Mol Neurobiol., 2015;52(1):679-695Mol Neurobiol., 2015;52(1):679-695 Bioorg Med Chem., 2010;18(19):7022-7028Bioorg Med Chem., 2010;18(19):7022-7028 Invest Ophthalmol Vis Sci., 2012;53(12):7590-7599Invest Ophthalmol Vis Sci., 2012;53(12):7590-7599 Adv Exp Med Biol., 2012;723:191-197Adv Exp Med Biol., 2012;723:191-197 Biochim Biophys Acta Mol Basis Dis., 1864(9 Pt B):2938-2948Biochim Biophys Acta Mol Basis Dis., 1864(9 Pt B):2938-2948 Front Cell Neurosci., 2019;13:535Front Cell Neurosci., 2019;13:535 Cell Death Dis, 2014;5:e1236Cell Death Dis, 2014;5:e1236 Nat Struct Mol Biol., 2014;21(4):325-335Nat Struct Mol Biol., 2014;21(4):325-335 Trends Cell Biol., 2012;22(1):22-32Trends Cell Biol., 2012;22(1):22-32 eLife, 2020;9:e57306eLife, 2020;9:e57306 Front Cell Dev Biol., 2020;8:270Front Cell Dev Biol., 2020;8:270 Curr Opin Cell Biol, 2015;37:18-27Curr Opin Cell Biol, 2015;37:18-27 Traffic, 2018;19(8):569-577Traffic, 2018;19(8):569-577 Neurobiol Dis, 2016;90:3-19Neurobiol Dis, 2016;90:3-19 Ageing Res Rev., 2020;66:101250Ageing Res Rev., 2020;66:101250 J Neurosci Res., 2017;95(10):2025-2029J Neurosci Res., 2017;95(10):2025-2029 FEBS Lett., 2018;592(5):793-811FEBS Lett., 2018;592(5):793-811 Redox Biol., 2020;37:101779Redox Biol., 2020;37:101779 Neural Regen Res., 2017;12(8):1252-1255Neural Regen Res., 2017;12(8):1252-1255

すなわち、本発明は、網膜色素変性をはじめとする網膜変性を抑制するための医薬組成物を提供することを課題とする。 That is, the objective of the present invention is to provide a pharmaceutical composition for suppressing retinal degeneration, including retinitis pigmentosa.

本発明者らは、上記課題を解決すべく検討を進め、PBAが進行性の網膜視細胞死を抑制すること、視機能低下を抑制することを見出し、本発明を完成させた。 The inventors conducted research to solve the above problems and discovered that PBA inhibits progressive retinal photoreceptor cell death and inhibits visual function decline, leading to the completion of the present invention.

すなわち、この出願は、以下の発明を提供するものである。
[1]フェニル酪酸(PBA)若しくはその塩又はそれらの誘導体を含む、網膜変性抑制用医薬組成物。
[2]フェニル酪酸(PBA)若しくはその塩又はそれらの誘導体を含む、網膜変性疾患を治療又は予防するための、医薬組成物。
[3]前記網膜変性疾患が、網膜視細胞が変性した疾患である、[2]に記載の医薬組成物。
[4]前記網膜変性疾患が、網膜色素変性、糖尿病網膜症、加齢黄斑変性、及びMELAS(mitochondrial myopathy,encephalopathy,lactic acidosis,and stroke-like episodes)に伴う網膜変性から選択される1つ以上の疾患である、[2]又は[3]に記載の医薬組成物。
[5]フェニル酪酸の塩が、ナトリウム塩である、[1]~[4]のいずれかに記載の医薬組成物。
[6]錠剤、顆粒剤、注射剤又は点眼剤である、[1]~[5]のいずれかに記載の医薬組成物。
[7]フェニル酪酸(PBA)若しくはその塩又はそれらの誘導体を含む、網膜における小胞体ストレス関連分解を促進するための医薬組成物。
[8]フェニル酪酸(PBA)若しくはその塩又はそれらの誘導体を含む、網膜におけるミトコンドリア生合成を活性化するための及び/又は網膜におけるミトコンドリアの代謝機能を改善するための医薬組成物。
That is, this application provides the following inventions.
[1] A pharmaceutical composition for inhibiting retinal degeneration, comprising phenylbutyric acid (PBA) or a salt thereof, or a derivative thereof.
[2] A pharmaceutical composition for treating or preventing a retinal degenerative disease, comprising phenylbutyric acid (PBA) or a salt thereof, or a derivative thereof.
[3] The pharmaceutical composition described in [2], wherein the retinal degenerative disease is a disease in which retinal photoreceptor cells are degenerated.
[4] The pharmaceutical composition according to [2] or [3], wherein the retinal degenerative disease is one or more diseases selected from retinitis pigmentosa, diabetic retinopathy, age-related macular degeneration, and retinal degeneration associated with MELAS (mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes).
[5] The pharmaceutical composition according to any one of [1] to [4], wherein the salt of phenylbutyric acid is a sodium salt.
[6] The pharmaceutical composition according to any one of [1] to [5], which is a tablet, granule, injection or eye drop.
[7] A pharmaceutical composition for promoting endoplasmic reticulum stress-related degradation in the retina, comprising phenylbutyric acid (PBA) or a salt thereof, or a derivative thereof.
[8] A pharmaceutical composition for activating mitochondrial biogenesis in the retina and/or improving mitochondrial metabolic function in the retina, comprising phenylbutyric acid (PBA) or a salt thereof or a derivative thereof.

本発明は、PBAが網膜色素変性モデルにおいて視機能維持を促進することを見出したことにより、網膜色素変性をはじめとする網膜変性を抑制するための剤を提供でき、これまで診断がついても有効な治療法が無かった網膜変性患者に対する新規医薬組成物を提供することができた。 By discovering that PBA promotes the maintenance of visual function in a retinitis pigmentosa model, the present invention provides an agent for suppressing retinal degeneration, including retinitis pigmentosa, and a novel pharmaceutical composition for patients with retinal degeneration who have been diagnosed but have had no effective treatment until now.

PBAによるP23Hロドプシンノックインヘテロ接合型網膜色素変性モデルマウス(本開示中、単にP23Hノックインヘテロ接合型マウス、P23H RPモデルマウスとも言う)における視機能維持促進を示す図である。図中、WTは野生型マウスを示し、HeteroはP23Hノックインヘテロ接合型マウスを示す。Aは、マウス網膜のヘマトキシリン・エオジン染色を行った顕微鏡写真図である。Bは、外顆粒層(ONL)における、核の数を示すグラフである。図中、*はP<0.05を示し、**はP<0.01を示す。FIG. 1 shows the promotion and maintenance of visual function in P23H rhodopsin knock-in heterozygous retinitis pigmentosa model mice (also referred to simply as P23H knock-in heterozygous mice or P23H RP model mice in this disclosure) by PBA. In the figure, WT indicates wild-type mice, and Hetero indicates P23H knock-in heterozygous mice. A is a micrograph of mouse retina stained with hematoxylin and eosin. B is a graph showing the number of nuclei in the outer nuclear layer (ONL). In the figure, * indicates P<0.05, and ** indicates P<0.01. PBAによるP23Hノックインヘテロ接合型マウスにおける視機能維持促進を示す図である。A~Eは暗順応ERGの結果図であり、Aは網膜電図の波形を示し、B~Cはそれぞれa波の振幅及び潜時を示し、D~Eはそれぞれb波の振幅及び潜時を示す。F~Hは明順応ERGの結果図であり、Fは網膜電図の波形を示し、G~Hはそれぞれ振幅及び潜時を示す。図中、*はP<0.05を示す。This is a diagram showing the maintenance and promotion of visual function in P23H knock-in heterozygous mice by PBA. A to E are diagrams showing the results of dark-adapted ERG, A shows the waveform of electroretinogram, B to C show the amplitude and latency of the a-wave, respectively, and D to E show the amplitude and latency of the b-wave, respectively. F to H are diagrams showing the results of light-adapted ERG, F shows the waveform of electroretinogram, and G to H show the amplitude and latency, respectively. In the diagram, * indicates P<0.05. PBAによるP23Hノックインヘテロ接合型マウスの網膜における小胞体ストレス関連分解とミトコンドリアマーカーの発現上昇を示す図である。A~Iのグラフはそれぞれ、リアルタイム逆転写ポリメラーゼ連鎖反応(RT-PCR)による、各遺伝子マーカーの発現量の変化を示す。図中、*はP<0.05を示し、**はP<0.01を示す。This figure shows the upregulation of endoplasmic reticulum stress-related degradation and mitochondrial markers in the retina of P23H knock-in heterozygous mice by PBA. Graphs A to I show the change in the expression level of each gene marker by real-time reverse transcription polymerase chain reaction (RT-PCR). In the figure, * indicates P<0.05, and ** indicates P<0.01. PBAによる細胞株におけるミトコンドリアの代謝改善を示す図である。A~Bはそれぞれ、Pgc1-αとTfamのmRNA発現量がPBAの用量依存的に増加することを示す。Cは、ミトコンドリアのプロトノフォア脱共役剤であるBAM15の投与前後における膜電位改善を示す電子顕微鏡写真図である。Dは、ミトコンドリア膜電位改善を示すグラフである。E~Fはそれぞれ、PBAによる電子輸送鎖の複合体IV(CoX IV)の活性亢進、及びATP発現レベルの上昇を示すグラフである。図中、*はP<0.05を示し、**はP<0.01を示す。FIG. 1 shows the improvement of mitochondrial metabolism in cell lines by PBA. A to B show that the mRNA expression levels of Pgc1-α and Tfam increase in a dose-dependent manner with PBA. C shows an electron micrograph showing the improvement of membrane potential before and after administration of BAM15, a mitochondrial protonophore uncoupler. D shows a graph showing the improvement of mitochondrial membrane potential. E to F show the enhancement of activity of complex IV (CoX IV) of the electron transport chain and the increase in ATP expression level by PBA. In the figure, * indicates P<0.05, and ** indicates P<0.01.

本発明の一実施形態は、フェニル酪酸(PBA)若しくはその塩又はそれらの誘導体を含む、網膜変性抑制用医薬組成物又は網膜変性疾患を治療若しくは予防するための医薬組成物である。 One embodiment of the present invention is a pharmaceutical composition for inhibiting retinal degeneration or for treating or preventing a retinal degenerative disease, comprising phenylbutyric acid (PBA) or a salt thereof or a derivative thereof.

本実施形態において、フェニル酪酸塩は、本発明の効果を妨げない限り限定されず、例えば、ナトリウム塩が挙げられる。 In this embodiment, the phenylbutyrate salt is not limited as long as it does not interfere with the effects of the present invention, and examples include sodium salts.

本実施形態において、フェニル酪酸若しくはフェニル酪酸塩の誘導体とは、本発明の効果を妨げない限り限定されず、例えば、フェニル基上の任意の水素が、任意の置換基(例えば、炭素数1~3のアルキル基、ハロゲンなど)で置換されたものであってもよく、フェニル酪酸又はフェニル酪酸塩の炭化水素鎖上の任意の水素が、任意の置換基(例えば、炭素数1~3のアルキル基、ハロゲンなど)で置換されたものであってもよい。 In this embodiment, the derivative of phenylbutyric acid or phenylbutyrate is not limited as long as it does not interfere with the effects of the present invention. For example, any hydrogen on the phenyl group may be replaced with any substituent (e.g., an alkyl group having 1 to 3 carbon atoms, a halogen, etc.), or any hydrogen on the hydrocarbon chain of phenylbutyric acid or phenylbutyrate may be replaced with any substituent (e.g., an alkyl group having 1 to 3 carbon atoms, a halogen, etc.).

本実施形態において、網膜変性とは、疾患については特に限定されず、網膜細胞の変性が生じた状態のことである。好ましくは網膜視細胞の変性が生じた状態のことである。網膜視細胞の変性は、杆体視細胞の変性又は錐体視細胞の変性のいずれでもよい。 In this embodiment, the retinal degeneration is not particularly limited to a disease, and refers to a state in which retinal cells have degenerated. Preferably, it refers to a state in which retinal photoreceptor cells have degenerated. The degeneration of retinal photoreceptor cells may be either rod photoreceptor cell degeneration or cone photoreceptor cell degeneration.

本実施形態において、網膜変性が抑制されるとは、本実施形態の医薬組成物を投与することにより、例えば、変性の進行が阻害されることや、変性の進行が遅延されること、変性状態が改善されること、変性状態が完全に消失することなどが挙げられる。 In this embodiment, suppression of retinal degeneration means, for example, that the progression of degeneration is inhibited, the progression of degeneration is delayed, the degenerative state is improved, or the degenerative state is completely eliminated, by administering the pharmaceutical composition of this embodiment.

本実施形態の医薬組成物を投与することにより、網膜における変性が生じた異常タンパク質の分解が促進されることや、ミトコンドリア機能が改善若しくは向上すること、及び/又は網膜視細胞の保護機能が改善若しくは向上すること等によって、網膜変性が抑制される。 By administering the pharmaceutical composition of this embodiment, retinal degeneration is suppressed by promoting the decomposition of abnormal proteins that have caused degeneration in the retina, improving or enhancing mitochondrial function, and/or improving or enhancing the protective function of retinal photoreceptor cells.

網膜変性の抑制を判断する指標は特に限定されることはないが、例えば、本実施形態の医薬組成物投与後の検体において、本実施形態の医薬組成物を投与していない対照検体と比較して、網膜細胞の数、特に網膜視細胞の数が増加することにより網膜変性が抑制されたと判断してもよく、網膜電図にて振幅が増加すること及び/又は潜時が短くなることにより網膜変性が抑制されたと判断してもよい。統計学的に有意差があることが好ましいが、必ずしも有意差があることは必要とはしない。 The indicator for determining whether retinal degeneration has been suppressed is not particularly limited, but for example, it may be determined that retinal degeneration has been suppressed by an increase in the number of retinal cells, particularly the number of retinal photoreceptor cells, in a sample after administration of the pharmaceutical composition of this embodiment, compared to a control sample to which the pharmaceutical composition of this embodiment has not been administered, or by an increase in the amplitude and/or a shortened latency in an electroretinogram. It is preferable that there is a statistically significant difference, but it is not necessarily necessary that there is a significant difference.

本実施検体の治療対象となる網膜変性疾患は、網膜変性を引き起こす原因によらず、網膜細胞の変性が生じた疾患であれば特に限定されないが、網膜視細胞の変性が生じた疾患であることが好ましい。
具体的には、特に限定されないが、例えば、網膜色素変性、糖尿病網膜症、加齢黄斑変性、及びMELAS(mitochondrial myopathy,encephalopathy,lactic acidosis,and stroke-like episodes)に伴う網膜変性から選択される1つ以上の疾患が挙げられる。
The retinal degenerative disease to be treated in this embodiment is not particularly limited as long as it is a disease in which degeneration of retinal cells occurs, regardless of the cause of retinal degeneration, but is preferably a disease in which degeneration of retinal photoreceptor cells occurs.
Specific examples of the disease include, but are not limited to, one or more diseases selected from retinitis pigmentosa, diabetic retinopathy, age-related macular degeneration, and retinal degeneration associated with MELAS (mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes).

本実施形態において、治療とは疾患の発生を予防することも含む。 In this embodiment, treatment also includes preventing the onset of disease.

本実施形態において、医薬組成物中のフェニル酪酸若しくはその塩又はそれらの誘導体の含有量又はそれを含む医薬組成物の投与量若しくは投与方法は、該医薬組成物による治療効果が得られる限り特に限定されず、疾患の種類、疾患の程度、症状、患者の年齢、体重などによって適宜定めることができる。 In this embodiment, the content of phenylbutyric acid or a salt thereof or a derivative thereof in the pharmaceutical composition, or the dosage or administration method of the pharmaceutical composition containing it, is not particularly limited as long as the therapeutic effect of the pharmaceutical composition is obtained, and can be appropriately determined depending on the type of disease, the severity of the disease, symptoms, age, weight, etc. of the patient.

例えば、錠剤又は顆粒剤である場合、該医薬組成物中のフェニル酪酸若しくはその塩又はそれらの誘導体の含有量は、医薬組成物1gあたり、10~1000mgであってよく、100~1000mgであってよい。液剤の場合、該医薬組成物中のフェニル酪酸若しくはその塩又はそれらの誘導体の含有量は、例えば、0.001μg/mL~1000mg/mLであってよく、0.001μM~1000mMであってもよい。 For example, in the case of a tablet or granule, the content of phenylbutyric acid or a salt thereof, or a derivative thereof in the pharmaceutical composition may be, for example, 10 to 1000 mg, or 100 to 1000 mg, per 1 g of pharmaceutical composition. In the case of a liquid, the content of phenylbutyric acid or a salt thereof, or a derivative thereof in the pharmaceutical composition may be, for example, 0.001 μg/mL to 1000 mg/mL, or 0.001 μM to 1000 mM.

本実施形態の医薬組成物の剤型は、投与方法に応じて適宜選択できる。例えば、経口投与の場合は、散剤、顆粒剤、錠剤、カプセル剤等の固形製剤;溶液剤、シロップ剤、懸濁剤、乳剤等の液剤等に製剤化することができる。また、非経口投与の場合は、注射剤、液剤、懸濁剤等に製剤化することができる。 The dosage form of the pharmaceutical composition of this embodiment can be appropriately selected depending on the administration method. For example, in the case of oral administration, it can be formulated into solid preparations such as powders, granules, tablets, and capsules; or liquid preparations such as solutions, syrups, suspensions, and emulsions. In addition, in the case of parenteral administration, it can be formulated into injections, liquids, suspensions, and the like.

投与経路は、治療効果が得られる限り特に限定されず、経口投与、眼投与、静脈内投与、局所投与などであってよい。例えば、錠剤又は顆粒剤として経口投与してもよく、注射剤として眼内などに局所投与してもよく、点眼剤として眼投与してもよい。 The route of administration is not particularly limited as long as a therapeutic effect is obtained, and may be oral administration, ocular administration, intravenous administration, local administration, etc. For example, it may be administered orally as a tablet or granule, locally into the eye as an injection, or ocular administration as eye drops.

本実施形態の医薬組成物の投与量は、フェニル酪酸若しくはその塩又はそれらの誘導体に関しては、経口投与や静脈内投与等を行う場合は、例えば、1日あたり1.0~20.0g/m(体表面積)であってよく、9.9~13.0g/m(体表面積)であってもよい。上記投与量の医薬組成物は、1日1回で投与してもよく、1日数回に分けて投与してもよい。また、点眼剤として眼投与等を行う場合は、例えば、0.001μg/mL~1000mg/mLまたは0.001μM~1000mMの濃度の医薬組成物を片眼あたり1滴又は複数滴、1日1回又は複数回投与してもよい。 The dosage of the pharmaceutical composition of this embodiment, in the case of oral administration, intravenous administration, etc., for phenylbutyric acid or a salt thereof, or a derivative thereof, may be, for example, 1.0 to 20.0 g/m 2 (body surface area) per day, or may be 9.9 to 13.0 g/m 2 (body surface area). The pharmaceutical composition of the above dosage may be administered once a day, or may be administered in divided doses several times a day. In addition, when administering to the eye as an eye drop, for example, a pharmaceutical composition having a concentration of 0.001 μg/mL to 1000 mg/mL or 0.001 μM to 1000 mM may be administered as one or more drops per eye, once or several times a day.

本実施形態の医薬組成物は、本発明の効果を妨げない限り、追加の有効成分を含んでもよい。さらに、追加の疾患治療方法と組み合わせて使用してもよい。 The pharmaceutical composition of this embodiment may contain additional active ingredients as long as the effects of the present invention are not hindered. Furthermore, it may be used in combination with additional disease treatment methods.

本実施形態の医薬組成物は、担体や添加剤が含まれていてもよい。ここで、担体として
は、薬理的に許容される溶媒、希釈剤、賦形剤、結合剤などが挙げられ、液体状の医薬組成物の調製には例えば、水、生理食塩水、緩衝液などが用いられる。添加剤としては、安定剤、pH調整剤、増粘剤、抗酸化剤、等張化剤、緩衝剤、溶解補助剤、懸濁化剤、保存剤、凍害防止剤、凍結保護剤、凍結乾燥保護剤、制菌剤などが挙げられる。
The pharmaceutical composition of the present embodiment may contain a carrier or an additive. Here, examples of the carrier include pharmacologically acceptable solvents, diluents, excipients, binders, etc., and for example, water, physiological saline, buffer solutions, etc. are used to prepare liquid pharmaceutical compositions. Examples of the additives include stabilizers, pH adjusters, thickeners, antioxidants, isotonicity agents, buffers, dissolution aids, suspending agents, preservatives, cryoprotectants, cryoprotectants, lyophilization protectants, bacteriostatic agents, etc.

本発明の他の実施形態は、フェニル酪酸(PBA)若しくはその塩又はそれらの誘導体を含む、網膜における小胞体ストレス関連分解を促進するための医薬組成物である。 Another embodiment of the present invention is a pharmaceutical composition for promoting endoplasmic reticulum stress-related degradation in the retina, comprising phenylbutyric acid (PBA) or a salt thereof or a derivative thereof.

網膜における小胞体ストレス関連分解を促進するとは、特に限定されないが、例えば、XBP1s(XBP1 spliced form)、VCP(valosin-containing protein)、Derlin1(degradation in endoplasmic reticulum protein 1)などの小胞体ストレス関連分解に関連する分子マーカーの遺伝子発現量又はタンパク質発現量が増強されることである。この分子マーカーの発現量増強により、網膜に発生した異常タンパク質の分解を促進することができる。特に小胞体ストレス関連分解の促進により、異常なP23Hロドプシンに分解が促進されることにより、網膜変性を抑制することができる。 Promoting endoplasmic reticulum stress-related degradation in the retina means, but is not limited to, enhancing the gene expression level or protein expression level of molecular markers associated with endoplasmic reticulum stress-related degradation, such as XBP1s (XBP1 spliced form), VCP (valosin-containing protein), and Derlin1 (degradation in endoplasmic reticulum protein 1). By enhancing the expression level of these molecular markers, it is possible to promote the degradation of abnormal proteins that have developed in the retina. In particular, promoting endoplasmic reticulum stress-related degradation promotes the degradation of abnormal P23H rhodopsin, thereby suppressing retinal degeneration.

ここで各種分子マーカーの発現量増強とは、特に限定されないが、本実施形態の医薬組成物を投与した対象において、該医薬組成物を投与していない対照となる対象と比較して、該マーカーの遺伝子又はタンパク質発現量が増えたことを意味してもよい。
または、本実施形態の医薬組成物を投与した対象において、該マーカーの遺伝子又はタンパク質発現量が、予め設定されたカットオフ値を超えた場合に発現量が増強されたと判断してもよい。
Here, the enhancement of the expression level of various molecular markers is not particularly limited, but may mean that the gene or protein expression level of the marker is increased in a subject administered with the pharmaceutical composition of the present embodiment, compared to a control subject not administered with the pharmaceutical composition.
Alternatively, when the gene or protein expression level of the marker in a subject administered with the pharmaceutical composition of this embodiment exceeds a preset cutoff value, it may be determined that the expression level is enhanced.

本実施形態における、フェニル酪酸の塩や誘導体の種類、医薬組成物中のフェニル酪酸若しくはその塩又はそれらの誘導体の含有量又は医薬組成物の投与量、投与方法、剤形、追加の成分などは特に限定されず、上述の網膜変性抑制用医薬組成物における記載を準用できる。 In this embodiment, the type of salt or derivative of phenylbutyric acid, the content of phenylbutyric acid or its salt or derivative in the pharmaceutical composition, the dosage of the pharmaceutical composition, the administration method, dosage form, additional ingredients, etc. are not particularly limited, and the descriptions of the pharmaceutical composition for inhibiting retinal degeneration described above can be applied mutatis mutandis.

本発明の他の実施形態は、フェニル酪酸若しくはその塩又はそれらの誘導体を含む、網膜におけるミトコンドリア生合成を活性化するための及び/又は網膜におけるミトコンドリアの代謝機能を改善するための医薬組成物である。 Another embodiment of the present invention is a pharmaceutical composition for activating mitochondrial biogenesis in the retina and/or improving mitochondrial metabolic function in the retina, comprising phenylbutyric acid or a salt thereof or a derivative thereof.

網膜におけるミトコンドリア生合成を活性化するとは、特に限定されないが、例えば、Fis1(Mitochondrial fission 1 protein)などのミトコンドリア分裂マーカーや、LC3(microtubule-associated protein light chain 3)などのオートファジーマーカー、若しくはMfn1(mitofusin 1)、Mfn2(mitofusin 2)などの融合マーカーの遺伝子発現量又はタンパク質発現量が増強されること、またはミトコンドリア生合成調節因子であるPgc1-α(peroxisome proliferators-activated receptor-γ co-activator-1α)若しくはミトコンドリア転写因子であるTfam(mitochondrial transcription factor A)などの遺伝子発現量又はタンパク質発現量が増強されることである。これらの分子の遺伝子発現量又はタンパク質発現量の増強により、網膜においてミトコンドリアの生合成を活性化させ、かつ損傷を受けたミトコンドリアのマイトファジーを促進することができる。
また、網膜におけるミトコンドリアの代謝機能を改善するとは、特に限定されないが、例えば、ミトコンドリア膜電位の増強や、シトクロムc酸化酵素IV(COX IV)の活性が増強されることである。
ミトコンドリア生合成が活性化され、ミトコンドリアの代謝機能が改善された結果、ミ
トコンドリアにおけるATPレベルが増加し、視細胞の保護を導くことができる。すなわち、本実施形態の医薬組成物を使用することにより、網膜変性を抑制することができる。
Activation of mitochondrial biogenesis in the retina includes, but is not limited to, enhancement of gene expression or protein expression of a mitochondrial fission marker such as Fis1 (mitochondrial fission 1 protein), an autophagy marker such as LC3 (microtubule-associated protein light chain 3), or a fusion marker such as Mfn1 (mitofusin 1) or Mfn2 (mitofusin 2), or enhancement of gene expression or protein expression of a mitochondrial biogenesis regulator Pgc1-α (peroxisome proliferators-activated receptor-γ co-activator-1α) or a mitochondrial transcription factor Tfam (mitochondrial transcription factor A) and the like. Increasing the gene expression or protein expression of these molecules can activate mitochondrial biogenesis in the retina and promote mitophagy of damaged mitochondria.
Furthermore, improving the metabolic function of mitochondria in the retina includes, but is not limited to, for example, enhancing mitochondrial membrane potential and enhancing the activity of cytochrome c oxidase IV (COX IV).
As a result of activating mitochondrial biogenesis and improving mitochondrial metabolic function, ATP levels in mitochondria can be increased, leading to protection of photoreceptor cells. In other words, retinal degeneration can be suppressed by using the pharmaceutical composition of the present embodiment.

ここで各種分子マーカーの発現量増強やミトコンドリア膜電位の増強、COX IVの活性増強とは、特に限定されないが、本実施形態の医薬組成物を投与した対象において、該医薬組成物を投与していない対照となる対象と比較して、該マーカーの遺伝子又はタンパク質発現量が増えたことや、ミトコンドリア膜電位が増強したこと、COX IVの活性が増強したことを意味してもよい。
または、本実施形態の医薬組成物を投与した対象において、該マーカーの遺伝子又はタンパク質発現量、ミトコンドリア膜電位の測定値、若しくはCOX IV活性の測定値が、予め設定されたカットオフ値を超えた場合に、該マーカーの遺伝子又はタンパク質発現量が増えた、ミトコンドリア膜電位が増強した、若しくはCOX IVの活性が増強したと判断してもよい。
Here, the enhancement of the expression level of various molecular markers, the enhancement of mitochondrial membrane potential, and the enhancement of COX IV activity are not particularly limited, and may mean that the gene or protein expression level of the marker has increased, the mitochondrial membrane potential has been enhanced, or the activity of COX IV has been enhanced in a subject to which the pharmaceutical composition of the present embodiment has been administered, compared to a control subject to which the pharmaceutical composition has not been administered.
Alternatively, when the expression level of the gene or protein of the marker, the measured value of the mitochondrial membrane potential, or the measured value of COX IV activity in a subject administered the pharmaceutical composition of the present embodiment exceeds a preset cutoff value, it may be determined that the expression level of the gene or protein of the marker has increased, the mitochondrial membrane potential has been enhanced, or the activity of COX IV has been enhanced.

本実施形態における、フェニル酪酸の塩や誘導体の種類、医薬組成物中のフェニル酪酸若しくはその塩又はそれらの誘導体の含有量、又は医薬組成物の投与量、投与方法、剤形、追加の成分などは特に限定されず、上述の網膜変性抑制用医薬組成物における記載を準用できる。 In this embodiment, the type of salt or derivative of phenylbutyric acid, the content of phenylbutyric acid or its salt or derivative in the pharmaceutical composition, the dosage of the pharmaceutical composition, the administration method, dosage form, additional ingredients, etc. are not particularly limited, and the descriptions of the pharmaceutical composition for inhibiting retinal degeneration described above can be applied mutatis mutandis.

実施例は、開示する目的のために記載されており、本発明の範囲を制限する意図はない。 The examples are provided for disclosure purposes and are not intended to limit the scope of the invention.

<実験動物>
当業者に既知の方法により得られたP23Hノックインヘテロ接合型マウス(+/-、2週齢、オス)を(非特許文献2)、慶應義塾大学医学部の動物実験施設で、温度管理された部屋(22℃)で12時間の明暗サイクル(午前8時から午後8時まで点灯)で、餌と水を自由に摂取できる環境下で飼育した。すべての動物実験は、ARVO Statement for the Use of Animals in Ophthalmic and Vision Research及び慶應義塾動物実験委員会のガイドラインに準拠して実施した。
<Experimental animals>
P23H knock-in heterozygous mice (+/-, 2 weeks old, male) obtained by a method known to those skilled in the art (Non-Patent Document 2) were kept in the animal experiment facility of Keio University School of Medicine in a temperature-controlled room (22°C) with a 12-hour light/dark cycle (lights on from 8 am to 8 pm) and with free access to food and water. All animal experiments were performed in accordance with the guidelines of the ARVO Statement for the Use of Animals in Ophthalmic and Vision Research and the Keio University Animal Experimentation Committee.

<組織学的解析>
マウスの眼球を摘出し、4%パラホルムアルデヒド中で一晩、4℃で固定した。固定後、パラフィン包埋し(サクラファインテックジャパン、東京、日本)、視神経乳頭から網膜における最も離れた領域までを含む厚さ6~8μmの切片を作製し、脱パラフィン化した後、ヘマトキシリンとエオジンで染色した。切片は、デジタルカメラ(オリンパス株式会社、東京、日本)を装着した顕微鏡で観察した。当業者に既知の方法により、視細胞層である外顆粒層(outer nuclear layer:ONL)の厚さを、ONLの上部から下部までの距離を測定することによって評価し、杆体視細胞の外節(outer segment:OS)の長さを、後上部網膜において視神経から500μmのところで、ImageJソフトウェア(National Institutes of Health,Bethesda,MD,USA;available at http://rsb.info.nih.gov/ij/index.html)を用いて、ヘマトキシリンおよびエオジン染色を観察することによって決定し、平均化した(非特許文献2~6)。
<Histological analysis>
Mouse eyes were enucleated and fixed overnight at 4°C in 4% paraformaldehyde. After fixation, the eyes were embedded in paraffin (Sakura Finetech Japan, Tokyo, Japan) and 6-8 μm-thick sections were prepared from the optic disc to the most distant region of the retina, deparaffinized, and stained with hematoxylin and eosin. The sections were observed under a microscope equipped with a digital camera (Olympus Corporation, Tokyo, Japan). Using methods known to those skilled in the art, the thickness of the photoreceptor layer, the outer nuclear layer (ONL), was assessed by measuring the distance from the top to the bottom of the ONL, and the length of the rod outer segment (OS) was determined in the posterior superior retina, 500 μm from the optic nerve, by observing hematoxylin and eosin staining using ImageJ software (National Institutes of Health, Bethesda, MD, USA; available at http://rsb.info.nih.gov/ij/index.html), and averaged (Non-Patent Documents 2 to 6).

<リアルタイム逆転写ポリメラーゼ連鎖反応(RT-PCR)>
TRIzol試薬(Life Technologies,Carlsbad,CA,USA)を用いて、生後4週齢のマウス網膜から全RNAを単離した。RNA濃度をNa
noDrop 1000(Thermo Fisher Scientific)を用いて測定し、1μgのRNAをSuperScript VILOマスターミックス(Life Technologies,Carlsbad,CA,USA)を用いて、製造者の指示に従って逆転写した。以下の配列のプライマーを使用した。
グリセルアルデヒド3-リン酸デヒドロゲナーゼ(Gapdh):フォワードプライマー5’-ACTTTCGGCCCATCTCTCA-3’(配列番号1)及びリバースプライマー5’-GATGACCCCTTTTGGCTCTCCAC-3’(配列番号2)。
Pgc1-α:フォワードプライマー5’-GATGAATACCGCAAAGAGCA-3’(配列番号3)及びリバースプライマー5’-AGATTTACGGTGCATTCCT-3’(配列番号4)。
Fis1:フォワードプライマー5’-ATATGCCTGGTGCCTGGTTC-3’(配列番号5)及びリバースプライマー5’-AGTCCCGCTGTTCCTCTTTG-3’(配列番号6)。
Mfn1:フォワードプライマー5’-GATGTTCCACCAGAGCTGGGA-3’(配列番号7)及びリバースプライマー5’-AGGAGCCGCTCATTCACCCTTTTA-3’(配列番号8)。
Mfn2:フォワードプライマー5’-CCCCTCCTCAAGCACTTTGGTTC-3’(配列番号9)及びリバースプライマー5’-ACCCTGCTCTCTCTCCGTGTTGTAAAC-3’(配列番号10)。
Xbp1s:フォワードプライマー5’-CTGAGTCCGCAGCAGGTG-3’(配列番号11)及びリバースプライマー5’-TGCCCAAAAGGATATCAGACT-3’(配列番号12)。
VCP:フォワードプライマー5’-AAGTCCCCAGTTGCCAAGGATG-3’(配列番号13)及びリバースプライマー5’-AGCCGATGGATTTGTCTGCCTC-3’(配列番号14)。
Derl1:フォワードプライマー5’-CGCGATTTAAGGCCTGTTAC-3’(配列番号15)及びリバースプライマー5’-GGTAGCCAGCGGTACAAAAA-3’(配列番号16)。
Tfam:フォワードプライマー5’-AGTCAGCTGATGGGTATGGAGAA-3’(配列番号17)及びリバースプライマー5’-TGCTGAACGAGGTCTTTTTGG-3’(配列番号18)。
LC3b:Mm00782868(Taqman)。
Taqmanプローブ(Applied Biosystems、Thermo Fisher Scientific)を、Kir2.1(Kcnj2としても知られる、カリウム内向き整流性チャネル、サブファミリーJ、メンバー2;Mm00434616)、Aqp4(Mm00802131)、Kir4.1(Kcnj10としても知られる、カリウム内向き整流性チャネル、サブファミリーJ、メンバー10;Mm00445028)、Kcnv2(カリウムチャネル、サブファミリーV、メンバー2(Mm00807577)、およびBCL2関連Xタンパク質(Bax;Mm00432050)を用いた。リアルタイムPCRをStepOnePlusTM PCRシステム(Applied Biosystems、Thermo Fisher Scientific)を用いて行い、ΔΔCT法を用いて遺伝子発現を定量した。すべてのmRNAレベルはGapdhに正規化した。
<Real-time reverse transcription polymerase chain reaction (RT-PCR)>
Total RNA was isolated from 4-week-old mouse retinas using TRIzol reagent (Life Technologies, Carlsbad, CA, USA).
The RNA was measured using noDrop 1000 (Thermo Fisher Scientific), and 1 μg of RNA was reverse transcribed using SuperScript VILO Master Mix (Life Technologies, Carlsbad, CA, USA) according to the manufacturer's instructions. The following primers were used:
Glyceraldehyde 3-phosphate dehydrogenase (Gapdh): forward primer 5'-ACTTTCGGCCCATCTCTCA-3' (SEQ ID NO:1) and reverse primer 5'-GATGACCCCTTTTGGCTCTCCAC-3' (SEQ ID NO:2).
Pgc1-α: forward primer 5′-GATGAATACCGCAAAGAGCA-3′ (SEQ ID NO: 3) and reverse primer 5′-AGATTTACGGTGCATTCCT-3′ (SEQ ID NO: 4).
Fis1: forward primer 5'-ATATGCCTGGTGCCTGGTTC-3' (SEQ ID NO:5) and reverse primer 5'-AGTCCCGCTGTTCCTCTTTG-3' (SEQ ID NO:6).
Mfn1: forward primer 5'-GATGTTCCACCAGAGCTGGGA-3' (SEQ ID NO: 7) and reverse primer 5'-AGGAGCCGCTCATTCACCCTTTTA-3' (SEQ ID NO: 8).
Mfn2: forward primer 5'-CCCCTCCTCAAGCACTTTGGTTC-3' (SEQ ID NO: 9) and reverse primer 5'-ACCCTGCTCTCTCTCTCCGTGTTGTAAAC-3' (SEQ ID NO: 10).
Xbp1s: forward primer 5'-CTGAGTCCGCAGCAGGTG-3' (SEQ ID NO: 11) and reverse primer 5'-TGCCCAAAAGGATATCAGACT-3' (SEQ ID NO: 12).
VCP: forward primer 5'-AAGTCCCCAGTTGCCAAGGATG-3' (SEQ ID NO: 13) and reverse primer 5'-AGCCGATGGATTGTCTGCCTC-3' (SEQ ID NO: 14).
Derl1: forward primer 5'-CGCGATTTAAGGCCTGTTAC-3' (SEQ ID NO: 15) and reverse primer 5'-GGTAGCCAGCGGTACAAAA-3' (SEQ ID NO: 16).
Tfam: forward primer 5'-AGTCAGCTGATGGGTATGGAGAA-3' (SEQ ID NO: 17) and reverse primer 5'-TGCTGAACGAGGTCTTTTTTGG-3' (SEQ ID NO: 18).
LC3b: Mm00782868 (Taqman).
Taqman probes (Applied Biosystems, Thermo Fisher Scientific) were used for Kir2.1 (also known as Kcnj2, potassium inward rectifier channel, subfamily J, member 2; Mm00434616), Aqp4 (Mm00802131), Kir4.1 (also known as Kcnj10, potassium inward rectifier channel, subfamily J, member 10; Mm00445028), Kcnv2 (potassium channel, subfamily V, member 2 (Mm00807577), and BCL2-associated X protein (Bax; Mm00432050). Real-time PCR was performed using the StepOnePlus PCR system (Applied Biosystems, Thermo Fisher Scientific). Analysis was performed using the Fisher Scientific software and gene expression was quantified using the ΔΔCT method. All mRNA levels were normalized to Gapdh.

<網膜電図(electroretinogram(ERG))のレコーディング>
当業者に既知の方法に基づき、マウスを少なくとも12時間暗順応させ、その後、ERGを実施する前に暗赤色灯下に置いた(非特許文献7~8)。マウスを腹腔内複合麻酔薬[ミダゾラム4mg/kg体重(サンドジャパン株式会社、東京、日本)、メデトミジン0.75mg/kg体重(日本全薬工業株式会社、福島、日本)、及びブトルファノール
酒石酸塩5mg/kg体重(Meiji Seika ファルマ株式会社、東京、日本)]で麻酔し、実験中は加熱パッドの上に置いたままにした。トロピカミドとフェニルフリンの混合物(各0.5%;Mydrin-P(登録商標);参天製薬、大阪、日本)を一滴使用して、マウスの瞳孔を拡張させた。活性金線電極を角膜上に配置し、設置電極と基準電極をそれぞれ尾部上と口内に配置した。
網膜電図のレコーディングは、PowerLabシステム2/25(ADインスツルメンツ、ニューサウスウェールズ、オーストラリア)を用いて行った。全視野暗順応ERGは、-2.1から2.9log cd s/mの範囲の刺激強度でのフラッシュ刺激への応答を測定した。明順応ERGは光適応10分後に測定した。0.4から1.4 log cd s/mの範囲のフラッシュ刺激への応答を、30cd s/mのバックグラウンドにて測定した。応答は差動増幅され、0.3から1000Hzの範囲のデジタルバンドパスフィルタを介してフィルタリングされた。各刺激は、市販の刺激装置(Ganzfeld System SG-2002;LKC Technologies,Inc.)を用いて行った。a波の振幅は、ベースラインからトラフまでを測定し、b波の振幅は、a波のトラフからb波のピークまでを測定した。a波とb波の潜時は、それぞれ刺激の開始から各波のピークまでを測定した。ピークポイントはシステムによって自動的に算出され、試験者がその算出結果を確認した。
<Electroretinogram (ERG) Recording>
Based on methods known to those skilled in the art, mice were dark-adapted for at least 12 hours and then placed under dim red light before ERG was performed (Non-Patent Documents 7-8). Mice were anesthetized with intraperitoneal compound anesthetic [midazolam 4 mg/kg body weight (Sandoz Japan Co., Ltd., Tokyo, Japan), medetomidine 0.75 mg/kg body weight (Nippon Zenyaku Kogyo Co., Fukushima, Japan), and butorphanol tartrate 5 mg/kg body weight (Meiji Seika Pharma Co., Ltd., Tokyo, Japan)] and kept on a heating pad during the experiment. Mice pupils were dilated using a drop of a mixture of tropicamide and phenylphrine (0.5% each; Mydrin-P®; Santen Pharmaceutical Co., Osaka, Japan). An active gold wire electrode was placed on the cornea, and ground and reference electrodes were placed on the tail and in the mouth, respectively.
Electroretinogram recordings were made using a PowerLab System 2/25 (AD Instruments, New South Wales, Australia). Full-field dark-adapted ERGs were measured in response to flash stimuli at stimulus intensities ranging from -2.1 to 2.9 log cd s/ m2 . Light-adapted ERGs were measured 10 min after light adaptation. Responses to flash stimuli ranging from 0.4 to 1.4 log cd s/ m2 were measured against a background of 30 cd s/ m2 . Responses were differentially amplified and filtered through a digital band-pass filter ranging from 0.3 to 1000 Hz. Each stimulus was delivered using a commercially available stimulator (Ganzfeld System SG-2002; LKC Technologies, Inc.). A-wave amplitude was measured from baseline to trough, and b-wave amplitude was measured from the a-wave trough to the b-wave peak. The a-wave and b-wave latencies were measured from the onset of stimulation to the peak of each wave, which was automatically calculated by the system and confirmed by the examiner.

<細胞培養>
HEK293細胞(ATCC CRL-1573)を、10%ウシ胎児血清(Life
technologies,Carlsbad,CA,USA)を添加したDulbecco’s modified Eagle’s medium(#08456-65;ナカライテスク、京都、日本)、及び100unit/mlペニシリン及び100μg/mlストレプトマイシン(Sigma-Aldrich,St.Louis,MO,USA)で維持した。
<Cell culture>
HEK293 cells (ATCC CRL-1573) were cultured in 10% fetal bovine serum (Life
The cells were maintained in Dulbecco's modified Eagle's medium (#08456-65; Nacalai Tesque, Kyoto, Japan) supplemented with 100 units/ml penicillin and 100 μg/ml streptomycin (Sigma-Aldrich, St. Louis, MO, USA).

<統計解析>
すべての結果は、平均±標準偏差として表される。その結果値は、3群間の比較についてはTukeyのポストホック検定を用いた一方向ANOVAにより解析し、2群間の比較についてはSPSS Statistics 24(IBM,Armonk,NY,USA)ソフトウェアを用いたスチューデントの両側t検定により解析した。P<0.05で統計的に有意差があると判断した。
Statistical analysis
All results are expressed as mean ± standard deviation. Comparisons between three groups were analyzed by one-way ANOVA with Tukey's post-hoc test, and comparisons between two groups were analyzed by two-tailed Student's t test using SPSS Statistics 24 (IBM, Armonk, NY, USA) software. P < 0.05 was considered statistically significant.

<実施例1 フェニル酪酸(PBA)がP23Hノックインヘテロ接合型マウス(P23H RPモデルマウス)における視細胞喪失を抑制した>
これまでに、P23Hノックインヘテロ接合型マウスでは、生後12日目までは視細胞層の厚さに変化はなく、内節(IS)と外節(OS)の長さは野生型(WT)と同程度であり、その後、徐々に網膜色素変性が進行することが報告されている(非特許文献9)。
本検討において、生後2週齢からPBAの連続投与を開始した。連続投与は、フェニル酪酸ナトリウム(Sigma-Aldrich、10mg/kg体重)を、生後2週齢から週5回、毎日腹腔内投与することで行った。その結果、PBAを投与したP23H RPモデルマウスの網膜では、10週齢になると、残存する視細胞数(視細胞核数)がビヒクルを投与したマウスよりも有意に多くなったことが示された(図1A、B)。この結果から、P23H RPモデルマウスにおいて、PBA投与によって視細胞の生存が促進され、網膜変性が抑制されることが示された。
Example 1: Phenylbutyric acid (PBA) suppressed photoreceptor cell loss in P23H knock-in heterozygous mice (P23H RP model mice)
It has been reported that in P23H knock-in heterozygous mice, there is no change in the thickness of the photoreceptor layer until postnatal day 12, and the length of the inner segment (IS) and outer segment (OS) is similar to that of wild-type (WT) mice, after which retinitis pigmentosa gradually progresses (Non-Patent Document 9).
In this study, continuous administration of PBA was started from 2 weeks of age. Continuous administration was performed by intraperitoneally administering sodium phenylbutyrate (Sigma-Aldrich, 10 mg/kg body weight) 5 times a week every day from 2 weeks of age. As a result, it was shown that the number of remaining photoreceptor cells (photoreceptor nuclei) in the retina of P23H RP model mice administered PBA was significantly higher than that of mice administered the vehicle at 10 weeks of age (Figure 1A, B). This result showed that PBA administration promotes the survival of photoreceptor cells and inhibits retinal degeneration in P23H RP model mice.

<実施例2 PBAはP23H RPモデルマウスの視覚機能を回復させた>
これまでに、P23H RPモデルマウスでは、6週齢で暗順応ERGによる杆体視細胞機能の障害が認められ、10週齢で明順応ERGによる錐体視細胞機能の障害が認められ、いずれも徐々に進行することが報告されている(非特許文献2)。
そのため、PBA治療による組織学的な改善が、より良い視覚機能の保持に寄与しているかどうかを調べるために、暗順応ERG(図2A-E)と明順応ERG(図2F-H)を測定した。P23H RPモデルマウスに、PBA(10mg/kg体重)を、生後2週齢から週5回、毎日腹腔内投与することで行った。その結果、暗順応ERGにおいて、10週齢のPBA処理したP23H RPモデルマウスではビヒクル処理したマウスと比較して、杆体視細胞の機能を反映するa波の振幅が大きくなり、さらにその後の網膜神経機能を反映するb波の振幅が大きくなり、潜時が短くなることが示された。つまり、PBA処理の継続によって、杆体系の視覚機能が保護されることが示された。また、明順応ERGにおいて、主に錐体視細胞の機能を示すb波の潜時がPBA処理後に短くなり、P23H RPモデルマウスではPBA処理によって、錐体系の視覚機能も保護されることが示された。
Example 2: PBA restored visual function in P23H RP model mice.
It has been reported that in P23H RP model mice, impairment of rod photoreceptor function was observed at 6 weeks of age based on dark-adapted ERG, and impairment of cone photoreceptor function was observed at 10 weeks of age, both of which progress gradually (Non-Patent Document 2).
Therefore, to examine whether the histological improvement by PBA treatment contributes to the preservation of better visual function, dark-adapted ERG (Fig. 2A-E) and light-adapted ERG (Fig. 2F-H) were measured. P23H RP model mice were intraperitoneally administered PBA (10 mg/kg body weight) daily, 5 times a week, from 2 weeks of age. As a result, dark-adapted ERG showed a larger amplitude of a-wave, which reflects the function of rod photoreceptors, and a larger amplitude and shorter latency of b-wave, which reflects the function of retinal nerve cells, in 10-week-old PBA-treated P23H RP model mice compared with vehicle-treated mice. In other words, it was shown that continued PBA treatment protects the visual function of the rod system. Furthermore, in light-adapted ERG, the latency of the b-wave, which mainly indicates the function of the cone photoreceptor cells, was shortened after PBA treatment, indicating that PBA treatment also protects the visual function of the cone system in P23H RP model mice.

<実施例3 PBAはP23H RPモデルマウスの網膜における小胞体ストレス関連分解(ERAD)及びミトコンドリアマーカーの発現上昇を誘導した>
これまでにP23H変異ロドプシンがERストレスを引き起こす一方(非特許文献9~15)、異常タンパク質を分解するERADシステム(非特許文献16~17)がP23H RPモデルマウスで誘導されることも明らかになっている(非特許文献9)。また、ERADはIRE1に関連したXBP1のXBP1sへの変換によって活性化され、Derlin 1と相互作用するVCP(Cdc48またはp97としても知られている)の誘導につながり、そのATPase活性を利用して、特定のミスフォールドされたタンパク質がERから細胞質へと輸送されること(非特許文献18)、さらにユビキチンプロテアソームシステム(UPS)を介してタンパク質が分解されることがこれまでに明らかになっている(非特許文献16~17)。
P23H RPモデルマウスの網膜における小胞体ストレス関連分解に関する検討を行った結果、実施例1及び2に記載するPBA処理により、XBP1s(図3A)、VCP(図3B)、Derlin1(図3C)の発現が亢進していることが示された。これらの結果から、PBAはERADの誘導を促進し、異常なP23Hロドプシンを除去することが示唆された。
Example 3: PBA induced increased expression of endoplasmic reticulum stress-associated degradation (ERAD) and mitochondrial markers in the retina of P23H RP model mice.
It has been shown that P23H mutant rhodopsin induces ER stress (Non-Patent Documents 9 to 15), while the ERAD system that degrades abnormal proteins (Non-Patent Documents 16 to 17) is induced in P23H RP model mice (Non-Patent Document 9). It has also been shown that ERAD is activated by the conversion of IRE1-associated XBP1 to XBP1s, leading to the induction of VCP (also known as Cdc48 or p97), which interacts with Derlin 1, and that specific misfolded proteins are transported from the ER to the cytoplasm using its ATPase activity (Non-Patent Document 18), and that proteins are further degraded via the ubiquitin proteasome system (UPS) (Non-Patent Documents 16 to 17).
As a result of examining ER stress-related degradation in the retina of P23H RP model mice, it was shown that the expression of XBP1s (Fig. 3A), VCP (Fig. 3B), and Derlin1 (Fig. 3C) was enhanced by the PBA treatment described in Examples 1 and 2. These results suggest that PBA promotes the induction of ERAD and removes abnormal P23H rhodopsin.

これまでにERストレスはVCPによるミトコンドリアの分裂及び融合を制御することでミトコンドリアの品質管理にも影響を与えること(非特許文献18~19)、VCPはオートファジーにより異常なミトコンドリアを排除するために分裂を誘導すること(非特許文献19~20)、一方で融合関連タンパク質であるミトフシンタンパク質はUPSを介して分解を誘導することが明らかになっている(非特許文献18~19)。このシステムは細胞の恒常性を維持し(非特許文献21)、神経の可塑性と生存を維持することも明らかになっている(非特許文献22)。
P23H RPモデルマウスの網膜におけるミトコンドリアの分裂及び融合に関する検討を行った結果、実施例1及び2に記載するPBA処理により、ミトコンドリア分裂マーカーFis1(図3D)とオートファジーマーカーLC3(図3E)のmRNAレベルが上昇することが示された。また、融合マーカーであるMfn1(図3F)とMfn2(図3G)のmRNAレベルもPBAによって上昇することが示された。これらの結果から、VCPがミトフシンタンパク質の分解を誘導することが示唆された。
It has been revealed that ER stress also affects mitochondrial quality control by controlling mitochondrial division and fusion by VCP (Non-Patent Documents 18-19), that VCP induces division to eliminate abnormal mitochondria by autophagy (Non-Patent Documents 19-20), and that mitofusin proteins, which are fusion-related proteins, induce degradation via the UPS (Non-Patent Documents 18-19). It has also been revealed that this system maintains cellular homeostasis (Non-Patent Document 21) and neuronal plasticity and survival (Non-Patent Document 22).
As a result of investigating mitochondrial fission and fusion in the retina of P23H RP model mice, it was shown that the PBA treatment described in Examples 1 and 2 increased the mRNA levels of the mitochondrial fission marker Fis1 (Figure 3D) and the autophagy marker LC3 (Figure 3E). It was also shown that the mRNA levels of the fusion markers Mfn1 (Figure 3F) and Mfn2 (Figure 3G) were increased by PBA. These results suggest that VCP induces the degradation of mitofusin proteins.

ミトコンドリアの品質管理の間、損傷したミトコンドリアを新しい健康なミトコンドリアに置き換えるミトコンドリア生合成が行われる(非特許文献19、23)。ミトコンドリア生合成を調節することが知られているPgc1-αと(非特許文献24)、呼吸に関連する分子をコードするミトコンドリアDNAを誘導する転写因子であるTfam(非特許文献25)のmRNAレベルが実施例1及び2に記載するPBAによって上昇することが示された(図3H及びI)。これらの結果から、PBA処理により、ミトコンドリア生合成が活性化することが示された。 During mitochondrial quality control, mitochondrial biogenesis is carried out to replace damaged mitochondria with new healthy mitochondria (Non-Patent Documents 19, 23). It was shown that the mRNA levels of Pgc1-α, which is known to regulate mitochondrial biogenesis (Non-Patent Document 24), and Tfam, a transcription factor that induces mitochondrial DNA that encodes molecules related to respiration (Non-Patent Document 25), were increased by PBA as described in Examples 1 and 2 (Figures 3H and I). These results indicate that PBA treatment activates mitochondrial biogenesis.

<実施例4 PBAはミトコンドリアにおける酸化的リン酸化(OXPHOS)をin vitroで活性化した>
さらにPBAにより生じる電位効果を解析するために、HEK293細胞株を用いた検討を行った。各測定の12又は24時間前に、細胞を0~2.5μMのPBAで処理した。ミトコンドリア膜電位は、細胞をテトラメチルローダミンメチルエステル(TMRE)(10μM)で、37℃、30分間インキュベートし、BAM15(Sigma-Aldrich)投与前後の平均輝度を、共焦点顕微鏡(TCS-SP5;ライカ、東京、日本)を用いて測定し、次の計算式により算出した:膜電位=BAM15添加前の平均輝度14秒間(7枚×2秒おき)/BAM15添加直後の平均輝度14秒間(7枚×2秒おき)。シトクロムc酸化酵素(COX IV)活性の測定は、保存用液体窒素で細胞を瞬間凍結した後、キットに付属の溶解バッファーに入れてから、製造業者の指示に従い、Complex IV Rodent Enzyme Activity Microplate Assay Kit(Abcam)を用いて行った。発光シグナルを、Cytation 5システム(BioTek,Winooski,VT,USA)を用いて測定した。ATP測定のために、瞬間凍結サンプルは、ATP Bioluminescence Assay Kit CLSII(Sigma-Aldrich)を用いてATP含有量を測定する前に、溶解緩衝液に入れ、発光シグナルを、Cytation 5システム(BioTek)を用いて測定した。
この結果、HEK293細胞株において、PBAはPgc1-α(図4A)とTfam(図4B)を用量依存的に発現させた。ミトコンドリアの膜電位はミトコンドリアにおけるATP合成に不可欠であり、ミトコンドリアのプロトノフォア脱共役剤であるBAM15はこの電位を打ち消す。BAM15投与前後の電位の減算法を用いて、PBAで処理した細胞では膜電位が上昇した(図4C、D)。さらに、PBAによって、シトクロムc酸化酵素IV(COX IV)の活性が増加し(図4E)、その結果、ATPレベルが増加したことが示された(図4F)。これらの結果から、PBAがミトコンドリアの機能を増加させて、細胞保護に利用できるATPレベルを獲得できることが示され、これにより病態改善につながることが示唆された(非特許文献3、26~27)。
Example 4: PBA activates mitochondrial oxidative phosphorylation (OXPHOS) in vitro
To further analyze the potential effect caused by PBA, a study was carried out using HEK293 cell line. The cells were treated with 0-2.5 μM PBA 12 or 24 hours before each measurement. The mitochondrial membrane potential was measured by incubating the cells with tetramethylrhodamine methyl ester (TMRE) (10 μM) at 37°C for 30 minutes, measuring the average brightness before and after administration of BAM15 (Sigma-Aldrich) using a confocal microscope (TCS-SP5; Leica, Tokyo, Japan), and calculating the potential using the following formula: membrane potential = average brightness for 14 seconds before addition of BAM15 (7 images x 2 seconds apart) / average brightness for 14 seconds immediately after addition of BAM15 (7 images x 2 seconds apart). Measurement of cytochrome c oxidase (COX IV) activity was performed using the Complex IV Rodent Enzyme Activity Microplate Assay Kit (Abcam) according to the manufacturer's instructions after flash freezing the cells in liquid nitrogen and then placing them in the lysis buffer provided with the kit. Luminescence signals were measured using a Cytation 5 system (BioTek, Winooski, VT, USA). For ATP measurements, flash frozen samples were placed in lysis buffer before measuring ATP content using the ATP Bioluminescence Assay Kit CLSII (Sigma-Aldrich), and luminescence signals were measured using a Cytation 5 system (BioTek).
As a result, PBA induced dose-dependent expression of Pgc1-α (Figure 4A) and Tfam (Figure 4B) in HEK293 cell lines. Mitochondrial membrane potential is essential for mitochondrial ATP synthesis, and BAM15, a mitochondrial protonophore uncoupler, counteracts this potential. Using the subtraction method of potential before and after BAM15 administration, the membrane potential was increased in cells treated with PBA (Figure 4C, D). Furthermore, it was shown that PBA increased the activity of cytochrome c oxidase IV (COX IV) (Figure 4E), which resulted in increased ATP levels (Figure 4F). These results indicate that PBA can increase mitochondrial function and obtain ATP levels that can be used for cytoprotection, which may lead to improvement of pathological conditions (Non-Patent Documents 3, 26-27).

Claims (8)

フェニル酪酸(PBA)若しくはその塩又はそれらの誘導体を含む、網膜変性抑制用医薬組成物。 A pharmaceutical composition for inhibiting retinal degeneration, comprising phenylbutyric acid (PBA) or a salt thereof, or a derivative thereof. フェニル酪酸(PBA)若しくはその塩又はそれらの誘導体を含む、網膜変性疾患を治療又は予防するための、医薬組成物。 A pharmaceutical composition for treating or preventing a retinal degenerative disease, comprising phenylbutyric acid (PBA) or a salt thereof or a derivative thereof. 前記網膜変性疾患が、網膜視細胞が変性した疾患である、請求項2に記載の医薬組成物。 The pharmaceutical composition according to claim 2, wherein the retinal degenerative disease is a disease in which retinal photoreceptor cells are degenerated. 前記網膜変性疾患が、網膜色素変性、糖尿病網膜症、加齢黄斑変性、及びMELAS(mitochondrial myopathy,encephalopathy,lactic acidosis,and stroke-like episodes)に伴う網膜変性から選択される1つ以上の疾患である、請求項2又は3に記載の医薬組成物。 The pharmaceutical composition according to claim 2 or 3, wherein the retinal degenerative disease is one or more diseases selected from retinitis pigmentosa, diabetic retinopathy, age-related macular degeneration, and retinal degeneration associated with MELAS (mitochondrial myopathy, encephalopathies, lactic acidosis, and stroke-like episodes). フェニル酪酸の塩が、ナトリウム塩である、請求項1~4のいずれか一項に記載の医薬組成物。 The pharmaceutical composition according to any one of claims 1 to 4, wherein the salt of phenylbutyric acid is a sodium salt. 錠剤、顆粒剤、注射剤又は点眼剤である、請求項1~5のいずれか一項に記載の医薬組成物。 The pharmaceutical composition according to any one of claims 1 to 5, which is in the form of a tablet, granule, injection or eye drop. フェニル酪酸(PBA)若しくはその塩又はそれらの誘導体を含む、網膜における小胞体ストレス関連分解を促進するための医薬組成物。 A pharmaceutical composition for promoting endoplasmic reticulum stress-related degradation in the retina, comprising phenylbutyric acid (PBA) or a salt thereof or a derivative thereof. フェニル酪酸(PBA)若しくはその塩又はそれらの誘導体を含む、網膜におけるミトコンドリア生合成を活性化するための及び/又は網膜におけるミトコンドリアの代謝機能を改善するための医薬組成物。 A pharmaceutical composition for activating mitochondrial biogenesis in the retina and/or improving mitochondrial metabolic function in the retina, comprising phenylbutyric acid (PBA) or a salt thereof or a derivative thereof.
JP2021042005A 2021-03-16 2021-03-16 Composition for preventing retinal degeneration Pending JP2024069730A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021042005A JP2024069730A (en) 2021-03-16 2021-03-16 Composition for preventing retinal degeneration
PCT/JP2022/011209 WO2022196609A1 (en) 2021-03-16 2022-03-14 Composition for preventing retinal degeneration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021042005A JP2024069730A (en) 2021-03-16 2021-03-16 Composition for preventing retinal degeneration

Publications (1)

Publication Number Publication Date
JP2024069730A true JP2024069730A (en) 2024-05-22

Family

ID=83320371

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021042005A Pending JP2024069730A (en) 2021-03-16 2021-03-16 Composition for preventing retinal degeneration

Country Status (2)

Country Link
JP (1) JP2024069730A (en)
WO (1) WO2022196609A1 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8962686B2 (en) * 2010-04-28 2015-02-24 The Chinese University Of Hong Kong Method and medication for prevention and treatment of ocular hypertension and glaucoma
JPWO2015064768A1 (en) * 2013-10-31 2017-03-09 京都府公立大学法人 Drugs for diseases related to endoplasmic reticulum cell death in corneal endothelium
KR101721696B1 (en) * 2014-09-19 2017-03-31 경희대학교 산학협력단 Pharmaceutical composition containing combination extract of Moutan Root Bark, Angelica Dahurica Root and Bupleurum Root and fractions thereof for prevention and treatment of neurodegenerative disorder
CN115645536A (en) * 2017-03-06 2023-01-31 坪田实验室股份有限公司 Mouse myopia induction model and endoplasmic reticulum stress inhibitor for myopia prevention/inhibition
JP2019112338A (en) * 2017-12-22 2019-07-11 国立大学法人 熊本大学 Mitochondrial disease therapeutic agent

Also Published As

Publication number Publication date
WO2022196609A1 (en) 2022-09-22

Similar Documents

Publication Publication Date Title
Li et al. Berberine improves pressure overload-induced cardiac hypertrophy and dysfunction through enhanced autophagy
Rezaie et al. Protective effect of carnosic acid, a pro-electrophilic compound, in models of oxidative stress and light-induced retinal degeneration
US10583125B2 (en) Method for treating neurodegenerative diseases
JP5643237B2 (en) Method for inhibiting apoptosis of photoreceptor cells
EP1778207A2 (en) Combination compositions comprising 13-cis-retinyl derivatives and uses thereof to treat opthalmic disorders
ES2770410T3 (en) Folic acid - ramipril combination: celluloprotective, neuroprotective and retinoprotective ophthalmic compositions
JP7165693B2 (en) Novel use of cell-permeable peptide inhibitors of the JNK signaling pathway for the treatment of various diseases
WO2011004620A1 (en) Cytoprotective agent
Jiang et al. Monomethyl fumarate protects the retina from light-induced retinopathy
US20160339008A1 (en) Methods of treating or preventing vascular diseases of the retina
Bai et al. Neuroprotection of SRT2104 in murine ischemia/reperfusion injury through the enhancement of Sirt1-mediated deacetylation
US20080260644A1 (en) Chloride transport upregulation for the treatment of traumatic brain injury
WO2011097577A2 (en) Compositions and methods for treating or preventing retinal degeneration
WO2022196609A1 (en) Composition for preventing retinal degeneration
US20180200279A1 (en) Inhibition of hsv-1-associated corneal neovascularization using inhibitors of cyclin-dependent kinase 9
CN107849038A (en) S1PR2 antagonists and application thereof
US11717513B2 (en) Mirabegron for the treatment of retinal diseases
WO2015042821A1 (en) Compound for activating ampk and uses thereof
TWI481406B (en) A composition for activating ampk and the use of same
JP7378155B2 (en) How to treat Phelan-McDermid syndrome using farnesyl dibenzodiazepinone
KR101840589B1 (en) Composition for preventing or treating corneal dystrophy
Wang et al. Hereditary optic neuropathies
JP2017507941A (en) Novel composition for treating mechanical nerve injury
Alexandru et al. IGF1/IGF1R MITOGENIC PATHWAYS AND IMPLICATIONS IN GB THERAPY
JP2022523308A (en) Cannabidiol and / or its derivatives for use in the treatment of mitochondrial disease